linux/drivers/net/qlge/qlge_main.c

4942 lines
134 KiB
C

/*
* QLogic qlge NIC HBA Driver
* Copyright (c) 2003-2008 QLogic Corporation
* See LICENSE.qlge for copyright and licensing details.
* Author: Linux qlge network device driver by
* Ron Mercer <ron.mercer@qlogic.com>
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/pagemap.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/dmapool.h>
#include <linux/mempool.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/if_vlan.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <net/ip6_checksum.h>
#include "qlge.h"
char qlge_driver_name[] = DRV_NAME;
const char qlge_driver_version[] = DRV_VERSION;
MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
MODULE_DESCRIPTION(DRV_STRING " ");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
static const u32 default_msg =
NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
/* NETIF_MSG_TIMER | */
NETIF_MSG_IFDOWN |
NETIF_MSG_IFUP |
NETIF_MSG_RX_ERR |
NETIF_MSG_TX_ERR |
/* NETIF_MSG_TX_QUEUED | */
/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
/* NETIF_MSG_PKTDATA | */
NETIF_MSG_HW | NETIF_MSG_WOL | 0;
static int debug = 0x00007fff; /* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
#define MSIX_IRQ 0
#define MSI_IRQ 1
#define LEG_IRQ 2
static int qlge_irq_type = MSIX_IRQ;
module_param(qlge_irq_type, int, MSIX_IRQ);
MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
static int qlge_mpi_coredump;
module_param(qlge_mpi_coredump, int, 0);
MODULE_PARM_DESC(qlge_mpi_coredump,
"Option to enable MPI firmware dump. "
"Default is OFF - Do Not allocate memory. ");
static int qlge_force_coredump;
module_param(qlge_force_coredump, int, 0);
MODULE_PARM_DESC(qlge_force_coredump,
"Option to allow force of firmware core dump. "
"Default is OFF - Do not allow.");
static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
/* required last entry */
{0,}
};
MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
/* This hardware semaphore causes exclusive access to
* resources shared between the NIC driver, MPI firmware,
* FCOE firmware and the FC driver.
*/
static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
{
u32 sem_bits = 0;
switch (sem_mask) {
case SEM_XGMAC0_MASK:
sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
break;
case SEM_XGMAC1_MASK:
sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
break;
case SEM_ICB_MASK:
sem_bits = SEM_SET << SEM_ICB_SHIFT;
break;
case SEM_MAC_ADDR_MASK:
sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
break;
case SEM_FLASH_MASK:
sem_bits = SEM_SET << SEM_FLASH_SHIFT;
break;
case SEM_PROBE_MASK:
sem_bits = SEM_SET << SEM_PROBE_SHIFT;
break;
case SEM_RT_IDX_MASK:
sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
break;
case SEM_PROC_REG_MASK:
sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
break;
default:
netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
return -EINVAL;
}
ql_write32(qdev, SEM, sem_bits | sem_mask);
return !(ql_read32(qdev, SEM) & sem_bits);
}
int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
{
unsigned int wait_count = 30;
do {
if (!ql_sem_trylock(qdev, sem_mask))
return 0;
udelay(100);
} while (--wait_count);
return -ETIMEDOUT;
}
void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
{
ql_write32(qdev, SEM, sem_mask);
ql_read32(qdev, SEM); /* flush */
}
/* This function waits for a specific bit to come ready
* in a given register. It is used mostly by the initialize
* process, but is also used in kernel thread API such as
* netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
*/
int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
{
u32 temp;
int count = UDELAY_COUNT;
while (count) {
temp = ql_read32(qdev, reg);
/* check for errors */
if (temp & err_bit) {
netif_alert(qdev, probe, qdev->ndev,
"register 0x%.08x access error, value = 0x%.08x!.\n",
reg, temp);
return -EIO;
} else if (temp & bit)
return 0;
udelay(UDELAY_DELAY);
count--;
}
netif_alert(qdev, probe, qdev->ndev,
"Timed out waiting for reg %x to come ready.\n", reg);
return -ETIMEDOUT;
}
/* The CFG register is used to download TX and RX control blocks
* to the chip. This function waits for an operation to complete.
*/
static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
{
int count = UDELAY_COUNT;
u32 temp;
while (count) {
temp = ql_read32(qdev, CFG);
if (temp & CFG_LE)
return -EIO;
if (!(temp & bit))
return 0;
udelay(UDELAY_DELAY);
count--;
}
return -ETIMEDOUT;
}
/* Used to issue init control blocks to hw. Maps control block,
* sets address, triggers download, waits for completion.
*/
int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
u16 q_id)
{
u64 map;
int status = 0;
int direction;
u32 mask;
u32 value;
direction =
(bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
PCI_DMA_FROMDEVICE;
map = pci_map_single(qdev->pdev, ptr, size, direction);
if (pci_dma_mapping_error(qdev->pdev, map)) {
netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
return -ENOMEM;
}
status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
if (status)
return status;
status = ql_wait_cfg(qdev, bit);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Timed out waiting for CFG to come ready.\n");
goto exit;
}
ql_write32(qdev, ICB_L, (u32) map);
ql_write32(qdev, ICB_H, (u32) (map >> 32));
mask = CFG_Q_MASK | (bit << 16);
value = bit | (q_id << CFG_Q_SHIFT);
ql_write32(qdev, CFG, (mask | value));
/*
* Wait for the bit to clear after signaling hw.
*/
status = ql_wait_cfg(qdev, bit);
exit:
ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
pci_unmap_single(qdev->pdev, map, size, direction);
return status;
}
/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
u32 *value)
{
u32 offset = 0;
int status;
switch (type) {
case MAC_ADDR_TYPE_MULTI_MAC:
case MAC_ADDR_TYPE_CAM_MAC:
{
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MR, 0);
if (status)
goto exit;
*value++ = ql_read32(qdev, MAC_ADDR_DATA);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MR, 0);
if (status)
goto exit;
*value++ = ql_read32(qdev, MAC_ADDR_DATA);
if (type == MAC_ADDR_TYPE_CAM_MAC) {
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
status =
ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
MAC_ADDR_MR, 0);
if (status)
goto exit;
*value++ = ql_read32(qdev, MAC_ADDR_DATA);
}
break;
}
case MAC_ADDR_TYPE_VLAN:
case MAC_ADDR_TYPE_MULTI_FLTR:
default:
netif_crit(qdev, ifup, qdev->ndev,
"Address type %d not yet supported.\n", type);
status = -EPERM;
}
exit:
return status;
}
/* Set up a MAC, multicast or VLAN address for the
* inbound frame matching.
*/
static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
u16 index)
{
u32 offset = 0;
int status = 0;
switch (type) {
case MAC_ADDR_TYPE_MULTI_MAC:
{
u32 upper = (addr[0] << 8) | addr[1];
u32 lower = (addr[2] << 24) | (addr[3] << 16) |
(addr[4] << 8) | (addr[5]);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
(index << MAC_ADDR_IDX_SHIFT) |
type | MAC_ADDR_E);
ql_write32(qdev, MAC_ADDR_DATA, lower);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
(index << MAC_ADDR_IDX_SHIFT) |
type | MAC_ADDR_E);
ql_write32(qdev, MAC_ADDR_DATA, upper);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
break;
}
case MAC_ADDR_TYPE_CAM_MAC:
{
u32 cam_output;
u32 upper = (addr[0] << 8) | addr[1];
u32 lower =
(addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
(addr[5]);
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Adding %s address %pM at index %d in the CAM.\n",
type == MAC_ADDR_TYPE_MULTI_MAC ?
"MULTICAST" : "UNICAST",
addr, index);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type); /* type */
ql_write32(qdev, MAC_ADDR_DATA, lower);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type); /* type */
ql_write32(qdev, MAC_ADDR_DATA, upper);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type); /* type */
/* This field should also include the queue id
and possibly the function id. Right now we hardcode
the route field to NIC core.
*/
cam_output = (CAM_OUT_ROUTE_NIC |
(qdev->
func << CAM_OUT_FUNC_SHIFT) |
(0 << CAM_OUT_CQ_ID_SHIFT));
if (qdev->vlgrp)
cam_output |= CAM_OUT_RV;
/* route to NIC core */
ql_write32(qdev, MAC_ADDR_DATA, cam_output);
break;
}
case MAC_ADDR_TYPE_VLAN:
{
u32 enable_bit = *((u32 *) &addr[0]);
/* For VLAN, the addr actually holds a bit that
* either enables or disables the vlan id we are
* addressing. It's either MAC_ADDR_E on or off.
* That's bit-27 we're talking about.
*/
netif_info(qdev, ifup, qdev->ndev,
"%s VLAN ID %d %s the CAM.\n",
enable_bit ? "Adding" : "Removing",
index,
enable_bit ? "to" : "from");
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type | /* type */
enable_bit); /* enable/disable */
break;
}
case MAC_ADDR_TYPE_MULTI_FLTR:
default:
netif_crit(qdev, ifup, qdev->ndev,
"Address type %d not yet supported.\n", type);
status = -EPERM;
}
exit:
return status;
}
/* Set or clear MAC address in hardware. We sometimes
* have to clear it to prevent wrong frame routing
* especially in a bonding environment.
*/
static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
{
int status;
char zero_mac_addr[ETH_ALEN];
char *addr;
if (set) {
addr = &qdev->current_mac_addr[0];
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Set Mac addr %pM\n", addr);
} else {
memset(zero_mac_addr, 0, ETH_ALEN);
addr = &zero_mac_addr[0];
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Clearing MAC address\n");
}
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
return status;
status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
netif_err(qdev, ifup, qdev->ndev,
"Failed to init mac address.\n");
return status;
}
void ql_link_on(struct ql_adapter *qdev)
{
netif_err(qdev, link, qdev->ndev, "Link is up.\n");
netif_carrier_on(qdev->ndev);
ql_set_mac_addr(qdev, 1);
}
void ql_link_off(struct ql_adapter *qdev)
{
netif_err(qdev, link, qdev->ndev, "Link is down.\n");
netif_carrier_off(qdev->ndev);
ql_set_mac_addr(qdev, 0);
}
/* Get a specific frame routing value from the CAM.
* Used for debug and reg dump.
*/
int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
{
int status = 0;
status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
if (status)
goto exit;
ql_write32(qdev, RT_IDX,
RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
if (status)
goto exit;
*value = ql_read32(qdev, RT_DATA);
exit:
return status;
}
/* The NIC function for this chip has 16 routing indexes. Each one can be used
* to route different frame types to various inbound queues. We send broadcast/
* multicast/error frames to the default queue for slow handling,
* and CAM hit/RSS frames to the fast handling queues.
*/
static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
int enable)
{
int status = -EINVAL; /* Return error if no mask match. */
u32 value = 0;
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"%s %s mask %s the routing reg.\n",
enable ? "Adding" : "Removing",
index == RT_IDX_ALL_ERR_SLOT ? "MAC ERROR/ALL ERROR" :
index == RT_IDX_IP_CSUM_ERR_SLOT ? "IP CSUM ERROR" :
index == RT_IDX_TCP_UDP_CSUM_ERR_SLOT ? "TCP/UDP CSUM ERROR" :
index == RT_IDX_BCAST_SLOT ? "BROADCAST" :
index == RT_IDX_MCAST_MATCH_SLOT ? "MULTICAST MATCH" :
index == RT_IDX_ALLMULTI_SLOT ? "ALL MULTICAST MATCH" :
index == RT_IDX_UNUSED6_SLOT ? "UNUSED6" :
index == RT_IDX_UNUSED7_SLOT ? "UNUSED7" :
index == RT_IDX_RSS_MATCH_SLOT ? "RSS ALL/IPV4 MATCH" :
index == RT_IDX_RSS_IPV6_SLOT ? "RSS IPV6" :
index == RT_IDX_RSS_TCP4_SLOT ? "RSS TCP4" :
index == RT_IDX_RSS_TCP6_SLOT ? "RSS TCP6" :
index == RT_IDX_CAM_HIT_SLOT ? "CAM HIT" :
index == RT_IDX_UNUSED013 ? "UNUSED13" :
index == RT_IDX_UNUSED014 ? "UNUSED14" :
index == RT_IDX_PROMISCUOUS_SLOT ? "PROMISCUOUS" :
"(Bad index != RT_IDX)",
enable ? "to" : "from");
switch (mask) {
case RT_IDX_CAM_HIT:
{
value = RT_IDX_DST_CAM_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_VALID: /* Promiscuous Mode frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_IP_CSUM_ERR_SLOT <<
RT_IDX_IDX_SHIFT); /* index */
break;
}
case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
RT_IDX_IDX_SHIFT); /* index */
break;
}
case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_MCAST: /* Pass up All Multicast frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
{
value = RT_IDX_DST_RSS | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case 0: /* Clear the E-bit on an entry. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(index << RT_IDX_IDX_SHIFT);/* index */
break;
}
default:
netif_err(qdev, ifup, qdev->ndev,
"Mask type %d not yet supported.\n", mask);
status = -EPERM;
goto exit;
}
if (value) {
status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
if (status)
goto exit;
value |= (enable ? RT_IDX_E : 0);
ql_write32(qdev, RT_IDX, value);
ql_write32(qdev, RT_DATA, enable ? mask : 0);
}
exit:
return status;
}
static void ql_enable_interrupts(struct ql_adapter *qdev)
{
ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
}
static void ql_disable_interrupts(struct ql_adapter *qdev)
{
ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
}
/* If we're running with multiple MSI-X vectors then we enable on the fly.
* Otherwise, we may have multiple outstanding workers and don't want to
* enable until the last one finishes. In this case, the irq_cnt gets
* incremented everytime we queue a worker and decremented everytime
* a worker finishes. Once it hits zero we enable the interrupt.
*/
u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
{
u32 var = 0;
unsigned long hw_flags = 0;
struct intr_context *ctx = qdev->intr_context + intr;
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
/* Always enable if we're MSIX multi interrupts and
* it's not the default (zeroeth) interrupt.
*/
ql_write32(qdev, INTR_EN,
ctx->intr_en_mask);
var = ql_read32(qdev, STS);
return var;
}
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
if (atomic_dec_and_test(&ctx->irq_cnt)) {
ql_write32(qdev, INTR_EN,
ctx->intr_en_mask);
var = ql_read32(qdev, STS);
}
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return var;
}
static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
{
u32 var = 0;
struct intr_context *ctx;
/* HW disables for us if we're MSIX multi interrupts and
* it's not the default (zeroeth) interrupt.
*/
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
return 0;
ctx = qdev->intr_context + intr;
spin_lock(&qdev->hw_lock);
if (!atomic_read(&ctx->irq_cnt)) {
ql_write32(qdev, INTR_EN,
ctx->intr_dis_mask);
var = ql_read32(qdev, STS);
}
atomic_inc(&ctx->irq_cnt);
spin_unlock(&qdev->hw_lock);
return var;
}
static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
{
int i;
for (i = 0; i < qdev->intr_count; i++) {
/* The enable call does a atomic_dec_and_test
* and enables only if the result is zero.
