linux/drivers/mmc/core/sdio_irq.c
Shawn Lin 5df0e8231f mmc: core: remove BUG_ONs from sdio
BUG_ONs doesn't help anything except for stop the system from
running. If it occurs, it implies we should deploy proper error
handling for that. So this patch is gonna discard these meaningless
BUG_ONs and deploy error handling if needed.

Signed-off-by: Shawn Lin <shawn.lin@rock-chips.com>
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2016-12-05 10:31:08 +01:00

338 lines
8.1 KiB
C

/*
* linux/drivers/mmc/core/sdio_irq.c
*
* Author: Nicolas Pitre
* Created: June 18, 2007
* Copyright: MontaVista Software Inc.
*
* Copyright 2008 Pierre Ossman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/kthread.h>
#include <linux/export.h>
#include <linux/wait.h>
#include <linux/delay.h>
#include <linux/mmc/core.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/sdio_func.h>
#include "sdio_ops.h"
static int process_sdio_pending_irqs(struct mmc_host *host)
{
struct mmc_card *card = host->card;
int i, ret, count;
unsigned char pending;
struct sdio_func *func;
/*
* Optimization, if there is only 1 function interrupt registered
* and we know an IRQ was signaled then call irq handler directly.
* Otherwise do the full probe.
*/
func = card->sdio_single_irq;
if (func && host->sdio_irq_pending) {
func->irq_handler(func);
return 1;
}
ret = mmc_io_rw_direct(card, 0, 0, SDIO_CCCR_INTx, 0, &pending);
if (ret) {
pr_debug("%s: error %d reading SDIO_CCCR_INTx\n",
mmc_card_id(card), ret);
return ret;
}
if (pending && mmc_card_broken_irq_polling(card) &&
!(host->caps & MMC_CAP_SDIO_IRQ)) {
unsigned char dummy;
/* A fake interrupt could be created when we poll SDIO_CCCR_INTx
* register with a Marvell SD8797 card. A dummy CMD52 read to
* function 0 register 0xff can avoid this.
*/
mmc_io_rw_direct(card, 0, 0, 0xff, 0, &dummy);
}
count = 0;
for (i = 1; i <= 7; i++) {
if (pending & (1 << i)) {
func = card->sdio_func[i - 1];
if (!func) {
pr_warn("%s: pending IRQ for non-existent function\n",
mmc_card_id(card));
ret = -EINVAL;
} else if (func->irq_handler) {
func->irq_handler(func);
count++;
} else {
pr_warn("%s: pending IRQ with no handler\n",
sdio_func_id(func));
ret = -EINVAL;
}
}
}
if (count)
return count;
return ret;
}
void sdio_run_irqs(struct mmc_host *host)
{
mmc_claim_host(host);
host->sdio_irq_pending = true;
process_sdio_pending_irqs(host);
mmc_release_host(host);
}
EXPORT_SYMBOL_GPL(sdio_run_irqs);
static int sdio_irq_thread(void *_host)
{
struct mmc_host *host = _host;
struct sched_param param = { .sched_priority = 1 };
unsigned long period, idle_period;
int ret;
sched_setscheduler(current, SCHED_FIFO, &param);
/*
* We want to allow for SDIO cards to work even on non SDIO
* aware hosts. One thing that non SDIO host cannot do is
* asynchronous notification of pending SDIO card interrupts
* hence we poll for them in that case.
*/
idle_period = msecs_to_jiffies(10);
period = (host->caps & MMC_CAP_SDIO_IRQ) ?
MAX_SCHEDULE_TIMEOUT : idle_period;
pr_debug("%s: IRQ thread started (poll period = %lu jiffies)\n",
mmc_hostname(host), period);
do {
/*
* We claim the host here on drivers behalf for a couple
* reasons:
*
* 1) it is already needed to retrieve the CCCR_INTx;
* 2) we want the driver(s) to clear the IRQ condition ASAP;
* 3) we need to control the abort condition locally.
*
* Just like traditional hard IRQ handlers, we expect SDIO
* IRQ handlers to be quick and to the point, so that the
* holding of the host lock does not cover too much work
* that doesn't require that lock to be held.
*/
ret = __mmc_claim_host(host, &host->sdio_irq_thread_abort);
if (ret)
break;
ret = process_sdio_pending_irqs(host);
host->sdio_irq_pending = false;
mmc_release_host(host);
/*
* Give other threads a chance to run in the presence of
* errors.
*/
if (ret < 0) {
set_current_state(TASK_INTERRUPTIBLE);
if (!kthread_should_stop())
schedule_timeout(HZ);
set_current_state(TASK_RUNNING);
}
/*
