mirror of
https://github.com/torvalds/linux.git
synced 2024-11-13 23:51:39 +00:00
3485b88390
In preparation for adding support for anonymous multi-size THP, introduce new sysfs structure that will be used to control the new behaviours. A new directory is added under transparent_hugepage for each supported THP size, and contains an `enabled` file, which can be set to "inherit" (to inherit the global setting), "always", "madvise" or "never". For now, the kernel still only supports PMD-sized anonymous THP, so only 1 directory is populated. The first half of the change converts transhuge_vma_suitable() and hugepage_vma_check() so that they take a bitfield of orders for which the user wants to determine support, and the functions filter out all the orders that can't be supported, given the current sysfs configuration and the VMA dimensions. The resulting functions are renamed to thp_vma_suitable_orders() and thp_vma_allowable_orders() respectively. Convenience functions that take a single, unencoded order and return a boolean are also defined as thp_vma_suitable_order() and thp_vma_allowable_order(). The second half of the change implements the new sysfs interface. It has been done so that each supported THP size has a `struct thpsize`, which describes the relevant metadata and is itself a kobject. This is pretty minimal for now, but should make it easy to add new per-thpsize files to the interface if needed in future (e.g. per-size defrag). Rather than keep the `enabled` state directly in the struct thpsize, I've elected to directly encode it into huge_anon_orders_[always|madvise|inherit] bitfields since this reduces the amount of work required in thp_vma_allowable_orders() which is called for every page fault. See Documentation/admin-guide/mm/transhuge.rst, as modified by this commit, for details of how the new sysfs interface works. [ryan.roberts@arm.com: fix build warning when CONFIG_SYSFS is disabled] Link: https://lkml.kernel.org/r/20231211125320.3997543-1-ryan.roberts@arm.com Link: https://lkml.kernel.org/r/20231207161211.2374093-4-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: Barry Song <v-songbaohua@oppo.com> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Rientjes <rientjes@google.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Itaru Kitayama <itaru.kitayama@gmail.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Yin Fengwei <fengwei.yin@intel.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
343 lines
9.3 KiB
C
343 lines
9.3 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/mm.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
|
|
#include "internal.h"
|
|
|
|
static inline bool not_found(struct page_vma_mapped_walk *pvmw)
|
|
{
|
|
page_vma_mapped_walk_done(pvmw);
|
|
return false;
|
|
}
|
|
|
|
static bool map_pte(struct page_vma_mapped_walk *pvmw, spinlock_t **ptlp)
|
|
{
|
|
pte_t ptent;
|
|
|
|
if (pvmw->flags & PVMW_SYNC) {
|
|
/* Use the stricter lookup */
|
|
pvmw->pte = pte_offset_map_lock(pvmw->vma->vm_mm, pvmw->pmd,
|
|
pvmw->address, &pvmw->ptl);
|
|
*ptlp = pvmw->ptl;
|
|
return !!pvmw->pte;
|
|
}
|
|
|
|
/*
|
|
* It is important to return the ptl corresponding to pte,
|
|
* in case *pvmw->pmd changes underneath us; so we need to
|
|
* return it even when choosing not to lock, in case caller
|
|
* proceeds to loop over next ptes, and finds a match later.
|
|
* Though, in most cases, page lock already protects this.
|
|
*/
|
|
pvmw->pte = pte_offset_map_nolock(pvmw->vma->vm_mm, pvmw->pmd,
|
|
pvmw->address, ptlp);
|
|
if (!pvmw->pte)
|
|
return false;
|
|
|
|
ptent = ptep_get(pvmw->pte);
|
|
|
|
if (pvmw->flags & PVMW_MIGRATION) {
|
|
if (!is_swap_pte(ptent))
|
|
return false;
|
|
} else if (is_swap_pte(ptent)) {
|
|
swp_entry_t entry;
|
|
/*
|
|
* Handle un-addressable ZONE_DEVICE memory.