* So we precharge it here.
*/
if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
i == 0))
atomic_set(&qdev->intr_context[i].irq_cnt, 1);
ql_enable_completion_interrupt(qdev, i);
}
}
static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
{
int status, i;
u16 csum = 0;
__le16 *flash = (__le16 *)&qdev->flash;
status = strncmp((char *)&qdev->flash, str, 4);
if (status) {
netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
return status;
}
for (i = 0; i < size; i++)
csum += le16_to_cpu(*flash++);
if (csum)
netif_err(qdev, ifup, qdev->ndev,
"Invalid flash checksum, csum = 0x%.04x.\n", csum);
return csum;
}
static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
{
int status = 0;
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
if (status)
goto exit;
/* set up for reg read */
ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
if (status)
goto exit;
/* This data is stored on flash as an array of
* __le32. Since ql_read32() returns cpu endian
* we need to swap it back.
*/
*data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
exit:
return status;
}
static int ql_get_8000_flash_params(struct ql_adapter *qdev)
{
u32 i, size;
int status;
__le32 *p = (__le32 *)&qdev->flash;
u32 offset;
u8 mac_addr[6];
/* Get flash offset for function and adjust
* for dword access.
*/
if (!qdev->port)
offset = FUNC0_FLASH_OFFSET / sizeof(u32);
else
offset = FUNC1_FLASH_OFFSET / sizeof(u32);
if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
return -ETIMEDOUT;
size = sizeof(struct flash_params_8000) / sizeof(u32);
for (i = 0; i < size; i++, p++) {
status = ql_read_flash_word(qdev, i+offset, p);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Error reading flash.\n");
goto exit;
}
}
status = ql_validate_flash(qdev,
sizeof(struct flash_params_8000) / sizeof(u16),
"8000");
if (status) {
netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
status = -EINVAL;
goto exit;
}
/* Extract either manufacturer or BOFM modified
* MAC address.
*/
if (qdev->flash.flash_params_8000.data_type1 == 2)
memcpy(mac_addr,
qdev->flash.flash_params_8000.mac_addr1,
qdev->ndev->addr_len);
else
memcpy(mac_addr,
qdev->flash.flash_params_8000.mac_addr,
qdev->ndev->addr_len);
if (!is_valid_ether_addr(mac_addr)) {
netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
status = -EINVAL;
goto exit;
}
memcpy(qdev->ndev->dev_addr,
mac_addr,
qdev->ndev->addr_len);
exit:
ql_sem_unlock(qdev, SEM_FLASH_MASK);
return status;
}
static int ql_get_8012_flash_params(struct ql_adapter *qdev)
{
int i;
int status;
__le32 *p = (__le32 *)&qdev->flash;
u32 offset = 0;
u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
/* Second function's parameters follow the first
* function's.
*/
if (qdev->port)
offset = size;
if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
return -ETIMEDOUT;
for (i = 0; i < size; i++, p++) {
status = ql_read_flash_word(qdev, i+offset, p);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Error reading flash.\n");
goto exit;
}
}
status = ql_validate_flash(qdev,
sizeof(struct flash_params_8012) / sizeof(u16),
"8012");
if (status) {
netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
status = -EINVAL;
goto exit;
}
if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
status = -EINVAL;
goto exit;
}
memcpy(qdev->ndev->dev_addr,
qdev->flash.flash_params_8012.mac_addr,
qdev->ndev->addr_len);
exit:
ql_sem_unlock(qdev, SEM_FLASH_MASK);
return status;
}
/* xgmac register are located behind the xgmac_addr and xgmac_data
* register pair. Each read/write requires us to wait for the ready
* bit before reading/writing the data.
*/
static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
{
int status;
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
return status;
/* write the data to the data reg */
ql_write32(qdev, XGMAC_DATA, data);
/* trigger the write */
ql_write32(qdev, XGMAC_ADDR, reg);
return status;
}
/* xgmac register are located behind the xgmac_addr and xgmac_data
* register pair. Each read/write requires us to wait for the ready
* bit before reading/writing the data.
*/
int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
{
int status = 0;
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
goto exit;
/* set up for reg read */
ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
goto exit;
/* get the data */
*data = ql_read32(qdev, XGMAC_DATA);
exit:
return status;
}
/* This is used for reading the 64-bit statistics regs. */
int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
{
int status = 0;
u32 hi = 0;
u32 lo = 0;
status = ql_read_xgmac_reg(qdev, reg, &lo);
if (status)
goto exit;
status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
if (status)
goto exit;
*data = (u64) lo | ((u64) hi << 32);
exit:
return status;
}
static int ql_8000_port_initialize(struct ql_adapter *qdev)
{
int status;
/*
* Get MPI firmware version for driver banner
* and ethool info.
*/
status = ql_mb_about_fw(qdev);
if (status)
goto exit;
status = ql_mb_get_fw_state(qdev);
if (status)
goto exit;
/* Wake up a worker to get/set the TX/RX frame sizes. */
queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
exit:
return status;
}
/* Take the MAC Core out of reset.
* Enable statistics counting.
* Take the transmitter/receiver out of reset.
* This functionality may be done in the MPI firmware at a
* later date.
*/
static int ql_8012_port_initialize(struct ql_adapter *qdev)
{
int status = 0;
u32 data;
if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
/* Another function has the semaphore, so
* wait for the port init bit to come ready.
*/
netif_info(qdev, link, qdev->ndev,
"Another function has the semaphore, so wait for the port init bit to come ready.\n");
status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
if (status) {
netif_crit(qdev, link, qdev->ndev,
"Port initialize timed out.\n");
}
return status;
}
netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
/* Set the core reset. */
status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
if (status)
goto end;
data |= GLOBAL_CFG_RESET;
status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
if (status)
goto end;
/* Clear the core reset and turn on jumbo for receiver. */
data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
data |= GLOBAL_CFG_TX_STAT_EN;
data |= GLOBAL_CFG_RX_STAT_EN;
status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
if (status)
goto end;
/* Enable transmitter, and clear it's reset. */
status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
if (status)
goto end;
data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
data |= TX_CFG_EN; /* Enable the transmitter. */
status = ql_write_xgmac_reg(qdev, TX_CFG, data);
if (status)
goto end;
/* Enable receiver and clear it's reset. */
status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
if (status)
goto end;
data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
data |= RX_CFG_EN; /* Enable the receiver. */
status = ql_write_xgmac_reg(qdev, RX_CFG, data);
if (status)
goto end;
/* Turn on jumbo. */
status =
ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
if (status)
goto end;
status =
ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
if (status)
goto end;
/* Signal to the world that the port is enabled. */
ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
end:
ql_sem_unlock(qdev, qdev->xg_sem_mask);
return status;
}
static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
{
return PAGE_SIZE << qdev->lbq_buf_order;
}
/* Get the next large buffer. */
static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
{
struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
rx_ring->lbq_curr_idx++;
if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
rx_ring->lbq_curr_idx = 0;
rx_ring->lbq_free_cnt++;
return lbq_desc;
}
static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
pci_dma_sync_single_for_cpu(qdev->pdev,
dma_unmap_addr(lbq_desc, mapaddr),
rx_ring->lbq_buf_size,
PCI_DMA_FROMDEVICE);
/* If it's the last chunk of our master page then
* we unmap it.
*/
if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
== ql_lbq_block_size(qdev))
pci_unmap_page(qdev->pdev,
lbq_desc->p.pg_chunk.map,
ql_lbq_block_size(qdev),
PCI_DMA_FROMDEVICE);
return lbq_desc;
}
/* Get the next small buffer. */
static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
{
struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
rx_ring->sbq_curr_idx++;
if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
rx_ring->sbq_curr_idx = 0;
rx_ring->sbq_free_cnt++;
return sbq_desc;
}
/* Update an rx ring index. */
static void ql_update_cq(struct rx_ring *rx_ring)
{
rx_ring->cnsmr_idx++;
rx_ring->curr_entry++;
if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
rx_ring->cnsmr_idx = 0;
rx_ring->curr_entry = rx_ring->cq_base;
}
}
static void ql_write_cq_idx(struct rx_ring *rx_ring)
{
ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
}
static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
struct bq_desc *lbq_desc)
{
if (!rx_ring->pg_chunk.page) {
u64 map;
rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
GFP_ATOMIC,
qdev->lbq_buf_order);
if (unlikely(!rx_ring->pg_chunk.page)) {
netif_err(qdev, drv, qdev->ndev,
"page allocation failed.\n");
return -ENOMEM;
}
rx_ring->pg_chunk.offset = 0;
map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
0, ql_lbq_block_size(qdev),
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(qdev->pdev, map)) {
__free_pages(rx_ring->pg_chunk.page,
qdev->lbq_buf_order);
netif_err(qdev, drv, qdev->ndev,
"PCI mapping failed.\n");
return -ENOMEM;
}
rx_ring->pg_chunk.map = map;
rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
}
/* Copy the current master pg_chunk info
* to the current descriptor.
*/
lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
/* Adjust the master page chunk for next
* buffer get.
*/
rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
rx_ring->pg_chunk.page = NULL;
lbq_desc->p.pg_chunk.last_flag = 1;
} else {
rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
get_page(rx_ring->pg_chunk.page);
lbq_desc->p.pg_chunk.last_flag = 0;
}
return 0;
}
/* Process (refill) a large buffer queue. */
static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
u32 clean_idx = rx_ring->lbq_clean_idx;
u32 start_idx = clean_idx;
struct bq_desc *lbq_desc;
u64 map;
int i;
while (rx_ring->lbq_free_cnt > 32) {
for (i = 0; i < 16; i++) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"lbq: try cleaning clean_idx = %d.\n",
clean_idx);
lbq_desc = &rx_ring->lbq[clean_idx];
if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
netif_err(qdev, ifup, qdev->ndev,
"Could not get a page chunk.\n");
return;
}
map = lbq_desc->p.pg_chunk.map +
lbq_desc->p.pg_chunk.offset;
dma_unmap_addr_set(lbq_desc, mapaddr, map);
dma_unmap_len_set(lbq_desc, maplen,
rx_ring->lbq_buf_size);
*lbq_desc->addr = cpu_to_le64(map);
pci_dma_sync_single_for_device(qdev->pdev, map,
rx_ring->lbq_buf_size,
PCI_DMA_FROMDEVICE);
clean_idx++;
if (clean_idx == rx_ring->lbq_len)
clean_idx = 0;
}
rx_ring->lbq_clean_idx = clean_idx;
rx_ring->lbq_prod_idx += 16;
if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
rx_ring->lbq_prod_idx = 0;
rx_ring->lbq_free_cnt -= 16;
}
if (start_idx != clean_idx) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"lbq: updating prod idx = %d.\n",
rx_ring->lbq_prod_idx);
ql_write_db_reg(rx_ring->lbq_prod_idx,
rx_ring->lbq_prod_idx_db_reg);
}
}
/* Process (refill) a small buffer queue. */
static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
u32 clean_idx = rx_ring->sbq_clean_idx;
u32 start_idx = clean_idx;
struct bq_desc *sbq_desc;
u64 map;
int i;
while (rx_ring->sbq_free_cnt > 16) {
for (i = 0; i < 16; i++) {
sbq_desc = &rx_ring->sbq[clean_idx];
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"sbq: try cleaning clean_idx = %d.\n",
clean_idx);
if (sbq_desc->p.skb == NULL) {
netif_printk(qdev, rx_status, KERN_DEBUG,
qdev->ndev,
"sbq: getting new skb for index %d.\n",
sbq_desc->index);
sbq_desc->p.skb =
netdev_alloc_skb(qdev->ndev,
SMALL_BUFFER_SIZE);
if (sbq_desc->p.skb == NULL) {
netif_err(qdev, probe, qdev->ndev,
"Couldn't get an skb.\n");
rx_ring->sbq_clean_idx = clean_idx;
return;
}
skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
map = pci_map_single(qdev->pdev,
sbq_desc->p.skb->data,
rx_ring->sbq_buf_size,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(qdev->pdev, map)) {
netif_err(qdev, ifup, qdev->ndev,
"PCI mapping failed.\n");
rx_ring->sbq_clean_idx = clean_idx;
dev_kfree_skb_any(sbq_desc->p.skb);
sbq_desc->p.skb = NULL;
return;
}
dma_unmap_addr_set(sbq_desc, mapaddr, map);
dma_unmap_len_set(sbq_desc, maplen,
rx_ring->sbq_buf_size);
*sbq_desc->addr = cpu_to_le64(map);
}
clean_idx++;
if (clean_idx == rx_ring->sbq_len)
clean_idx = 0;
}
rx_ring->sbq_clean_idx = clean_idx;
rx_ring->sbq_prod_idx += 16;
if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
rx_ring->sbq_prod_idx = 0;
rx_ring->sbq_free_cnt -= 16;
}
if (start_idx != clean_idx) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"sbq: updating prod idx = %d.\n",
rx_ring->sbq_prod_idx);
ql_write_db_reg(rx_ring->sbq_prod_idx,
rx_ring->sbq_prod_idx_db_reg);
}
}
static void ql_update_buffer_queues(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
ql_update_sbq(qdev, rx_ring);
ql_update_lbq(qdev, rx_ring);
}
/* Unmaps tx buffers. Can be called from send() if a pci mapping
* fails at some stage, or from the interrupt when a tx completes.
*/
static void ql_unmap_send(struct ql_adapter *qdev,
struct tx_ring_desc *tx_ring_desc, int mapped)
{
int i;
for (i = 0; i < mapped; i++) {
if (i == 0 || (i == 7 && mapped > 7)) {
/*
* Unmap the skb->data area, or the
* external sglist (AKA the Outbound
* Address List (OAL)).
* If its the zeroeth element, then it's
* the skb->data area. If it's the 7th
* element and there is more than 6 frags,
* then its an OAL.
*/
if (i == 7) {
netif_printk(qdev, tx_done, KERN_DEBUG,
qdev->ndev,
"unmapping OAL area.\n");
}
pci_unmap_single(qdev->pdev,
dma_unmap_addr(&tx_ring_desc->map[i],
mapaddr),
dma_unmap_len(&tx_ring_desc->map[i],
maplen),
PCI_DMA_TODEVICE);
} else {
netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
"unmapping frag %d.\n", i);
pci_unmap_page(qdev->pdev,
dma_unmap_addr(&tx_ring_desc->map[i],
mapaddr),
dma_unmap_len(&tx_ring_desc->map[i],
maplen), PCI_DMA_TODEVICE);
}
}
}
/* Map the buffers for this transmit. This will return
* NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
*/
static int ql_map_send(struct ql_adapter *qdev,
struct ob_mac_iocb_req *mac_iocb_ptr,
struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
{
int len = skb_headlen(skb);
dma_addr_t map;
int frag_idx, err, map_idx = 0;
struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
int frag_cnt = skb_shinfo(skb)->nr_frags;
if (frag_cnt) {
netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
"frag_cnt = %d.\n", frag_cnt);
}
/*
* Map the skb buffer first.