* Adaptive polling frequency based on the assumption
* that an interrupt will be closely followed by more.
* This has a substantial benefit for network devices.
*/
if (!(host->caps & MMC_CAP_SDIO_IRQ)) {
if (ret > 0)
period /= 2;
else {
period++;
if (period > idle_period)
period = idle_period;
}
}
set_current_state(TASK_INTERRUPTIBLE);
if (host->caps & MMC_CAP_SDIO_IRQ)
host->ops->enable_sdio_irq(host, 1);
if (!kthread_should_stop())
schedule_timeout(period);
set_current_state(TASK_RUNNING);
} while (!kthread_should_stop());
if (host->caps & MMC_CAP_SDIO_IRQ)
host->ops->enable_sdio_irq(host, 0);
pr_debug("%s: IRQ thread exiting with code %d\n",
mmc_hostname(host), ret);
return ret;
}
static int sdio_card_irq_get(struct mmc_card *card)
{
struct mmc_host *host = card->host;
WARN_ON(!host->claimed);
if (!host->sdio_irqs++) {
if (!(host->caps2 & MMC_CAP2_SDIO_IRQ_NOTHREAD)) {
atomic_set(&host->sdio_irq_thread_abort, 0);
host->sdio_irq_thread =
kthread_run(sdio_irq_thread, host,
"ksdioirqd/%s", mmc_hostname(host));
if (IS_ERR(host->sdio_irq_thread)) {
int err = PTR_ERR(host->sdio_irq_thread);
host->sdio_irqs--;
return err;
}
} else if (host->caps & MMC_CAP_SDIO_IRQ) {
host->ops->enable_sdio_irq(host, 1);
}
}
return 0;
}
static int sdio_card_irq_put(struct mmc_card *card)
{
struct mmc_host *host = card->host;
WARN_ON(!host->claimed);
if (host->sdio_irqs < 1)
return -EINVAL;
if (!--host->sdio_irqs) {
if (!(host->caps2 & MMC_CAP2_SDIO_IRQ_NOTHREAD)) {
atomic_set(&host->sdio_irq_thread_abort, 1);
kthread_stop(host->sdio_irq_thread);
} else if (host->caps & MMC_CAP_SDIO_IRQ) {
host->ops->enable_sdio_irq(host, 0);
}
}
return 0;
}
/* If there is only 1 function registered set sdio_single_irq */
static void sdio_single_irq_set(struct mmc_card *card)
{
struct sdio_func *func;
int i;
card->sdio_single_irq = NULL;
if ((card->host->caps & MMC_CAP_SDIO_IRQ) &&
card->host->sdio_irqs == 1)
for (i = 0; i < card->sdio_funcs; i++) {
func = card->sdio_func[i];
if (func && func->irq_handler) {
card->sdio_single_irq = func;
break;
}
}
}
/**
* sdio_claim_irq - claim the IRQ for a SDIO function
* @func: SDIO function
* @handler: IRQ handler callback
*
* Claim and activate the IRQ for the given SDIO function. The provided
* handler will be called when that IRQ is asserted. The host is always
* claimed already when the handler is called so the handler must not
* call sdio_claim_host() nor sdio_release_host().
*/
int sdio_claim_irq(struct sdio_func *func, sdio_irq_handler_t *handler)
{
int ret;
unsigned char reg;
if (!func)
return -EINVAL;
pr_debug("SDIO: Enabling IRQ for %s...\n", sdio_func_id(func));
if (func->irq_handler) {
pr_debug("SDIO: IRQ for %s already in use.\n", sdio_func_id(func));
return -EBUSY;
}
ret = mmc_io_rw_direct(func->card, 0, 0, SDIO_CCCR_IENx, 0, &reg);
if (ret)
return ret;
reg |= 1 << func->num;
reg |= 1; /* Master interrupt enable */
ret = mmc_io_rw_direct(func->card, 1, 0, SDIO_CCCR_IENx, reg, NULL);
if (ret)
return ret;
func->irq_handler = handler;
ret = sdio_card_irq_get(func->card);
if (ret)
func->irq_handler = NULL;
sdio_single_irq_set(func->card);
return ret;
}
EXPORT_SYMBOL_GPL(sdio_claim_irq);
/**
* sdio_release_irq - release the IRQ for a SDIO function
* @func: SDIO function
*
* Disable and release the IRQ for the given SDIO function.
*/
int sdio_release_irq(struct sdio_func *func)
{
int ret;
unsigned char reg;
if (!func)
return -EINVAL;
pr_debug("SDIO: Disabling IRQ for %s...\n", sdio_func_id(func));
if (func->irq_handler) {
func->irq_handler = NULL;
sdio_card_irq_put(func->card);
sdio_single_irq_set(func->card);
}
ret = mmc_io_rw_direct(func->card, 0, 0, SDIO_CCCR_IENx, 0, &reg);
if (ret)
return ret;
reg &= ~(1 << func->num);
/* Disable master interrupt with the last function interrupt */
if (!(reg & 0xFE))
reg = 0;
ret = mmc_io_rw_direct(func->card, 1, 0, SDIO_CCCR_IENx, reg, NULL);
if (ret)
return ret;
return 0;
}
EXPORT_SYMBOL_GPL(sdio_release_irq);