|
|
*
|
|
* We get here when we are trying to unmap a private
|
|
* device page from the process address space. Such
|
|
* page is not CPU accessible and thus is mapped as
|
|
* a special swap entry, nonetheless it still does
|
|
* count as a valid regular mapping for the page
|
|
* (and is accounted as such in page maps count).
|
|
*
|
|
* So handle this special case as if it was a normal
|
|
* page mapping ie lock CPU page table and return true.
|
|
*
|
|
* For more details on device private memory see HMM
|
|
* (include/linux/hmm.h or mm/hmm.c).
|
|
*/
|
|
entry = pte_to_swp_entry(ptent);
|
|
if (!is_device_private_entry(entry) &&
|
|
!is_device_exclusive_entry(entry))
|
|
return false;
|
|
} else if (!pte_present(ptent)) {
|
|
return false;
|
|
}
|
|
pvmw->ptl = *ptlp;
|
|
spin_lock(pvmw->ptl);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* check_pte - check if [pvmw->pfn, @pvmw->pfn + @pvmw->nr_pages) is
|
|
* mapped at the @pvmw->pte
|
|
* @pvmw: page_vma_mapped_walk struct, includes a pair pte and pfn range
|
|
* for checking
|
|
*
|
|
* page_vma_mapped_walk() found a place where pfn range is *potentially*
|
|
* mapped. check_pte() has to validate this.
|
|
*
|
|
* pvmw->pte may point to empty PTE, swap PTE or PTE pointing to
|
|
* arbitrary page.
|
|
*
|
|
* If PVMW_MIGRATION flag is set, returns true if @pvmw->pte contains migration
|
|
* entry that points to [pvmw->pfn, @pvmw->pfn + @pvmw->nr_pages)
|
|
*
|
|
* If PVMW_MIGRATION flag is not set, returns true if pvmw->pte points to
|
|
* [pvmw->pfn, @pvmw->pfn + @pvmw->nr_pages)
|
|
*
|
|
* Otherwise, return false.
|
|
*
|
|
*/
|
|
static bool check_pte(struct page_vma_mapped_walk *pvmw)
|
|
{
|
|
unsigned long pfn;
|
|
pte_t ptent = ptep_get(pvmw->pte);
|
|
|
|
if (pvmw->flags & PVMW_MIGRATION) {
|
|
swp_entry_t entry;
|
|
if (!is_swap_pte(ptent))
|
|
return false;
|
|
entry = pte_to_swp_entry(ptent);
|
|
|
|
if (!is_migration_entry(entry) &&
|
|
!is_device_exclusive_entry(entry))
|
|
return false;
|
|
|
|
pfn = swp_offset_pfn(entry);
|
|
} else if (is_swap_pte(ptent)) {
|
|
swp_entry_t entry;
|
|
|
|
/* Handle un-addressable ZONE_DEVICE memory */
|
|
entry = pte_to_swp_entry(ptent);
|
|
if (!is_device_private_entry(entry) &&
|
|
!is_device_exclusive_entry(entry))
|
|
return false;
|
|
|
|
pfn = swp_offset_pfn(entry);
|
|
} else {
|
|
if (!pte_present(ptent))
|
|
return false;
|
|
|
|
pfn = pte_pfn(ptent);
|
|
}
|
|
|
|
return (pfn - pvmw->pfn) < pvmw->nr_pages;
|
|
}
|
|
|
|
/* Returns true if the two ranges overlap. Careful to not overflow. */
|
|
static bool check_pmd(unsigned long pfn, struct page_vma_mapped_walk *pvmw)
|
|
{
|
|
if ((pfn + HPAGE_PMD_NR - 1) < pvmw->pfn)
|
|
return false;
|
|
if (pfn > pvmw->pfn + pvmw->nr_pages - 1)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static void step_forward(struct page_vma_mapped_walk *pvmw, unsigned long size)
|
|
{
|
|
pvmw->address = (pvmw->address + size) & ~(size - 1);
|
|
if (!pvmw->address)
|
|
pvmw->address = ULONG_MAX;
|
|
}
|
|
|
|
/**
|
|
* page_vma_mapped_walk - check if @pvmw->pfn is mapped in @pvmw->vma at
|
|
* @pvmw->address
|
|
* @pvmw: pointer to struct page_vma_mapped_walk. page, vma, address and flags
|
|
* must be set. pmd, pte and ptl must be NULL.