*/
map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
netif_err(qdev, tx_queued, qdev->ndev,
"PCI mapping failed with error: %d\n", err);
return NETDEV_TX_BUSY;
}
tbd->len = cpu_to_le32(len);
tbd->addr = cpu_to_le64(map);
dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
map_idx++;
/*
* This loop fills the remainder of the 8 address descriptors
* in the IOCB. If there are more than 7 fragments, then the
* eighth address desc will point to an external list (OAL).
* When this happens, the remainder of the frags will be stored
* in this list.
*/
for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
tbd++;
if (frag_idx == 6 && frag_cnt > 7) {
/* Let's tack on an sglist.
* Our control block will now
* look like this:
* iocb->seg[0] = skb->data
* iocb->seg[1] = frag[0]
* iocb->seg[2] = frag[1]
* iocb->seg[3] = frag[2]
* iocb->seg[4] = frag[3]
* iocb->seg[5] = frag[4]
* iocb->seg[6] = frag[5]
* iocb->seg[7] = ptr to OAL (external sglist)
* oal->seg[0] = frag[6]
* oal->seg[1] = frag[7]
* oal->seg[2] = frag[8]
* oal->seg[3] = frag[9]
* oal->seg[4] = frag[10]
* etc...
*/
/* Tack on the OAL in the eighth segment of IOCB. */
map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
sizeof(struct oal),
PCI_DMA_TODEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
netif_err(qdev, tx_queued, qdev->ndev,
"PCI mapping outbound address list with error: %d\n",
err);
goto map_error;
}
tbd->addr = cpu_to_le64(map);
/*
* The length is the number of fragments
* that remain to be mapped times the length
* of our sglist (OAL).
*/
tbd->len =
cpu_to_le32((sizeof(struct tx_buf_desc) *
(frag_cnt - frag_idx)) | TX_DESC_C);
dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
map);
dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
sizeof(struct oal));
tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
map_idx++;
}
map =
pci_map_page(qdev->pdev, frag->page,
frag->page_offset, frag->size,
PCI_DMA_TODEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
netif_err(qdev, tx_queued, qdev->ndev,
"PCI mapping frags failed with error: %d.\n",
err);
goto map_error;
}
tbd->addr = cpu_to_le64(map);
tbd->len = cpu_to_le32(frag->size);
dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
frag->size);
}
/* Save the number of segments we've mapped. */
tx_ring_desc->map_cnt = map_idx;
/* Terminate the last segment. */
tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
return NETDEV_TX_OK;
map_error:
/*
* If the first frag mapping failed, then i will be zero.
* This causes the unmap of the skb->data area. Otherwise
* we pass in the number of frags that mapped successfully
* so they can be umapped.
*/
ql_unmap_send(qdev, tx_ring_desc, map_idx);
return NETDEV_TX_BUSY;
}
/* Process an inbound completion from an rx ring. */
static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp,
u32 length,
u16 vlan_id)
{
struct sk_buff *skb;
struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
struct skb_frag_struct *rx_frag;
int nr_frags;
struct napi_struct *napi = &rx_ring->napi;
napi->dev = qdev->ndev;
skb = napi_get_frags(napi);
if (!skb) {
netif_err(qdev, drv, qdev->ndev,
"Couldn't get an skb, exiting.\n");
rx_ring->rx_dropped++;
put_page(lbq_desc->p.pg_chunk.page);
return;
}
prefetch(lbq_desc->p.pg_chunk.va);
rx_frag = skb_shinfo(skb)->frags;
nr_frags = skb_shinfo(skb)->nr_frags;
rx_frag += nr_frags;
rx_frag->page = lbq_desc->p.pg_chunk.page;
rx_frag->page_offset = lbq_desc->p.pg_chunk.offset;
rx_frag->size = length;
skb->len += length;
skb->data_len += length;
skb->truesize += length;
skb_shinfo(skb)->nr_frags++;
rx_ring->rx_packets++;
rx_ring->rx_bytes += length;
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb_record_rx_queue(skb, rx_ring->cq_id);
if (qdev->vlgrp && (vlan_id != 0xffff))
vlan_gro_frags(&rx_ring->napi, qdev->vlgrp, vlan_id);
else
napi_gro_frags(napi);
}
/* Process an inbound completion from an rx ring. */
static void ql_process_mac_rx_page(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp,
u32 length,
u16 vlan_id)
{
struct net_device *ndev = qdev->ndev;
struct sk_buff *skb = NULL;
void *addr;
struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
struct napi_struct *napi = &rx_ring->napi;
skb = netdev_alloc_skb(ndev, length);
if (!skb) {
netif_err(qdev, drv, qdev->ndev,
"Couldn't get an skb, need to unwind!.\n");
rx_ring->rx_dropped++;
put_page(lbq_desc->p.pg_chunk.page);
return;
}
addr = lbq_desc->p.pg_chunk.va;
prefetch(addr);
/* Frame error, so drop the packet. */
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
netif_info(qdev, drv, qdev->ndev,
"Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
rx_ring->rx_errors++;
goto err_out;
}
/* The max framesize filter on this chip is set higher than
* MTU since FCoE uses 2k frames.
*/
if (skb->len > ndev->mtu + ETH_HLEN) {
netif_err(qdev, drv, qdev->ndev,
"Segment too small, dropping.\n");
rx_ring->rx_dropped++;
goto err_out;
}
memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
length);
skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
lbq_desc->p.pg_chunk.offset+ETH_HLEN,
length-ETH_HLEN);
skb->len += length-ETH_HLEN;
skb->data_len += length-ETH_HLEN;
skb->truesize += length-ETH_HLEN;
rx_ring->rx_packets++;
rx_ring->rx_bytes += skb->len;
skb->protocol = eth_type_trans(skb, ndev);
skb->ip_summed = CHECKSUM_NONE;
if (qdev->rx_csum &&
!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
/* TCP frame. */
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"TCP checksum done!\n");
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
/* Unfragmented ipv4 UDP frame. */
struct iphdr *iph = (struct iphdr *) skb->data;
if (!(iph->frag_off &
cpu_to_be16(IP_MF|IP_OFFSET))) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
netif_printk(qdev, rx_status, KERN_DEBUG,
qdev->ndev,
"TCP checksum done!\n");
}
}
}
skb_record_rx_queue(skb, rx_ring->cq_id);
if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
if (qdev->vlgrp && (vlan_id != 0xffff))
vlan_gro_receive(napi, qdev->vlgrp, vlan_id, skb);
else
napi_gro_receive(napi, skb);
} else {
if (qdev->vlgrp && (vlan_id != 0xffff))
vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
else
netif_receive_skb(skb);
}
return;
err_out:
dev_kfree_skb_any(skb);
put_page(lbq_desc->p.pg_chunk.page);
}
/* Process an inbound completion from an rx ring. */
static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp,
u32 length,
u16 vlan_id)
{
struct net_device *ndev = qdev->ndev;
struct sk_buff *skb = NULL;
struct sk_buff *new_skb = NULL;
struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
skb = sbq_desc->p.skb;
/* Allocate new_skb and copy */
new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
if (new_skb == NULL) {
netif_err(qdev, probe, qdev->ndev,
"No skb available, drop the packet.\n");
rx_ring->rx_dropped++;
return;
}
skb_reserve(new_skb, NET_IP_ALIGN);
memcpy(skb_put(new_skb, length), skb->data, length);
skb = new_skb;
/* Frame error, so drop the packet. */
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
netif_info(qdev, drv, qdev->ndev,
"Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
dev_kfree_skb_any(skb);
rx_ring->rx_errors++;
return;
}
/* loopback self test for ethtool */
if (test_bit(QL_SELFTEST, &qdev->flags)) {
ql_check_lb_frame(qdev, skb);
dev_kfree_skb_any(skb);
return;
}
/* The max framesize filter on this chip is set higher than
* MTU since FCoE uses 2k frames.
*/
if (skb->len > ndev->mtu + ETH_HLEN) {
dev_kfree_skb_any(skb);
rx_ring->rx_dropped++;
return;
}
prefetch(skb->data);
skb->dev = ndev;
if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"%s Multicast.\n",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_REG ? "Registered" :
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
}
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Promiscuous Packet.\n");
rx_ring->rx_packets++;
rx_ring->rx_bytes += skb->len;
skb->protocol = eth_type_trans(skb, ndev);
skb->ip_summed = CHECKSUM_NONE;
/* If rx checksum is on, and there are no
* csum or frame errors.
*/
if (qdev->rx_csum &&
!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
/* TCP frame. */
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"TCP checksum done!\n");
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
/* Unfragmented ipv4 UDP frame. */
struct iphdr *iph = (struct iphdr *) skb->data;
if (!(iph->frag_off &
ntohs(IP_MF|IP_OFFSET))) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
netif_printk(qdev, rx_status, KERN_DEBUG,
qdev->ndev,
"TCP checksum done!\n");
}
}
}
skb_record_rx_queue(skb, rx_ring->cq_id);
if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
if (qdev->vlgrp && (vlan_id != 0xffff))
vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
vlan_id, skb);
else
napi_gro_receive(&rx_ring->napi, skb);
} else {
if (qdev->vlgrp && (vlan_id != 0xffff))
vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
else
netif_receive_skb(skb);
}
}
static void ql_realign_skb(struct sk_buff *skb, int len)
{
void *temp_addr = skb->data;
/* Undo the skb_reserve(skb,32) we did before
* giving to hardware, and realign data on
* a 2-byte boundary.
*/
skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
skb_copy_to_linear_data(skb, temp_addr,
(unsigned int)len);
}
/*
* This function builds an skb for the given inbound
* completion. It will be rewritten for readability in the near
* future, but for not it works well.
*/
static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp)
{
struct bq_desc *lbq_desc;
struct bq_desc *sbq_desc;
struct sk_buff *skb = NULL;
u32 length = le32_to_cpu(ib_mac_rsp->data_len);
u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
/*
* Handle the header buffer if present.
*/
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Header of %d bytes in small buffer.\n", hdr_len);
/*
* Headers fit nicely into a small buffer.
*/
sbq_desc = ql_get_curr_sbuf(rx_ring);
pci_unmap_single(qdev->pdev,
dma_unmap_addr(sbq_desc, mapaddr),
dma_unmap_len(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
skb = sbq_desc->p.skb;
ql_realign_skb(skb, hdr_len);
skb_put(skb, hdr_len);
sbq_desc->p.skb = NULL;
}
/*
* Handle the data buffer(s).
*/
if (unlikely(!length)) { /* Is there data too? */
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"No Data buffer in this packet.\n");
return skb;
}
if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Headers in small, data of %d bytes in small, combine them.\n",
length);
/*
* Data is less than small buffer size so it's
* stuffed in a small buffer.
* For this case we append the data
* from the "data" small buffer to the "header" small
* buffer.
*/
sbq_desc = ql_get_curr_sbuf(rx_ring);
pci_dma_sync_single_for_cpu(qdev->pdev,
dma_unmap_addr
(sbq_desc, mapaddr),
dma_unmap_len
(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
memcpy(skb_put(skb, length),
sbq_desc->p.skb->data, length);
pci_dma_sync_single_for_device(qdev->pdev,
dma_unmap_addr
(sbq_desc,
mapaddr),
dma_unmap_len
(sbq_desc,
maplen),
PCI_DMA_FROMDEVICE);
} else {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"%d bytes in a single small buffer.\n",
length);
sbq_desc = ql_get_curr_sbuf(rx_ring);
skb = sbq_desc->p.skb;
ql_realign_skb(skb, length);
skb_put(skb, length);
pci_unmap_single(qdev->pdev,
dma_unmap_addr(sbq_desc,
mapaddr),
dma_unmap_len(sbq_desc,
maplen),
PCI_DMA_FROMDEVICE);
sbq_desc->p.skb = NULL;
}
} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Header in small, %d bytes in large. Chain large to small!\n",
length);
/*
* The data is in a single large buffer. We
* chain it to the header buffer's skb and let
* it rip.
*/
lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Chaining page at offset = %d, for %d bytes to skb.\n",
lbq_desc->p.pg_chunk.offset, length);
skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
lbq_desc->p.pg_chunk.offset,
length);
skb->len += length;
skb->data_len += length;
skb->truesize += length;
} else {
/*
* The headers and data are in a single large buffer. We
* copy it to a new skb and let it go. This can happen with
* jumbo mtu on a non-TCP/UDP frame.
*/
lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
skb = netdev_alloc_skb(qdev->ndev, length);
if (skb == NULL) {
netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
"No skb available, drop the packet.\n");
return NULL;
}
pci_unmap_page(qdev->pdev,
dma_unmap_addr(lbq_desc,
mapaddr),
dma_unmap_len(lbq_desc, maplen),
PCI_DMA_FROMDEVICE);
skb_reserve(skb, NET_IP_ALIGN);
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
length);
skb_fill_page_desc(skb, 0,
lbq_desc->p.pg_chunk.page,
lbq_desc->p.pg_chunk.offset,
length);
skb->len += length;
skb->data_len += length;
skb->truesize += length;
length -= length;
__pskb_pull_tail(skb,
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
VLAN_ETH_HLEN : ETH_HLEN);
}
} else {
/*
* The data is in a chain of large buffers
* pointed to by a small buffer. We loop
* thru and chain them to the our small header
* buffer's skb.
* frags: There are 18 max frags and our small
* buffer will hold 32 of them. The thing is,
* we'll use 3 max for our 9000 byte jumbo
* frames. If the MTU goes up we could
* eventually be in trouble.
*/
int size, i = 0;
sbq_desc = ql_get_curr_sbuf(rx_ring);
pci_unmap_single(qdev->pdev,
dma_unmap_addr(sbq_desc, mapaddr),
dma_unmap_len(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
/*
* This is an non TCP/UDP IP frame, so
* the headers aren't split into a small
* buffer. We have to use the small buffer
* that contains our sg list as our skb to
* send upstairs. Copy the sg list here to
* a local buffer and use it to find the
* pages to chain.
*/
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"%d bytes of headers & data in chain of large.\n",
length);
skb = sbq_desc->p.skb;
sbq_desc->p.skb = NULL;
skb_reserve(skb, NET_IP_ALIGN);
}
while (length > 0) {
lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
size = (length < rx_ring->lbq_buf_size) ? length :
rx_ring->lbq_buf_size;
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Adding page %d to skb for %d bytes.\n",
i, size);
skb_fill_page_desc(skb, i,
lbq_desc->p.pg_chunk.page,
lbq_desc->p.pg_chunk.offset,
size);
skb->len += size;
skb->data_len += size;
skb->truesize += size;
length -= size;
i++;
}
__pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
VLAN_ETH_HLEN : ETH_HLEN);
}
return skb;
}
/* Process an inbound completion from an rx ring. */
static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp,
u16 vlan_id)
{
struct net_device *ndev = qdev->ndev;
struct sk_buff *skb = NULL;
QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
if (unlikely(!skb)) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"No skb available, drop packet.\n");
rx_ring->rx_dropped++;
return;
}
/* Frame error, so drop the packet. */
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
netif_info(qdev, drv, qdev->ndev,
"Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
dev_kfree_skb_any(skb);
rx_ring->rx_errors++;
return;
}
/* The max framesize filter on this chip is set higher than
* MTU since FCoE uses 2k frames.
*/
if (skb->len > ndev->mtu + ETH_HLEN) {
dev_kfree_skb_any(skb);
rx_ring->rx_dropped++;
return;
}
/* loopback self test for ethtool */
if (test_bit(QL_SELFTEST, &qdev->flags)) {
ql_check_lb_frame(qdev, skb);
dev_kfree_skb_any(skb);
return;
}
prefetch(skb->data);
skb->dev = ndev;
if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_REG ? "Registered" :
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
rx_ring->rx_multicast++;
}
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Promiscuous Packet.\n");
}
skb->protocol = eth_type_trans(skb, ndev);
skb->ip_summed = CHECKSUM_NONE;
/* If rx checksum is on, and there are no
* csum or frame errors.
*/
if (qdev->rx_csum &&
!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
/* TCP frame. */
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"TCP checksum done!\n");
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
/* Unfragmented ipv4 UDP frame. */
struct iphdr *iph = (struct iphdr *) skb->data;
if (!(iph->frag_off &
ntohs(IP_MF|IP_OFFSET))) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"TCP checksum done!\n");
}
}
}
rx_ring->rx_packets++;
rx_ring->rx_bytes += skb->len;
skb_record_rx_queue(skb, rx_ring->cq_id);
if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
if (qdev->vlgrp &&
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
(vlan_id != 0))
vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
vlan_id, skb);
else
napi_gro_receive(&rx_ring->napi, skb);
} else {
if (qdev->vlgrp &&
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
(vlan_id != 0))
vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
else
netif_receive_skb(skb);
}
}
/* Process an inbound completion from an rx ring. */
static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp)
{
u32 length = le32_to_cpu(ib_mac_rsp->data_len);
u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
((le16_to_cpu(ib_mac_rsp->vlan_id) &
IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
/* The data and headers are split into
* separate buffers.
*/
ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
vlan_id);
} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
/* The data fit in a single small buffer.
* Allocate a new skb, copy the data and
* return the buffer to the free pool.
*/
ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
length, vlan_id);
} else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
/* TCP packet in a page chunk that's been checksummed.
* Tack it on to our GRO skb and let it go.
*/
ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
length, vlan_id);
} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
/* Non-TCP packet in a page chunk. Allocate an
* skb, tack it on frags, and send it up.
*/
ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
length, vlan_id);
} else {
/* Non-TCP/UDP large frames that span multiple buffers
* can be processed corrrectly by the split frame logic.
*/
ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
vlan_id);
}
return (unsigned long)length;
}
/* Process an outbound completion from an rx ring. */
static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
struct ob_mac_iocb_rsp *mac_rsp)
{
struct tx_ring *tx_ring;
struct tx_ring_desc *tx_ring_desc;
QL_DUMP_OB_MAC_RSP(mac_rsp);
tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
tx_ring_desc = &tx_ring->q[mac_rsp->tid];
ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
tx_ring->tx_packets++;
dev_kfree_skb(tx_ring_desc->skb);
tx_ring_desc->skb = NULL;
if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
OB_MAC_IOCB_RSP_S |
OB_MAC_IOCB_RSP_L |
OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
netif_warn(qdev, tx_done, qdev->ndev,
"Total descriptor length did not match transfer length.\n");
}
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
netif_warn(qdev, tx_done, qdev->ndev,
"Frame too short to be valid, not sent.\n");
}
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
netif_warn(qdev, tx_done, qdev->ndev,
"Frame too long, but sent anyway.\n");
}
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
netif_warn(qdev, tx_done, qdev->ndev,
"PCI backplane error. Frame not sent.\n");
}
}
atomic_inc(&tx_ring->tx_count);
}
/* Fire up a handler to reset the MPI processor. */
void ql_queue_fw_error(struct ql_adapter *qdev)
{
ql_link_off(qdev);
queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
}
void ql_queue_asic_error(struct ql_adapter *qdev)
{
ql_link_off(qdev);
ql_disable_interrupts(qdev);
/* Clear adapter up bit to signal the recovery
* process that it shouldn't kill the reset worker
* thread
*/
clear_bit(QL_ADAPTER_UP, &qdev->flags);
queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
}
static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
struct ib_ae_iocb_rsp *ib_ae_rsp)
{
switch (ib_ae_rsp->event) {
case MGMT_ERR_EVENT:
netif_err(qdev, rx_err, qdev->ndev,
"Management Processor Fatal Error.\n");
ql_queue_fw_error(qdev);
return;
case CAM_LOOKUP_ERR_EVENT:
netif_err(qdev, link, qdev->ndev,
"Multiple CAM hits lookup occurred.\n");
netif_err(qdev, drv, qdev->ndev,
"This event shouldn't occur.\n");
ql_queue_asic_error(qdev);
return;
case SOFT_ECC_ERROR_EVENT:
netif_err(qdev, rx_err, qdev->ndev,
"Soft ECC error detected.\n");
ql_queue_asic_error(qdev);
break;
case PCI_ERR_ANON_BUF_RD:
netif_err(qdev, rx_err, qdev->ndev,
"PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
ib_ae_rsp->q_id);
ql_queue_asic_error(qdev);
break;
default:
netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
ib_ae_rsp->event);
ql_queue_asic_error(qdev);
break;
}
}
static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
{
struct ql_adapter *qdev = rx_ring->qdev;
u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
struct ob_mac_iocb_rsp *net_rsp = NULL;
int count = 0;
struct tx_ring *tx_ring;
/* While there are entries in the completion queue. */
while (prod != rx_ring->cnsmr_idx) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"cq_id = %d, prod = %d, cnsmr = %d.\n.",
rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
rmb();
switch (net_rsp->opcode) {
case OPCODE_OB_MAC_TSO_IOCB:
case OPCODE_OB_MAC_IOCB:
ql_process_mac_tx_intr(qdev, net_rsp);
break;
default:
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Hit default case, not handled! dropping the packet, opcode = %x.\n",
net_rsp->opcode);
}
count++;
ql_update_cq(rx_ring);
prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
}
ql_write_cq_idx(rx_ring);
tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
net_rsp != NULL) {
if (atomic_read(&tx_ring->queue_stopped) &&
(atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
/*
* The queue got stopped because the tx_ring was full.
* Wake it up, because it's now at least 25% empty.
*/
netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
}
return count;
}
static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
{
struct ql_adapter *qdev = rx_ring->qdev;
u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
struct ql_net_rsp_iocb *net_rsp;
int count = 0;
/* While there are entries in the completion queue. */
while (prod != rx_ring->cnsmr_idx) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"cq_id = %d, prod = %d, cnsmr = %d.\n.",
rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
net_rsp = rx_ring->curr_entry;
rmb();
switch (net_rsp->opcode) {
case OPCODE_IB_MAC_IOCB:
ql_process_mac_rx_intr(qdev, rx_ring,
(struct ib_mac_iocb_rsp *)
net_rsp);
break;
case OPCODE_IB_AE_IOCB:
ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
net_rsp);
break;
default:
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Hit default case, not handled! dropping the packet, opcode = %x.\n",
net_rsp->opcode);
break;
}
count++;
ql_update_cq(rx_ring);
prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
if (count == budget)
break;
}
ql_update_buffer_queues(qdev, rx_ring);
ql_write_cq_idx(rx_ring);
return count;
}
static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
{
struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
struct ql_adapter *qdev = rx_ring->qdev;
struct rx_ring *trx_ring;
int i, work_done = 0;
struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
/* Service the TX rings first. They start
* right after the RSS rings. */
for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
trx_ring = &qdev->rx_ring[i];
/* If this TX completion ring belongs to this vector and
* it's not empty then service it.
*/
if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
(ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
trx_ring->cnsmr_idx)) {
netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
"%s: Servicing TX completion ring %d.\n",
__func__, trx_ring->cq_id);
ql_clean_outbound_rx_ring(trx_ring);
}
}
/*
* Now service the RSS ring if it's active.
*/
if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
rx_ring->cnsmr_idx) {
netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
"%s: Servicing RX completion ring %d.\n",
__func__, rx_ring->cq_id);
work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
}
if (work_done < budget) {
napi_complete(napi);
ql_enable_completion_interrupt(qdev, rx_ring->irq);
}
return work_done;
}
static void qlge_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
{
struct ql_adapter *qdev = netdev_priv(ndev);
qdev->vlgrp = grp;
if (grp) {
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Turning on VLAN in NIC_RCV_CFG.\n");
ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
NIC_RCV_CFG_VLAN_MATCH_AND_NON);
} else {
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Turning off VLAN in NIC_RCV_CFG.\n");
ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
}
}
static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
{
struct ql_adapter *qdev = netdev_priv(ndev);
u32 enable_bit = MAC_ADDR_E;
int status;
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
return;
if (ql_set_mac_addr_reg
(qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to init vlan address.\n");
}
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
}
static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
{
struct ql_adapter *qdev = netdev_priv(ndev);
u32 enable_bit = 0;
int status;
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
return;
if (ql_set_mac_addr_reg
(qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to clear vlan address.\n");
}
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
}
/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
{
struct rx_ring *rx_ring = dev_id;
napi_schedule(&rx_ring->napi);
return IRQ_HANDLED;
}
/* This handles a fatal error, MPI activity, and the default
* rx_ring in an MSI-X multiple vector environment.
* In MSI/Legacy environment it also process the rest of
* the rx_rings.
*/
static irqreturn_t qlge_isr(int irq, void *dev_id)
{
struct rx_ring *rx_ring = dev_id;
struct ql_adapter *qdev = rx_ring->qdev;
struct intr_context *intr_context = &qdev->intr_context[0];
u32 var;
int work_done = 0;
spin_lock(&qdev->hw_lock);
if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
"Shared Interrupt, Not ours!\n");
spin_unlock(&qdev->hw_lock);
return IRQ_NONE;
}
spin_unlock(&qdev->hw_lock);
var = ql_disable_completion_interrupt(qdev, intr_context->intr);
/*
* Check for fatal error.
*/
if (var & STS_FE) {
ql_queue_asic_error(qdev);
netif_err(qdev, intr, qdev->ndev,
"Got fatal error, STS = %x.\n", var);
var = ql_read32(qdev, ERR_STS);
netif_err(qdev, intr, qdev->ndev,
"Resetting chip. Error Status Register = 0x%x\n", var);
return IRQ_HANDLED;
}
/*
* Check MPI processor activity.
*/
if ((var & STS_PI) &&
(ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
/*
* We've got an async event or mailbox completion.
* Handle it and clear the source of the interrupt.
*/
netif_err(qdev, intr, qdev->ndev,
"Got MPI processor interrupt.\n");
ql_disable_completion_interrupt(qdev, intr_context->intr);
ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
queue_delayed_work_on(smp_processor_id(),
qdev->workqueue, &qdev->mpi_work, 0);
work_done++;
}
/*
* Get the bit-mask that shows the active queues for this
* pass. Compare it to the queues that this irq services
* and call napi if there's a match.
*/
var = ql_read32(qdev, ISR1);
if (var & intr_context->irq_mask) {
netif_info(qdev, intr, qdev->ndev,
"Waking handler for rx_ring[0].\n");
ql_disable_completion_interrupt(qdev, intr_context->intr);
napi_schedule(&rx_ring->napi);
work_done++;
}
ql_enable_completion_interrupt(qdev, intr_context->intr);
return work_done ? IRQ_HANDLED : IRQ_NONE;
}
static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
{
if (skb_is_gso(skb)) {
int err;
if (skb_header_cloned(skb)) {
err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (err)
return err;
}
mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
mac_iocb_ptr->total_hdrs_len =
cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
mac_iocb_ptr->net_trans_offset =
cpu_to_le16(skb_network_offset(skb) |
skb_transport_offset(skb)
<< OB_MAC_TRANSPORT_HDR_SHIFT);
mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
if (likely(skb->protocol == htons(ETH_P_IP))) {
struct iphdr *iph = ip_hdr(skb);
iph->check = 0;
mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0,
IPPROTO_TCP,
0);
} else if (skb->protocol == htons(ETH_P_IPV6)) {
mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
tcp_hdr(skb)->check =
~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
}
return 1;
}
return 0;
}
static void ql_hw_csum_setup(struct sk_buff *skb,
struct ob_mac_tso_iocb_req *mac_iocb_ptr)
{
int len;
struct iphdr *iph = ip_hdr(skb);
__sum16 *check;
mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
mac_iocb_ptr->net_trans_offset =
cpu_to_le16(skb_network_offset(skb) |
skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
len = (ntohs(iph->tot_len) - (iph->ihl << 2));
if (likely(iph->protocol == IPPROTO_TCP)) {
check = &(tcp_hdr(skb)->check);
mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
mac_iocb_ptr->total_hdrs_len =
cpu_to_le16(skb_transport_offset(skb) +
(tcp_hdr(skb)->doff << 2));
} else {
check = &(udp_hdr(skb)->check);
mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
mac_iocb_ptr->total_hdrs_len =
cpu_to_le16(skb_transport_offset(skb) +
sizeof(struct udphdr));
}
*check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, len, iph->protocol, 0);
}
static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
{
struct tx_ring_desc *tx_ring_desc;
struct ob_mac_iocb_req *mac_iocb_ptr;
struct ql_adapter *qdev = netdev_priv(ndev);
int tso;
struct tx_ring *tx_ring;
u32 tx_ring_idx = (u32) skb->queue_mapping;
tx_ring = &qdev->tx_ring[tx_ring_idx];
if (skb_padto(skb, ETH_ZLEN))
return NETDEV_TX_OK;
if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
netif_info(qdev, tx_queued, qdev->ndev,
"%s: shutting down tx queue %d du to lack of resources.\n",
__func__, tx_ring_idx);
netif_stop_subqueue(ndev, tx_ring->wq_id);
atomic_inc(&tx_ring->queue_stopped);
tx_ring->tx_errors++;
return NETDEV_TX_BUSY;
}
tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
mac_iocb_ptr = tx_ring_desc->queue_entry;
memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
mac_iocb_ptr->tid = tx_ring_desc->index;
/* We use the upper 32-bits to store the tx queue for this IO.