|
|
*
|
|
* Returns true if the page is mapped in the vma. @pvmw->pmd and @pvmw->pte point
|
|
* to relevant page table entries. @pvmw->ptl is locked. @pvmw->address is
|
|
* adjusted if needed (for PTE-mapped THPs).
|
|
*
|
|
* If @pvmw->pmd is set but @pvmw->pte is not, you have found PMD-mapped page
|
|
* (usually THP). For PTE-mapped THP, you should run page_vma_mapped_walk() in
|
|
* a loop to find all PTEs that map the THP.
|
|
*
|
|
* For HugeTLB pages, @pvmw->pte is set to the relevant page table entry
|
|
* regardless of which page table level the page is mapped at. @pvmw->pmd is
|
|
* NULL.
|
|
*
|
|
* Returns false if there are no more page table entries for the page in
|
|
* the vma. @pvmw->ptl is unlocked and @pvmw->pte is unmapped.
|
|
*
|
|
* If you need to stop the walk before page_vma_mapped_walk() returned false,
|
|
* use page_vma_mapped_walk_done(). It will do the housekeeping.
|
|
*/
|
|
bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw)
|
|
{
|
|
struct vm_area_struct *vma = pvmw->vma;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long end;
|
|
spinlock_t *ptl;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t pmde;
|
|
|
|
/* The only possible pmd mapping has been handled on last iteration */
|
|
if (pvmw->pmd && !pvmw->pte)
|
|
return not_found(pvmw);
|
|
|
|
if (unlikely(is_vm_hugetlb_page(vma))) {
|
|
struct hstate *hstate = hstate_vma(vma);
|
|
unsigned long size = huge_page_size(hstate);
|
|
/* The only possible mapping was handled on last iteration */
|
|
if (pvmw->pte)
|
|
return not_found(pvmw);
|
|
/*
|
|
* All callers that get here will already hold the
|
|
* i_mmap_rwsem. Therefore, no additional locks need to be
|
|
* taken before calling hugetlb_walk().
|
|
*/
|
|
pvmw->pte = hugetlb_walk(vma, pvmw->address, size);
|
|
if (!pvmw->pte)
|
|
return false;
|
|
|
|
pvmw->ptl = huge_pte_lock(hstate, mm, pvmw->pte);
|
|
if (!check_pte(pvmw))
|
|
return not_found(pvmw);
|
|
return true;
|
|
}
|
|
|
|
end = vma_address_end(pvmw);
|
|
if (pvmw->pte)
|
|
goto next_pte;
|
|
restart:
|
|
do {
|
|
pgd = pgd_offset(mm, pvmw->address);
|
|
if (!pgd_present(*pgd)) {
|
|
step_forward(pvmw, PGDIR_SIZE);
|
|
continue;
|
|
}
|
|
p4d = p4d_offset(pgd, pvmw->address);
|
|
if (!p4d_present(*p4d)) {
|
|
step_forward(pvmw, P4D_SIZE);
|
|
continue;
|
|
}
|
|
pud = pud_offset(p4d, pvmw->address);
|
|
if (!pud_present(*pud)) {
|
|
step_forward(pvmw, PUD_SIZE);
|
|
continue;
|
|
}
|
|
|
|
pvmw->pmd = pmd_offset(pud, pvmw->address);
|
|
/*
|
|
* Make sure the pmd value isn't cached in a register by the
|
|
* compiler and used as a stale value after we've observed a
|
|
* subsequent update.