* When we get the completion we can use it to establish the context.
*/
mac_iocb_ptr->txq_idx = tx_ring_idx;
tx_ring_desc->skb = skb;
mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
"Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
}
tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
if (tso < 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
} else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
ql_hw_csum_setup(skb,
(struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
}
if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
NETDEV_TX_OK) {
netif_err(qdev, tx_queued, qdev->ndev,
"Could not map the segments.\n");
tx_ring->tx_errors++;
return NETDEV_TX_BUSY;
}
QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
tx_ring->prod_idx++;
if (tx_ring->prod_idx == tx_ring->wq_len)
tx_ring->prod_idx = 0;
wmb();
ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
"tx queued, slot %d, len %d\n",
tx_ring->prod_idx, skb->len);
atomic_dec(&tx_ring->tx_count);
return NETDEV_TX_OK;
}
static void ql_free_shadow_space(struct ql_adapter *qdev)
{
if (qdev->rx_ring_shadow_reg_area) {
pci_free_consistent(qdev->pdev,
PAGE_SIZE,
qdev->rx_ring_shadow_reg_area,
qdev->rx_ring_shadow_reg_dma);
qdev->rx_ring_shadow_reg_area = NULL;
}
if (qdev->tx_ring_shadow_reg_area) {
pci_free_consistent(qdev->pdev,
PAGE_SIZE,
qdev->tx_ring_shadow_reg_area,
qdev->tx_ring_shadow_reg_dma);
qdev->tx_ring_shadow_reg_area = NULL;
}
}
static int ql_alloc_shadow_space(struct ql_adapter *qdev)
{
qdev->rx_ring_shadow_reg_area =
pci_alloc_consistent(qdev->pdev,
PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
if (qdev->rx_ring_shadow_reg_area == NULL) {
netif_err(qdev, ifup, qdev->ndev,
"Allocation of RX shadow space failed.\n");
return -ENOMEM;
}
memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
qdev->tx_ring_shadow_reg_area =
pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
&qdev->tx_ring_shadow_reg_dma);
if (qdev->tx_ring_shadow_reg_area == NULL) {
netif_err(qdev, ifup, qdev->ndev,
"Allocation of TX shadow space failed.\n");
goto err_wqp_sh_area;
}
memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
return 0;
err_wqp_sh_area:
pci_free_consistent(qdev->pdev,
PAGE_SIZE,
qdev->rx_ring_shadow_reg_area,
qdev->rx_ring_shadow_reg_dma);
return -ENOMEM;
}
static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
{
struct tx_ring_desc *tx_ring_desc;
int i;
struct ob_mac_iocb_req *mac_iocb_ptr;
mac_iocb_ptr = tx_ring->wq_base;
tx_ring_desc = tx_ring->q;
for (i = 0; i < tx_ring->wq_len; i++) {
tx_ring_desc->index = i;
tx_ring_desc->skb = NULL;
tx_ring_desc->queue_entry = mac_iocb_ptr;
mac_iocb_ptr++;
tx_ring_desc++;
}
atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
atomic_set(&tx_ring->queue_stopped, 0);
}
static void ql_free_tx_resources(struct ql_adapter *qdev,
struct tx_ring *tx_ring)
{
if (tx_ring->wq_base) {
pci_free_consistent(qdev->pdev, tx_ring->wq_size,
tx_ring->wq_base, tx_ring->wq_base_dma);
tx_ring->wq_base = NULL;
}
kfree(tx_ring->q);
tx_ring->q = NULL;
}
static int ql_alloc_tx_resources(struct ql_adapter *qdev,
struct tx_ring *tx_ring)
{
tx_ring->wq_base =
pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
&tx_ring->wq_base_dma);
if ((tx_ring->wq_base == NULL) ||
tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
return -ENOMEM;
}
tx_ring->q =
kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
if (tx_ring->q == NULL)
goto err;
return 0;
err:
pci_free_consistent(qdev->pdev, tx_ring->wq_size,
tx_ring->wq_base, tx_ring->wq_base_dma);
return -ENOMEM;
}
static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
struct bq_desc *lbq_desc;
uint32_t curr_idx, clean_idx;
curr_idx = rx_ring->lbq_curr_idx;
clean_idx = rx_ring->lbq_clean_idx;
while (curr_idx != clean_idx) {
lbq_desc = &rx_ring->lbq[curr_idx];
if (lbq_desc->p.pg_chunk.last_flag) {
pci_unmap_page(qdev->pdev,
lbq_desc->p.pg_chunk.map,
ql_lbq_block_size(qdev),
PCI_DMA_FROMDEVICE);
lbq_desc->p.pg_chunk.last_flag = 0;
}
put_page(lbq_desc->p.pg_chunk.page);
lbq_desc->p.pg_chunk.page = NULL;
if (++curr_idx == rx_ring->lbq_len)
curr_idx = 0;
}
}
static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
int i;
struct bq_desc *sbq_desc;
for (i = 0; i < rx_ring->sbq_len; i++) {
sbq_desc = &rx_ring->sbq[i];
if (sbq_desc == NULL) {
netif_err(qdev, ifup, qdev->ndev,
"sbq_desc %d is NULL.\n", i);
return;
}
if (sbq_desc->p.skb) {
pci_unmap_single(qdev->pdev,
dma_unmap_addr(sbq_desc, mapaddr),
dma_unmap_len(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
dev_kfree_skb(sbq_desc->p.skb);
sbq_desc->p.skb = NULL;
}
}
}
/* Free all large and small rx buffers associated
* with the completion queues for this device.
*/
static void ql_free_rx_buffers(struct ql_adapter *qdev)
{
int i;
struct rx_ring *rx_ring;
for (i = 0; i < qdev->rx_ring_count; i++) {
rx_ring = &qdev->rx_ring[i];
if (rx_ring->lbq)
ql_free_lbq_buffers(qdev, rx_ring);
if (rx_ring->sbq)
ql_free_sbq_buffers(qdev, rx_ring);
}
}
static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
{
struct rx_ring *rx_ring;
int i;
for (i = 0; i < qdev->rx_ring_count; i++) {
rx_ring = &qdev->rx_ring[i];
if (rx_ring->type != TX_Q)
ql_update_buffer_queues(qdev, rx_ring);
}
}
static void ql_init_lbq_ring(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
int i;
struct bq_desc *lbq_desc;
__le64 *bq = rx_ring->lbq_base;
memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
for (i = 0; i < rx_ring->lbq_len; i++) {
lbq_desc = &rx_ring->lbq[i];
memset(lbq_desc, 0, sizeof(*lbq_desc));
lbq_desc->index = i;
lbq_desc->addr = bq;
bq++;
}
}
static void ql_init_sbq_ring(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
int i;
struct bq_desc *sbq_desc;
__le64 *bq = rx_ring->sbq_base;
memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
for (i = 0; i < rx_ring->sbq_len; i++) {
sbq_desc = &rx_ring->sbq[i];
memset(sbq_desc, 0, sizeof(*sbq_desc));
sbq_desc->index = i;
sbq_desc->addr = bq;
bq++;
}
}
static void ql_free_rx_resources(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
/* Free the small buffer queue. */
if (rx_ring->sbq_base) {
pci_free_consistent(qdev->pdev,
rx_ring->sbq_size,
rx_ring->sbq_base, rx_ring->sbq_base_dma);
rx_ring->sbq_base = NULL;
}
/* Free the small buffer queue control blocks. */
kfree(rx_ring->sbq);
rx_ring->sbq = NULL;
/* Free the large buffer queue. */
if (rx_ring->lbq_base) {
pci_free_consistent(qdev->pdev,
rx_ring->lbq_size,
rx_ring->lbq_base, rx_ring->lbq_base_dma);
rx_ring->lbq_base = NULL;
}
/* Free the large buffer queue control blocks. */
kfree(rx_ring->lbq);
rx_ring->lbq = NULL;
/* Free the rx queue. */
if (rx_ring->cq_base) {
pci_free_consistent(qdev->pdev,
rx_ring->cq_size,
rx_ring->cq_base, rx_ring->cq_base_dma);
rx_ring->cq_base = NULL;
}
}
/* Allocate queues and buffers for this completions queue based
* on the values in the parameter structure. */
static int ql_alloc_rx_resources(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
/*
* Allocate the completion queue for this rx_ring.
*/
rx_ring->cq_base =
pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
&rx_ring->cq_base_dma);
if (rx_ring->cq_base == NULL) {
netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
return -ENOMEM;
}
if (rx_ring->sbq_len) {
/*
* Allocate small buffer queue.
*/
rx_ring->sbq_base =
pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
&rx_ring->sbq_base_dma);
if (rx_ring->sbq_base == NULL) {
netif_err(qdev, ifup, qdev->ndev,
"Small buffer queue allocation failed.\n");
goto err_mem;
}
/*
* Allocate small buffer queue control blocks.
*/
rx_ring->sbq =
kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
GFP_KERNEL);
if (rx_ring->sbq == NULL) {
netif_err(qdev, ifup, qdev->ndev,
"Small buffer queue control block allocation failed.\n");
goto err_mem;
}
ql_init_sbq_ring(qdev, rx_ring);
}
if (rx_ring->lbq_len) {
/*
* Allocate large buffer queue.
*/
rx_ring->lbq_base =
pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
&rx_ring->lbq_base_dma);
if (rx_ring->lbq_base == NULL) {
netif_err(qdev, ifup, qdev->ndev,
"Large buffer queue allocation failed.\n");
goto err_mem;
}
/*
* Allocate large buffer queue control blocks.
*/
rx_ring->lbq =
kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
GFP_KERNEL);
if (rx_ring->lbq == NULL) {
netif_err(qdev, ifup, qdev->ndev,
"Large buffer queue control block allocation failed.\n");
goto err_mem;
}
ql_init_lbq_ring(qdev, rx_ring);
}
return 0;
err_mem:
ql_free_rx_resources(qdev, rx_ring);
return -ENOMEM;
}
static void ql_tx_ring_clean(struct ql_adapter *qdev)
{
struct tx_ring *tx_ring;
struct tx_ring_desc *tx_ring_desc;
int i, j;
/*
* Loop through all queues and free
* any resources.
*/
for (j = 0; j < qdev->tx_ring_count; j++) {
tx_ring = &qdev->tx_ring[j];
for (i = 0; i < tx_ring->wq_len; i++) {
tx_ring_desc = &tx_ring->q[i];
if (tx_ring_desc && tx_ring_desc->skb) {
netif_err(qdev, ifdown, qdev->ndev,
"Freeing lost SKB %p, from queue %d, index %d.\n",
tx_ring_desc->skb, j,
tx_ring_desc->index);
ql_unmap_send(qdev, tx_ring_desc,
tx_ring_desc->map_cnt);
dev_kfree_skb(tx_ring_desc->skb);
tx_ring_desc->skb = NULL;
}
}
}
}
static void ql_free_mem_resources(struct ql_adapter *qdev)
{
int i;
for (i = 0; i < qdev->tx_ring_count; i++)
ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
for (i = 0; i < qdev->rx_ring_count; i++)
ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
ql_free_shadow_space(qdev);
}
static int ql_alloc_mem_resources(struct ql_adapter *qdev)
{
int i;
/* Allocate space for our shadow registers and such. */
if (ql_alloc_shadow_space(qdev))
return -ENOMEM;
for (i = 0; i < qdev->rx_ring_count; i++) {
if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
netif_err(qdev, ifup, qdev->ndev,
"RX resource allocation failed.\n");
goto err_mem;
}
}
/* Allocate tx queue resources */
for (i = 0; i < qdev->tx_ring_count; i++) {
if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
netif_err(qdev, ifup, qdev->ndev,
"TX resource allocation failed.\n");
goto err_mem;
}
}
return 0;
err_mem:
ql_free_mem_resources(qdev);
return -ENOMEM;
}
/* Set up the rx ring control block and pass it to the chip.
* The control block is defined as
* "Completion Queue Initialization Control Block", or cqicb.
*/
static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
struct cqicb *cqicb = &rx_ring->cqicb;
void *shadow_reg = qdev->rx_ring_shadow_reg_area +
(rx_ring->cq_id * RX_RING_SHADOW_SPACE);
u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
(rx_ring->cq_id * RX_RING_SHADOW_SPACE);
void __iomem *doorbell_area =
qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
int err = 0;
u16 bq_len;
u64 tmp;
__le64 *base_indirect_ptr;
int page_entries;
/* Set up the shadow registers for this ring. */
rx_ring->prod_idx_sh_reg = shadow_reg;
rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
*rx_ring->prod_idx_sh_reg = 0;
shadow_reg += sizeof(u64);
shadow_reg_dma += sizeof(u64);
rx_ring->lbq_base_indirect = shadow_reg;
rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
rx_ring->sbq_base_indirect = shadow_reg;
rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
/* PCI doorbell mem area + 0x00 for consumer index register */
rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
rx_ring->cnsmr_idx = 0;
rx_ring->curr_entry = rx_ring->cq_base;
/* PCI doorbell mem area + 0x04 for valid register */
rx_ring->valid_db_reg = doorbell_area + 0x04;
/* PCI doorbell mem area + 0x18 for large buffer consumer */
rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
/* PCI doorbell mem area + 0x1c */
rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
memset((void *)cqicb, 0, sizeof(struct cqicb));
cqicb->msix_vect = rx_ring->irq;
bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
/*
* Set up the control block load flags.
*/
cqicb->flags = FLAGS_LC | /* Load queue base address */
FLAGS_LV | /* Load MSI-X vector */
FLAGS_LI; /* Load irq delay values */
if (rx_ring->lbq_len) {
cqicb->flags |= FLAGS_LL; /* Load lbq values */
tmp = (u64)rx_ring->lbq_base_dma;
base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
page_entries = 0;
do {
*base_indirect_ptr = cpu_to_le64(tmp);
tmp += DB_PAGE_SIZE;
base_indirect_ptr++;
page_entries++;
} while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
cqicb->lbq_addr =
cpu_to_le64(rx_ring->lbq_base_indirect_dma);
bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
(u16) rx_ring->lbq_buf_size;
cqicb->lbq_buf_size = cpu_to_le16(bq_len);
bq_len = (rx_ring->lbq_len == 65536) ? 0 :
(u16) rx_ring->lbq_len;
cqicb->lbq_len = cpu_to_le16(bq_len);
rx_ring->lbq_prod_idx = 0;
rx_ring->lbq_curr_idx = 0;
rx_ring->lbq_clean_idx = 0;
rx_ring->lbq_free_cnt = rx_ring->lbq_len;
}
if (rx_ring->sbq_len) {
cqicb->flags |= FLAGS_LS; /* Load sbq values */
tmp = (u64)rx_ring->sbq_base_dma;
base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
page_entries = 0;
do {
*base_indirect_ptr = cpu_to_le64(tmp);
tmp += DB_PAGE_SIZE;
base_indirect_ptr++;
page_entries++;
} while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
cqicb->sbq_addr =
cpu_to_le64(rx_ring->sbq_base_indirect_dma);
cqicb->sbq_buf_size =
cpu_to_le16((u16)(rx_ring->sbq_buf_size));
bq_len = (rx_ring->sbq_len == 65536) ? 0 :
(u16) rx_ring->sbq_len;
cqicb->sbq_len = cpu_to_le16(bq_len);
rx_ring->sbq_prod_idx = 0;
rx_ring->sbq_curr_idx = 0;
rx_ring->sbq_clean_idx = 0;
rx_ring->sbq_free_cnt = rx_ring->sbq_len;
}
switch (rx_ring->type) {
case TX_Q:
cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
break;
case RX_Q:
/* Inbound completion handling rx_rings run in
* separate NAPI contexts.
*/
netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
64);
cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
break;
default:
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Invalid rx_ring->type = %d.\n", rx_ring->type);
}
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Initializing rx work queue.\n");
err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
CFG_LCQ, rx_ring->cq_id);
if (err) {
netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
return err;
}
return err;
}
static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
{
struct wqicb *wqicb = (struct wqicb *)tx_ring;
void __iomem *doorbell_area =
qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
void *shadow_reg = qdev->tx_ring_shadow_reg_area +
(tx_ring->wq_id * sizeof(u64));
u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
(tx_ring->wq_id * sizeof(u64));
int err = 0;
/*
* Assign doorbell registers for this tx_ring.
*/
/* TX PCI doorbell mem area for tx producer index */
tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
tx_ring->prod_idx = 0;
/* TX PCI doorbell mem area + 0x04 */
tx_ring->valid_db_reg = doorbell_area + 0x04;
/*
* Assign shadow registers for this tx_ring.
*/
tx_ring->cnsmr_idx_sh_reg = shadow_reg;
tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
wqicb->rid = 0;
wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
ql_init_tx_ring(qdev, tx_ring);
err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
(u16) tx_ring->wq_id);
if (err) {
netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
return err;
}
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Successfully loaded WQICB.\n");
return err;
}
static void ql_disable_msix(struct ql_adapter *qdev)
{
if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
pci_disable_msix(qdev->pdev);
clear_bit(QL_MSIX_ENABLED, &qdev->flags);
kfree(qdev->msi_x_entry);
qdev->msi_x_entry = NULL;
} else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
pci_disable_msi(qdev->pdev);
clear_bit(QL_MSI_ENABLED, &qdev->flags);
}
}
/* We start by trying to get the number of vectors
* stored in qdev->intr_count. If we don't get that
* many then we reduce the count and try again.
*/
static void ql_enable_msix(struct ql_adapter *qdev)
{
int i, err;
/* Get the MSIX vectors. */
if (qlge_irq_type == MSIX_IRQ) {
/* Try to alloc space for the msix struct,
* if it fails then go to MSI/legacy.
*/
qdev->msi_x_entry = kcalloc(qdev->intr_count,
sizeof(struct msix_entry),
GFP_KERNEL);
if (!qdev->msi_x_entry) {
qlge_irq_type = MSI_IRQ;
goto msi;
}
for (i = 0; i < qdev->intr_count; i++)
qdev->msi_x_entry[i].entry = i;
/* Loop to get our vectors. We start with
* what we want and settle for what we get.
*/
do {
err = pci_enable_msix(qdev->pdev,
qdev->msi_x_entry, qdev->intr_count);
if (err > 0)
qdev->intr_count = err;
} while (err > 0);
if (err < 0) {
kfree(qdev->msi_x_entry);
qdev->msi_x_entry = NULL;
netif_warn(qdev, ifup, qdev->ndev,
"MSI-X Enable failed, trying MSI.\n");
qdev->intr_count = 1;
qlge_irq_type = MSI_IRQ;
} else if (err == 0) {
set_bit(QL_MSIX_ENABLED, &qdev->flags);
netif_info(qdev, ifup, qdev->ndev,
"MSI-X Enabled, got %d vectors.\n",
qdev->intr_count);
return;
}
}
msi:
qdev->intr_count = 1;
if (qlge_irq_type == MSI_IRQ) {
if (!pci_enable_msi(qdev->pdev)) {
set_bit(QL_MSI_ENABLED, &qdev->flags);
netif_info(qdev, ifup, qdev->ndev,
"Running with MSI interrupts.\n");
return;
}
}
qlge_irq_type = LEG_IRQ;
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Running with legacy interrupts.\n");
}
/* Each vector services 1 RSS ring and and 1 or more
* TX completion rings. This function loops through
* the TX completion rings and assigns the vector that
* will service it. An example would be if there are
* 2 vectors (so 2 RSS rings) and 8 TX completion rings.
* This would mean that vector 0 would service RSS ring 0
* and TX competion rings 0,1,2 and 3. Vector 1 would
* service RSS ring 1 and TX completion rings 4,5,6 and 7.
*/
static void ql_set_tx_vect(struct ql_adapter *qdev)
{
int i, j, vect;
u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
/* Assign irq vectors to TX rx_rings.*/
for (vect = 0, j = 0, i = qdev->rss_ring_count;
i < qdev->rx_ring_count; i++) {
if (j == tx_rings_per_vector) {
vect++;
j = 0;
}
qdev->rx_ring[i].irq = vect;
j++;
}
} else {
/* For single vector all rings have an irq
* of zero.
*/
for (i = 0; i < qdev->rx_ring_count; i++)
qdev->rx_ring[i].irq = 0;
}
}
/* Set the interrupt mask for this vector. Each vector
* will service 1 RSS ring and 1 or more TX completion
* rings. This function sets up a bit mask per vector
* that indicates which rings it services.
*/
static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
{
int j, vect = ctx->intr;
u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
/* Add the RSS ring serviced by this vector
* to the mask.
*/
ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
/* Add the TX ring(s) serviced by this vector
* to the mask. */
for (j = 0; j < tx_rings_per_vector; j++) {
ctx->irq_mask |=
(1 << qdev->rx_ring[qdev->rss_ring_count +
(vect * tx_rings_per_vector) + j].cq_id);
}
} else {
/* For single vector we just shift each queue's
* ID into the mask.
*/
for (j = 0; j < qdev->rx_ring_count; j++)
ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
}
}
/*
* Here we build the intr_context structures based on
* our rx_ring count and intr vector count.
* The intr_context structure is used to hook each vector
* to possibly different handlers.
*/
static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
{
int i = 0;
struct intr_context *intr_context = &qdev->intr_context[0];
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
/* Each rx_ring has it's
* own intr_context since we have separate
* vectors for each queue.
*/
for (i = 0; i < qdev->intr_count; i++, intr_context++) {
qdev->rx_ring[i].irq = i;
intr_context->intr = i;
intr_context->qdev = qdev;
/* Set up this vector's bit-mask that indicates
* which queues it services.
*/
ql_set_irq_mask(qdev, intr_context);
/*
* We set up each vectors enable/disable/read bits so
* there's no bit/mask calculations in the critical path.
*/
intr_context->intr_en_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
| i;
intr_context->intr_dis_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
INTR_EN_IHD | i;
intr_context->intr_read_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
i;
if (i == 0) {
/* The first vector/queue handles
* broadcast/multicast, fatal errors,
* and firmware events. This in addition
* to normal inbound NAPI processing.
*/
intr_context->handler = qlge_isr;
sprintf(intr_context->name, "%s-rx-%d",
qdev->ndev->name, i);
} else {
/*
* Inbound queues handle unicast frames only.
*/
intr_context->handler = qlge_msix_rx_isr;
sprintf(intr_context->name, "%s-rx-%d",
qdev->ndev->name, i);
}
}
} else {
/*
* All rx_rings use the same intr_context since
* there is only one vector.
*/
intr_context->intr = 0;
intr_context->qdev = qdev;
/*
* We set up each vectors enable/disable/read bits so
* there's no bit/mask calculations in the critical path.
*/
intr_context->intr_en_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
intr_context->intr_dis_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_DISABLE;
intr_context->intr_read_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
/*
* Single interrupt means one handler for all rings.
*/
intr_context->handler = qlge_isr;
sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
/* Set up this vector's bit-mask that indicates
* which queues it services. In this case there is
* a single vector so it will service all RSS and
* TX completion rings.
*/
ql_set_irq_mask(qdev, intr_context);
}
/* Tell the TX completion rings which MSIx vector
* they will be using.
*/
ql_set_tx_vect(qdev);
}
static void ql_free_irq(struct ql_adapter *qdev)
{
int i;
struct intr_context *intr_context = &qdev->intr_context[0];
for (i = 0; i < qdev->intr_count; i++, intr_context++) {
if (intr_context->hooked) {
if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
free_irq(qdev->msi_x_entry[i].vector,
&qdev->rx_ring[i]);
netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
"freeing msix interrupt %d.\n", i);
} else {
free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
"freeing msi interrupt %d.\n", i);
}
}
}
ql_disable_msix(qdev);
}
static int ql_request_irq(struct ql_adapter *qdev)
{
int i;
int status = 0;
struct pci_dev *pdev = qdev->pdev;
struct intr_context *intr_context = &qdev->intr_context[0];
ql_resolve_queues_to_irqs(qdev);
for (i = 0; i < qdev->intr_count; i++, intr_context++) {
atomic_set(&intr_context->irq_cnt, 0);
if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
status = request_irq(qdev->msi_x_entry[i].vector,
intr_context->handler,
0,
intr_context->name,
&qdev->rx_ring[i]);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed request for MSIX interrupt %d.\n",
i);
goto err_irq;
} else {
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Hooked intr %d, queue type %s, with name %s.\n",
i,
qdev->rx_ring[i].type == DEFAULT_Q ?
"DEFAULT_Q" :
qdev->rx_ring[i].type == TX_Q ?
"TX_Q" :
qdev->rx_ring[i].type == RX_Q ?
"RX_Q" : "",
intr_context->name);
}
} else {
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"trying msi or legacy interrupts.\n");
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"%s: irq = %d.\n", __func__, pdev->irq);
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"%s: context->name = %s.\n", __func__,
intr_context->name);
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"%s: dev_id = 0x%p.\n", __func__,
&qdev->rx_ring[0]);
status =
request_irq(pdev->irq, qlge_isr,
test_bit(QL_MSI_ENABLED,
&qdev->
flags) ? 0 : IRQF_SHARED,
intr_context->name, &qdev->rx_ring[0]);
if (status)
goto err_irq;
netif_err(qdev, ifup, qdev->ndev,
"Hooked intr %d, queue type %s, with name %s.\n",
i,
qdev->rx_ring[0].type == DEFAULT_Q ?
"DEFAULT_Q" :
qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
intr_context->name);
}
intr_context->hooked = 1;
}
return status;
err_irq:
netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
ql_free_irq(qdev);
return status;
}
static int ql_start_rss(struct ql_adapter *qdev)
{
u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f,
0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b,
0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80,
0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b,
0xbe, 0xac, 0x01, 0xfa};
struct ricb *ricb = &qdev->ricb;
int status = 0;
int i;
u8 *hash_id = (u8 *) ricb->hash_cq_id;
memset((void *)ricb, 0, sizeof(*ricb));
ricb->base_cq = RSS_L4K;
ricb->flags =
(RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
ricb->mask = cpu_to_le16((u16)(0x3ff));
/*
* Fill out the Indirection Table.
*/
for (i = 0; i < 1024; i++)
hash_id[i] = (i & (qdev->rss_ring_count - 1));
memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Initializing RSS.\n");
status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
if (status) {
netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
return status;
}
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Successfully loaded RICB.\n");
return status;
}
static int ql_clear_routing_entries(struct ql_adapter *qdev)
{
int i, status = 0;
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (status)
return status;
/* Clear all the entries in the routing table. */
for (i = 0; i < 16; i++) {
status = ql_set_routing_reg(qdev, i, 0, 0);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to init routing register for CAM packets.\n");
break;
}
}
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
return status;
}
/* Initialize the frame-to-queue routing. */
static int ql_route_initialize(struct ql_adapter *qdev)
{
int status = 0;
/* Clear all the entries in the routing table. */
status = ql_clear_routing_entries(qdev);
if (status)
return status;
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (status)
return status;
status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
RT_IDX_IP_CSUM_ERR, 1);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to init routing register "
"for IP CSUM error packets.\n");
goto exit;
}
status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
RT_IDX_TU_CSUM_ERR, 1);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to init routing register "
"for TCP/UDP CSUM error packets.\n");
goto exit;
}
status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to init routing register for broadcast packets.\n");
goto exit;
}
/* If we have more than one inbound queue, then turn on RSS in the
* routing block.
*/
if (qdev->rss_ring_count > 1) {
status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
RT_IDX_RSS_MATCH, 1);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to init routing register for MATCH RSS packets.\n");
goto exit;
}
}
status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
RT_IDX_CAM_HIT, 1);
if (status)
netif_err(qdev, ifup, qdev->ndev,
"Failed to init routing register for CAM packets.\n");
exit:
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
return status;
}
int ql_cam_route_initialize(struct ql_adapter *qdev)
{
int status, set;
/* If check if the link is up and use to
* determine if we are setting or clearing
* the MAC address in the CAM.
*/
set = ql_read32(qdev, STS);
set &= qdev->port_link_up;
status = ql_set_mac_addr(qdev, set);
if (status) {
netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
return status;
}
status = ql_route_initialize(qdev);
if (status)
netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
return status;
}
static int ql_adapter_initialize(struct ql_adapter *qdev)
{
u32 value, mask;
int i;
int status = 0;
/*
* Set up the System register to halt on errors.
*/
value = SYS_EFE | SYS_FAE;
mask = value << 16;
ql_write32(qdev, SYS, mask | value);
/* Set the default queue, and VLAN behavior. */
value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
ql_write32(qdev, NIC_RCV_CFG, (mask | value));
/* Set the MPI interrupt to enabled. */
ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
/* Enable the function, set pagesize, enable error checking. */
value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
FSC_EC | FSC_VM_PAGE_4K;
value |= SPLT_SETTING;
/* Set/clear header splitting. */
mask = FSC_VM_PAGESIZE_MASK |
FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
ql_write32(qdev, FSC, mask | value);
ql_write32(qdev, SPLT_HDR, SPLT_LEN);
/* Set RX packet routing to use port/pci function on which the
* packet arrived on in addition to usual frame routing.
* This is helpful on bonding where both interfaces can have
* the same MAC address.
*/
ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
/* Reroute all packets to our Interface.
* They may have been routed to MPI firmware
* due to WOL.