|
|
*/
|
|
pmde = pmdp_get_lockless(pvmw->pmd);
|
|
|
|
if (pmd_trans_huge(pmde) || is_pmd_migration_entry(pmde) ||
|
|
(pmd_present(pmde) && pmd_devmap(pmde))) {
|
|
pvmw->ptl = pmd_lock(mm, pvmw->pmd);
|
|
pmde = *pvmw->pmd;
|
|
if (!pmd_present(pmde)) {
|
|
swp_entry_t entry;
|
|
|
|
if (!thp_migration_supported() ||
|
|
!(pvmw->flags & PVMW_MIGRATION))
|
|
return not_found(pvmw);
|
|
entry = pmd_to_swp_entry(pmde);
|
|
if (!is_migration_entry(entry) ||
|
|
!check_pmd(swp_offset_pfn(entry), pvmw))
|
|
return not_found(pvmw);
|
|
return true;
|
|
}
|
|
if (likely(pmd_trans_huge(pmde) || pmd_devmap(pmde))) {
|
|
if (pvmw->flags & PVMW_MIGRATION)
|
|
return not_found(pvmw);
|
|
if (!check_pmd(pmd_pfn(pmde), pvmw))
|
|
return not_found(pvmw);
|
|
return true;
|
|
}
|
|
/* THP pmd was split under us: handle on pte level */
|
|
spin_unlock(pvmw->ptl);
|
|
pvmw->ptl = NULL;
|
|
} else if (!pmd_present(pmde)) {
|
|
/*
|
|
* If PVMW_SYNC, take and drop THP pmd lock so that we
|
|
* cannot return prematurely, while zap_huge_pmd() has
|
|
* cleared *pmd but not decremented compound_mapcount().
|
|
*/
|
|
if ((pvmw->flags & PVMW_SYNC) &&
|
|
thp_vma_suitable_order(vma, pvmw->address,
|
|
PMD_ORDER) &&
|
|
(pvmw->nr_pages >= HPAGE_PMD_NR)) {
|
|
spinlock_t *ptl = pmd_lock(mm, pvmw->pmd);
|
|
|
|
spin_unlock(ptl);
|
|
}
|
|
step_forward(pvmw, PMD_SIZE);
|
|
continue;
|
|
}
|
|
if (!map_pte(pvmw, &ptl)) {
|
|
if (!pvmw->pte)
|
|
goto restart;
|
|
goto next_pte;
|
|
}
|
|
this_pte:
|
|
if (check_pte(pvmw))
|
|
return true;
|
|
next_pte:
|
|
do {
|
|
pvmw->address += PAGE_SIZE;
|
|
if (pvmw->address >= end)
|
|
return not_found(pvmw);
|
|
/* Did we cross page table boundary? */
|
|
if ((pvmw->address & (PMD_SIZE - PAGE_SIZE)) == 0) {
|
|
if (pvmw->ptl) {
|
|
spin_unlock(pvmw->ptl);
|
|
pvmw->ptl = NULL;
|
|
}
|
|
pte_unmap(pvmw->pte);
|
|
pvmw->pte = NULL;
|
|
goto restart;
|
|
}
|
|
pvmw->pte++;
|
|
} while (pte_none(ptep_get(pvmw->pte)));
|
|
|
|
if (!pvmw->ptl) {
|
|
pvmw->ptl = ptl;
|
|
spin_lock(pvmw->ptl);
|
|
}
|
|
goto this_pte;
|
|
} while (pvmw->address < end);
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* page_mapped_in_vma - check whether a page is really mapped in a VMA
|
|
* @page: the page to test
|
|
* @vma: the VMA to test
|
|
*
|
|
* Returns 1 if the page is mapped into the page tables of the VMA, 0
|
|
* if the page is not mapped into the page tables of this VMA. Only
|
|
* valid for normal file or anonymous VMAs.
|
|
*/
|
|
int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
|
|
{
|
|
struct page_vma_mapped_walk pvmw = {
|
|
.pfn = page_to_pfn(page),
|
|
.nr_pages = 1,
|
|
.vma = vma,
|
|
.flags = PVMW_SYNC,
|
|
};
|
|
|
|
pvmw.address = vma_address(page, vma);
|
|
if (pvmw.address == -EFAULT)
|
|
return 0;
|
|
if (!page_vma_mapped_walk(&pvmw))
|
|
return 0;
|
|
page_vma_mapped_walk_done(&pvmw);
|
|
return 1;
|
|
}
|