*/
value = ql_read32(qdev, MGMT_RCV_CFG);
value &= ~MGMT_RCV_CFG_RM;
mask = 0xffff0000;
/* Sticky reg needs clearing due to WOL. */
ql_write32(qdev, MGMT_RCV_CFG, mask);
ql_write32(qdev, MGMT_RCV_CFG, mask | value);
/* Default WOL is enable on Mezz cards */
if (qdev->pdev->subsystem_device == 0x0068 ||
qdev->pdev->subsystem_device == 0x0180)
qdev->wol = WAKE_MAGIC;
/* Start up the rx queues. */
for (i = 0; i < qdev->rx_ring_count; i++) {
status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to start rx ring[%d].\n", i);
return status;
}
}
/* If there is more than one inbound completion queue
* then download a RICB to configure RSS.
*/
if (qdev->rss_ring_count > 1) {
status = ql_start_rss(qdev);
if (status) {
netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
return status;
}
}
/* Start up the tx queues. */
for (i = 0; i < qdev->tx_ring_count; i++) {
status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to start tx ring[%d].\n", i);
return status;
}
}
/* Initialize the port and set the max framesize. */
status = qdev->nic_ops->port_initialize(qdev);
if (status)
netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
/* Set up the MAC address and frame routing filter. */
status = ql_cam_route_initialize(qdev);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to init CAM/Routing tables.\n");
return status;
}
/* Start NAPI for the RSS queues. */
for (i = 0; i < qdev->rss_ring_count; i++) {
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Enabling NAPI for rx_ring[%d].\n", i);
napi_enable(&qdev->rx_ring[i].napi);
}
return status;
}
/* Issue soft reset to chip. */
static int ql_adapter_reset(struct ql_adapter *qdev)
{
u32 value;
int status = 0;
unsigned long end_jiffies;
/* Clear all the entries in the routing table. */
status = ql_clear_routing_entries(qdev);
if (status) {
netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
return status;
}
end_jiffies = jiffies +
max((unsigned long)1, usecs_to_jiffies(30));
/* Stop management traffic. */
ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
/* Wait for the NIC and MGMNT FIFOs to empty. */
ql_wait_fifo_empty(qdev);
ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
do {
value = ql_read32(qdev, RST_FO);
if ((value & RST_FO_FR) == 0)
break;
cpu_relax();
} while (time_before(jiffies, end_jiffies));
if (value & RST_FO_FR) {
netif_err(qdev, ifdown, qdev->ndev,
"ETIMEDOUT!!! errored out of resetting the chip!\n");
status = -ETIMEDOUT;
}
/* Resume management traffic. */
ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
return status;
}
static void ql_display_dev_info(struct net_device *ndev)
{
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
netif_info(qdev, probe, qdev->ndev,
"Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
"XG Roll = %d, XG Rev = %d.\n",
qdev->func,
qdev->port,
qdev->chip_rev_id & 0x0000000f,
qdev->chip_rev_id >> 4 & 0x0000000f,
qdev->chip_rev_id >> 8 & 0x0000000f,
qdev->chip_rev_id >> 12 & 0x0000000f);
netif_info(qdev, probe, qdev->ndev,
"MAC address %pM\n", ndev->dev_addr);
}
int ql_wol(struct ql_adapter *qdev)
{
int status = 0;
u32 wol = MB_WOL_DISABLE;
/* The CAM is still intact after a reset, but if we
* are doing WOL, then we may need to program the
* routing regs. We would also need to issue the mailbox
* commands to instruct the MPI what to do per the ethtool
* settings.
*/
if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
WAKE_MCAST | WAKE_BCAST)) {
netif_err(qdev, ifdown, qdev->ndev,
"Unsupported WOL paramter. qdev->wol = 0x%x.\n",
qdev->wol);
return -EINVAL;
}
if (qdev->wol & WAKE_MAGIC) {
status = ql_mb_wol_set_magic(qdev, 1);
if (status) {
netif_err(qdev, ifdown, qdev->ndev,
"Failed to set magic packet on %s.\n",
qdev->ndev->name);
return status;
} else
netif_info(qdev, drv, qdev->ndev,
"Enabled magic packet successfully on %s.\n",
qdev->ndev->name);
wol |= MB_WOL_MAGIC_PKT;
}
if (qdev->wol) {
wol |= MB_WOL_MODE_ON;
status = ql_mb_wol_mode(qdev, wol);
netif_err(qdev, drv, qdev->ndev,
"WOL %s (wol code 0x%x) on %s\n",
(status == 0) ? "Successfully set" : "Failed",
wol, qdev->ndev->name);
}
return status;
}
static int ql_adapter_down(struct ql_adapter *qdev)
{
int i, status = 0;
ql_link_off(qdev);
/* Don't kill the reset worker thread if we
* are in the process of recovery.
*/
if (test_bit(QL_ADAPTER_UP, &qdev->flags))
cancel_delayed_work_sync(&qdev->asic_reset_work);
cancel_delayed_work_sync(&qdev->mpi_reset_work);
cancel_delayed_work_sync(&qdev->mpi_work);
cancel_delayed_work_sync(&qdev->mpi_idc_work);
cancel_delayed_work_sync(&qdev->mpi_core_to_log);
cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
for (i = 0; i < qdev->rss_ring_count; i++)
napi_disable(&qdev->rx_ring[i].napi);
clear_bit(QL_ADAPTER_UP, &qdev->flags);
ql_disable_interrupts(qdev);
ql_tx_ring_clean(qdev);
/* Call netif_napi_del() from common point.
*/
for (i = 0; i < qdev->rss_ring_count; i++)
netif_napi_del(&qdev->rx_ring[i].napi);
ql_free_rx_buffers(qdev);
status = ql_adapter_reset(qdev);
if (status)
netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
qdev->func);
return status;
}
static int ql_adapter_up(struct ql_adapter *qdev)
{
int err = 0;
err = ql_adapter_initialize(qdev);
if (err) {
netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
goto err_init;
}
set_bit(QL_ADAPTER_UP, &qdev->flags);
ql_alloc_rx_buffers(qdev);
/* If the port is initialized and the
* link is up the turn on the carrier.
*/
if ((ql_read32(qdev, STS) & qdev->port_init) &&
(ql_read32(qdev, STS) & qdev->port_link_up))
ql_link_on(qdev);
/* Restore rx mode. */
clear_bit(QL_ALLMULTI, &qdev->flags);
clear_bit(QL_PROMISCUOUS, &qdev->flags);
qlge_set_multicast_list(qdev->ndev);
ql_enable_interrupts(qdev);
ql_enable_all_completion_interrupts(qdev);
netif_tx_start_all_queues(qdev->ndev);
return 0;
err_init:
ql_adapter_reset(qdev);
return err;
}
static void ql_release_adapter_resources(struct ql_adapter *qdev)
{
ql_free_mem_resources(qdev);
ql_free_irq(qdev);
}
static int ql_get_adapter_resources(struct ql_adapter *qdev)
{
int status = 0;
if (ql_alloc_mem_resources(qdev)) {
netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
return -ENOMEM;
}
status = ql_request_irq(qdev);
return status;
}
static int qlge_close(struct net_device *ndev)
{
struct ql_adapter *qdev = netdev_priv(ndev);
/* If we hit pci_channel_io_perm_failure
* failure condition, then we already
* brought the adapter down.
*/
if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
clear_bit(QL_EEH_FATAL, &qdev->flags);
return 0;
}
/*
* Wait for device to recover from a reset.
* (Rarely happens, but possible.)
*/
while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
msleep(1);
ql_adapter_down(qdev);
ql_release_adapter_resources(qdev);
return 0;
}
static int ql_configure_rings(struct ql_adapter *qdev)
{
int i;
struct rx_ring *rx_ring;
struct tx_ring *tx_ring;
int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
qdev->lbq_buf_order = get_order(lbq_buf_len);
/* In a perfect world we have one RSS ring for each CPU
* and each has it's own vector. To do that we ask for
* cpu_cnt vectors. ql_enable_msix() will adjust the
* vector count to what we actually get. We then
* allocate an RSS ring for each.
* Essentially, we are doing min(cpu_count, msix_vector_count).
*/
qdev->intr_count = cpu_cnt;
ql_enable_msix(qdev);
/* Adjust the RSS ring count to the actual vector count. */
qdev->rss_ring_count = qdev->intr_count;
qdev->tx_ring_count = cpu_cnt;
qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
for (i = 0; i < qdev->tx_ring_count; i++) {
tx_ring = &qdev->tx_ring[i];
memset((void *)tx_ring, 0, sizeof(*tx_ring));
tx_ring->qdev = qdev;
tx_ring->wq_id = i;
tx_ring->wq_len = qdev->tx_ring_size;
tx_ring->wq_size =
tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
/*
* The completion queue ID for the tx rings start
* immediately after the rss rings.
*/
tx_ring->cq_id = qdev->rss_ring_count + i;
}
for (i = 0; i < qdev->rx_ring_count; i++) {
rx_ring = &qdev->rx_ring[i];
memset((void *)rx_ring, 0, sizeof(*rx_ring));
rx_ring->qdev = qdev;
rx_ring->cq_id = i;
rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
if (i < qdev->rss_ring_count) {
/*
* Inbound (RSS) queues.
*/
rx_ring->cq_len = qdev->rx_ring_size;
rx_ring->cq_size =
rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
rx_ring->lbq_len = NUM_LARGE_BUFFERS;
rx_ring->lbq_size =
rx_ring->lbq_len * sizeof(__le64);
rx_ring->lbq_buf_size = (u16)lbq_buf_len;
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"lbq_buf_size %d, order = %d\n",
rx_ring->lbq_buf_size,
qdev->lbq_buf_order);
rx_ring->sbq_len = NUM_SMALL_BUFFERS;
rx_ring->sbq_size =
rx_ring->sbq_len * sizeof(__le64);
rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
rx_ring->type = RX_Q;
} else {
/*
* Outbound queue handles outbound completions only.
*/
/* outbound cq is same size as tx_ring it services. */
rx_ring->cq_len = qdev->tx_ring_size;
rx_ring->cq_size =
rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
rx_ring->lbq_len = 0;
rx_ring->lbq_size = 0;
rx_ring->lbq_buf_size = 0;
rx_ring->sbq_len = 0;
rx_ring->sbq_size = 0;
rx_ring->sbq_buf_size = 0;
rx_ring->type = TX_Q;
}
}
return 0;
}
static int qlge_open(struct net_device *ndev)
{
int err = 0;
struct ql_adapter *qdev = netdev_priv(ndev);
err = ql_adapter_reset(qdev);
if (err)
return err;
err = ql_configure_rings(qdev);
if (err)
return err;
err = ql_get_adapter_resources(qdev);
if (err)
goto error_up;
err = ql_adapter_up(qdev);
if (err)
goto error_up;
return err;
error_up:
ql_release_adapter_resources(qdev);
return err;
}
static int ql_change_rx_buffers(struct ql_adapter *qdev)
{
struct rx_ring *rx_ring;
int i, status;
u32 lbq_buf_len;
/* Wait for an oustanding reset to complete. */
if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
int i = 3;
while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
netif_err(qdev, ifup, qdev->ndev,
"Waiting for adapter UP...\n");
ssleep(1);
}
if (!i) {
netif_err(qdev, ifup, qdev->ndev,
"Timed out waiting for adapter UP\n");
return -ETIMEDOUT;
}
}
status = ql_adapter_down(qdev);
if (status)
goto error;
/* Get the new rx buffer size. */
lbq_buf_len = (qdev->ndev->mtu > 1500) ?
LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
qdev->lbq_buf_order = get_order(lbq_buf_len);
for (i = 0; i < qdev->rss_ring_count; i++) {
rx_ring = &qdev->rx_ring[i];
/* Set the new size. */
rx_ring->lbq_buf_size = lbq_buf_len;
}
status = ql_adapter_up(qdev);
if (status)
goto error;
return status;
error:
netif_alert(qdev, ifup, qdev->ndev,
"Driver up/down cycle failed, closing device.\n");
set_bit(QL_ADAPTER_UP, &qdev->flags);
dev_close(qdev->ndev);
return status;
}
static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
{
struct ql_adapter *qdev = netdev_priv(ndev);
int status;
if (ndev->mtu == 1500 && new_mtu == 9000) {
netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
} else if (ndev->mtu == 9000 && new_mtu == 1500) {
netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
} else
return -EINVAL;
queue_delayed_work(qdev->workqueue,
&qdev->mpi_port_cfg_work, 3*HZ);
ndev->mtu = new_mtu;
if (!netif_running(qdev->ndev)) {
return 0;
}
status = ql_change_rx_buffers(qdev);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Changing MTU failed.\n");
}
return status;
}
static struct net_device_stats *qlge_get_stats(struct net_device
*ndev)
{
struct ql_adapter *qdev = netdev_priv(ndev);
struct rx_ring *rx_ring = &qdev->rx_ring[0];
struct tx_ring *tx_ring = &qdev->tx_ring[0];
unsigned long pkts, mcast, dropped, errors, bytes;
int i;
/* Get RX stats. */
pkts = mcast = dropped = errors = bytes = 0;
for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
pkts += rx_ring->rx_packets;
bytes += rx_ring->rx_bytes;
dropped += rx_ring->rx_dropped;
errors += rx_ring->rx_errors;
mcast += rx_ring->rx_multicast;
}
ndev->stats.rx_packets = pkts;
ndev->stats.rx_bytes = bytes;
ndev->stats.rx_dropped = dropped;
ndev->stats.rx_errors = errors;
ndev->stats.multicast = mcast;
/* Get TX stats. */
pkts = errors = bytes = 0;
for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
pkts += tx_ring->tx_packets;
bytes += tx_ring->tx_bytes;
errors += tx_ring->tx_errors;
}
ndev->stats.tx_packets = pkts;
ndev->stats.tx_bytes = bytes;
ndev->stats.tx_errors = errors;
return &ndev->stats;
}
void qlge_set_multicast_list(struct net_device *ndev)
{
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
struct netdev_hw_addr *ha;
int i, status;
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (status)
return;
/*
* Set or clear promiscuous mode if a
* transition is taking place.
*/
if (ndev->flags & IFF_PROMISC) {
if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
netif_err(qdev, hw, qdev->ndev,
"Failed to set promiscous mode.\n");
} else {
set_bit(QL_PROMISCUOUS, &qdev->flags);
}
}
} else {
if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
netif_err(qdev, hw, qdev->ndev,
"Failed to clear promiscous mode.\n");
} else {
clear_bit(QL_PROMISCUOUS, &qdev->flags);
}
}
}
/*
* Set or clear all multicast mode if a
* transition is taking place.
*/
if ((ndev->flags & IFF_ALLMULTI) ||
(netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
netif_err(qdev, hw, qdev->ndev,
"Failed to set all-multi mode.\n");
} else {
set_bit(QL_ALLMULTI, &qdev->flags);
}
}
} else {
if (test_bit(QL_ALLMULTI, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
netif_err(qdev, hw, qdev->ndev,
"Failed to clear all-multi mode.\n");
} else {
clear_bit(QL_ALLMULTI, &qdev->flags);
}
}
}
if (!netdev_mc_empty(ndev)) {
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
goto exit;
i = 0;
netdev_for_each_mc_addr(ha, ndev) {
if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
MAC_ADDR_TYPE_MULTI_MAC, i)) {
netif_err(qdev, hw, qdev->ndev,
"Failed to loadmulticast address.\n");
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
goto exit;
}
i++;
}
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
if (ql_set_routing_reg
(qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
netif_err(qdev, hw, qdev->ndev,
"Failed to set multicast match mode.\n");
} else {
set_bit(QL_ALLMULTI, &qdev->flags);
}
}
exit:
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
}
static int qlge_set_mac_address(struct net_device *ndev, void *p)
{
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
struct sockaddr *addr = p;
int status;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
/* Update local copy of current mac address. */
memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
return status;
status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
if (status)
netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
return status;
}
static void qlge_tx_timeout(struct net_device *ndev)
{
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
ql_queue_asic_error(qdev);
}
static void ql_asic_reset_work(struct work_struct *work)
{
struct ql_adapter *qdev =
container_of(work, struct ql_adapter, asic_reset_work.work);
int status;
rtnl_lock();
status = ql_adapter_down(qdev);
if (status)
goto error;
status = ql_adapter_up(qdev);
if (status)
goto error;
/* Restore rx mode. */
clear_bit(QL_ALLMULTI, &qdev->flags);
clear_bit(QL_PROMISCUOUS, &qdev->flags);
qlge_set_multicast_list(qdev->ndev);
rtnl_unlock();
return;
error:
netif_alert(qdev, ifup, qdev->ndev,
"Driver up/down cycle failed, closing device\n");
set_bit(QL_ADAPTER_UP, &qdev->flags);
dev_close(qdev->ndev);
rtnl_unlock();
}
static struct nic_operations qla8012_nic_ops = {
.get_flash = ql_get_8012_flash_params,
.port_initialize = ql_8012_port_initialize,
};
static struct nic_operations qla8000_nic_ops = {
.get_flash = ql_get_8000_flash_params,
.port_initialize = ql_8000_port_initialize,
};
/* Find the pcie function number for the other NIC
* on this chip. Since both NIC functions share a
* common firmware we have the lowest enabled function
* do any common work. Examples would be resetting
* after a fatal firmware error, or doing a firmware
* coredump.
*/
static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
{
int status = 0;
u32 temp;
u32 nic_func1, nic_func2;
status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
&temp);
if (status)
return status;
nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
MPI_TEST_NIC_FUNC_MASK);
nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
MPI_TEST_NIC_FUNC_MASK);
if (qdev->func == nic_func1)
qdev->alt_func = nic_func2;
else if (qdev->func == nic_func2)
qdev->alt_func = nic_func1;
else
status = -EIO;
return status;
}
static int ql_get_board_info(struct ql_adapter *qdev)
{
int status;
qdev->func =
(ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
if (qdev->func > 3)
return -EIO;
status = ql_get_alt_pcie_func(qdev);
if (status)
return status;
qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
if (qdev->port) {
qdev->xg_sem_mask = SEM_XGMAC1_MASK;
qdev->port_link_up = STS_PL1;
qdev->port_init = STS_PI1;
qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
} else {
qdev->xg_sem_mask = SEM_XGMAC0_MASK;
qdev->port_link_up = STS_PL0;
qdev->port_init = STS_PI0;
qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
}
qdev->chip_rev_id = ql_read32(qdev, REV_ID);
qdev->device_id = qdev->pdev->device;
if (qdev->device_id == QLGE_DEVICE_ID_8012)
qdev->nic_ops = &qla8012_nic_ops;
else if (qdev->device_id == QLGE_DEVICE_ID_8000)
qdev->nic_ops = &qla8000_nic_ops;
return status;
}
static void ql_release_all(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
if (qdev->workqueue) {
destroy_workqueue(qdev->workqueue);
qdev->workqueue = NULL;
}
if (qdev->reg_base)
iounmap(qdev->reg_base);
if (qdev->doorbell_area)
iounmap(qdev->doorbell_area);
vfree(qdev->mpi_coredump);
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
}
static int __devinit ql_init_device(struct pci_dev *pdev,
struct net_device *ndev, int cards_found)
{
struct ql_adapter *qdev = netdev_priv(ndev);
int err = 0;
memset((void *)qdev, 0, sizeof(*qdev));
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "PCI device enable failed.\n");
return err;
}
qdev->ndev = ndev;
qdev->pdev = pdev;
pci_set_drvdata(pdev, ndev);
/* Set PCIe read request size */
err = pcie_set_readrq(pdev, 4096);
if (err) {
dev_err(&pdev->dev, "Set readrq failed.\n");
goto err_out1;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(&pdev->dev, "PCI region request failed.\n");
return err;
}
pci_set_master(pdev);
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
set_bit(QL_DMA64, &qdev->flags);
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
} else {
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (!err)
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
}
if (err) {
dev_err(&pdev->dev, "No usable DMA configuration.\n");
goto err_out2;
}
/* Set PCIe reset type for EEH to fundamental. */
pdev->needs_freset = 1;
pci_save_state(pdev);
qdev->reg_base =
ioremap_nocache(pci_resource_start(pdev, 1),
pci_resource_len(pdev, 1));
if (!qdev->reg_base) {
dev_err(&pdev->dev, "Register mapping failed.\n");
err = -ENOMEM;
goto err_out2;
}
qdev->doorbell_area_size = pci_resource_len(pdev, 3);
qdev->doorbell_area =
ioremap_nocache(pci_resource_start(pdev, 3),
pci_resource_len(pdev, 3));
if (!qdev->doorbell_area) {
dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
err = -ENOMEM;
goto err_out2;
}
err = ql_get_board_info(qdev);
if (err) {
dev_err(&pdev->dev, "Register access failed.\n");
err = -EIO;
goto err_out2;
}
qdev->msg_enable = netif_msg_init(debug, default_msg);
spin_lock_init(&qdev->hw_lock);
spin_lock_init(&qdev->stats_lock);
if (qlge_mpi_coredump) {
qdev->mpi_coredump =
vmalloc(sizeof(struct ql_mpi_coredump));
if (qdev->mpi_coredump == NULL) {
dev_err(&pdev->dev, "Coredump alloc failed.\n");
err = -ENOMEM;
goto err_out2;
}
if (qlge_force_coredump)
set_bit(QL_FRC_COREDUMP, &qdev->flags);
}
/* make sure the EEPROM is good */
err = qdev->nic_ops->get_flash(qdev);
if (err) {
dev_err(&pdev->dev, "Invalid FLASH.\n");
goto err_out2;
}
memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
/* Keep local copy of current mac address. */
memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
/* Set up the default ring sizes. */
qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
/* Set up the coalescing parameters. */
qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
/*
* Set up the operating parameters.
*/
qdev->rx_csum = 1;
qdev->workqueue = create_singlethread_workqueue(ndev->name);
INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
init_completion(&qdev->ide_completion);
if (!cards_found) {
dev_info(&pdev->dev, "%s\n", DRV_STRING);
dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
DRV_NAME, DRV_VERSION);
}
return 0;
err_out2:
ql_release_all(pdev);
err_out1:
pci_disable_device(pdev);
return err;
}
static const struct net_device_ops qlge_netdev_ops = {
.ndo_open = qlge_open,
.ndo_stop = qlge_close,
.ndo_start_xmit = qlge_send,
.ndo_change_mtu = qlge_change_mtu,
.ndo_get_stats = qlge_get_stats,
.ndo_set_multicast_list = qlge_set_multicast_list,
.ndo_set_mac_address = qlge_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_tx_timeout = qlge_tx_timeout,
.ndo_vlan_rx_register = qlge_vlan_rx_register,
.ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
};
static void ql_timer(unsigned long data)
{
struct ql_adapter *qdev = (struct ql_adapter *)data;
u32 var = 0;
var = ql_read32(qdev, STS);
if (pci_channel_offline(qdev->pdev)) {
netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
return;
}
mod_timer(&qdev->timer, jiffies + (5*HZ));
}
static int __devinit qlge_probe(struct pci_dev *pdev,
const struct pci_device_id *pci_entry)
{
struct net_device *ndev = NULL;
struct ql_adapter *qdev = NULL;
static int cards_found = 0;
int err = 0;
ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
min(MAX_CPUS, (int)num_online_cpus()));
if (!ndev)
return -ENOMEM;
err = ql_init_device(pdev, ndev, cards_found);
if (err < 0) {
free_netdev(ndev);
return err;
}
qdev = netdev_priv(ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
ndev->features = (0
| NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_TSO
| NETIF_F_TSO6
| NETIF_F_TSO_ECN
| NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
ndev->features |= NETIF_F_GRO;
if (test_bit(QL_DMA64, &qdev->flags))
ndev->features |= NETIF_F_HIGHDMA;
/*
* Set up net_device structure.
*/
ndev->tx_queue_len = qdev->tx_ring_size;
ndev->irq = pdev->irq;
ndev->netdev_ops = &qlge_netdev_ops;
SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
ndev->watchdog_timeo = 10 * HZ;
err = register_netdev(ndev);
if (err) {
dev_err(&pdev->dev, "net device registration failed.\n");
ql_release_all(pdev);
pci_disable_device(pdev);
return err;
}
/* Start up the timer to trigger EEH if
* the bus goes dead
*/
init_timer_deferrable(&qdev->timer);
qdev->timer.data = (unsigned long)qdev;
qdev->timer.function = ql_timer;
qdev->timer.expires = jiffies + (5*HZ);
add_timer(&qdev->timer);
ql_link_off(qdev);
ql_display_dev_info(ndev);
atomic_set(&qdev->lb_count, 0);
cards_found++;
return 0;
}
netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
{
return qlge_send(skb, ndev);
}
int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
{
return ql_clean_inbound_rx_ring(rx_ring, budget);
}
static void __devexit qlge_remove(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
del_timer_sync(&qdev->timer);
unregister_netdev(ndev);
ql_release_all(pdev);
pci_disable_device(pdev);
free_netdev(ndev);
}
/* Clean up resources without touching hardware. */
static void ql_eeh_close(struct net_device *ndev)
{
int i;
struct ql_adapter *qdev = netdev_priv(ndev);
if (netif_carrier_ok(ndev)) {
netif_carrier_off(ndev);
netif_stop_queue(ndev);
}
/* Disabling the timer */
del_timer_sync(&qdev->timer);
if (test_bit(QL_ADAPTER_UP, &qdev->flags))
cancel_delayed_work_sync(&qdev->asic_reset_work);
cancel_delayed_work_sync(&qdev->mpi_reset_work);
cancel_delayed_work_sync(&qdev->mpi_work);
cancel_delayed_work_sync(&qdev->mpi_idc_work);
cancel_delayed_work_sync(&qdev->mpi_core_to_log);
cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
for (i = 0; i < qdev->rss_ring_count; i++)
netif_napi_del(&qdev->rx_ring[i].napi);
clear_bit(QL_ADAPTER_UP, &qdev->flags);
ql_tx_ring_clean(qdev);
ql_free_rx_buffers(qdev);
ql_release_adapter_resources(qdev);
}
/*
* This callback is called by the PCI subsystem whenever
* a PCI bus error is detected.
*/
static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
enum pci_channel_state state)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
switch (state) {
case pci_channel_io_normal:
return PCI_ERS_RESULT_CAN_RECOVER;
case pci_channel_io_frozen:
netif_device_detach(ndev);
if (netif_running(ndev))
ql_eeh_close(ndev);
pci_disable_device(pdev);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
dev_err(&pdev->dev,
"%s: pci_channel_io_perm_failure.\n", __func__);
ql_eeh_close(ndev);
set_bit(QL_EEH_FATAL, &qdev->flags);
return PCI_ERS_RESULT_DISCONNECT;
}
/* Request a slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/*
* This callback is called after the PCI buss has been reset.
* Basically, this tries to restart the card from scratch.
* This is a shortened version of the device probe/discovery code,
* it resembles the first-half of the () routine.
*/
static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
pdev->error_state = pci_channel_io_normal;
pci_restore_state(pdev);
if (pci_enable_device(pdev)) {
netif_err(qdev, ifup, qdev->ndev,
"Cannot re-enable PCI device after reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
pci_set_master(pdev);
if (ql_adapter_reset(qdev)) {
netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
set_bit(QL_EEH_FATAL, &qdev->flags);
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_RECOVERED;
}
static void qlge_io_resume(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
int err = 0;
if (netif_running(ndev)) {
err = qlge_open(ndev);
if (err) {
netif_err(qdev, ifup, qdev->ndev,
"Device initialization failed after reset.\n");
return;
}
} else {
netif_err(qdev, ifup, qdev->ndev,
"Device was not running prior to EEH.\n");
}
mod_timer(&qdev->timer, jiffies + (5*HZ));
netif_device_attach(ndev);
}
static struct pci_error_handlers qlge_err_handler = {
.error_detected = qlge_io_error_detected,
.slot_reset = qlge_io_slot_reset,
.resume = qlge_io_resume,
};
static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
int err;
netif_device_detach(ndev);
del_timer_sync(&qdev->timer);
if (netif_running(ndev)) {
err = ql_adapter_down(qdev);
if (!err)
return err;
}
ql_wol(qdev);
err = pci_save_state(pdev);
if (err)
return err;
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
#ifdef CONFIG_PM
static int qlge_resume(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
int err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
err = pci_enable_device(pdev);
if (err) {
netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
return err;
}
pci_set_master(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
if (netif_running(ndev)) {
err = ql_adapter_up(qdev);
if (err)
return err;
}
mod_timer(&qdev->timer, jiffies + (5*HZ));
netif_device_attach(ndev);
return 0;
}
#endif /* CONFIG_PM */
static void qlge_shutdown(struct pci_dev *pdev)
{
qlge_suspend(pdev, PMSG_SUSPEND);
}
static struct pci_driver qlge_driver = {
.name = DRV_NAME,
.id_table = qlge_pci_tbl,
.probe = qlge_probe,
.remove = __devexit_p(qlge_remove),
#ifdef CONFIG_PM
.suspend = qlge_suspend,
.resume = qlge_resume,
#endif
.shutdown = qlge_shutdown,
.err_handler = &qlge_err_handler
};
static int __init qlge_init_module(void)
{
return pci_register_driver(&qlge_driver);
}
static void __exit qlge_exit(void)
{
pci_unregister_driver(&qlge_driver);
}
module_init(qlge_init_module);
module_exit(qlge_exit);