mirror of
https://github.com/torvalds/linux.git
synced 2024-11-11 06:31:49 +00:00
fd811b6293
Merge series from Li Zetao <lizetao1@huawei.com>:
Commit 7ef9651e97
("clk: Provide new devm_clk helpers for prepared
and enabled clocks") provides a new helper function for prepared and
enabled clocks when a driver keeps a clock prepared (or enabled) during
the whole lifetime of the driver. So where drivers get clocks and enable
them immediately, it can be combined into a single function
devm_clk_get_*(). Moreover, the unprepare and disable function
has been registered to devm_clk_state, and before devm_clk_state is
released, the clocks will be unprepareed and disable, so it is unnecessary
to unprepare and disable clocks explicitly when remove drivers or in the
error handling path.
1492 lines
40 KiB
C
1492 lines
40 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
//
|
|
// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
|
|
//
|
|
// Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
|
|
//
|
|
// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
|
|
//
|
|
// Copyright (C) 2020 MediaTek Inc.
|
|
// Author: Weijie Gao <weijie.gao@mediatek.com>
|
|
//
|
|
// This controller organize the page data as several interleaved sectors
|
|
// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
|
|
// +---------+------+------+---------+------+------+-----+
|
|
// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
|
|
// +---------+------+------+---------+------+------+-----+
|
|
// With auto-format turned on, DMA only returns this part:
|
|
// +---------+---------+-----+
|
|
// | Sector1 | Sector2 | ... |
|
|
// +---------+---------+-----+
|
|
// The FDM data will be filled to the registers, and ECC parity data isn't
|
|
// accessible.
|
|
// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
|
|
// in it's original order shown in the first table. ECC can't be turned on when
|
|
// auto-format is off.
|
|
//
|
|
// However, Linux SPI-NAND driver expects the data returned as:
|
|
// +------+-----+
|
|
// | Page | OOB |
|
|
// +------+-----+
|
|
// where the page data is continuously stored instead of interleaved.
|
|
// So we assume all instructions matching the page_op template between ECC
|
|
// prepare_io_req and finish_io_req are for page cache r/w.
|
|
// Here's how this spi-mem driver operates when reading:
|
|
// 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
|
|
// 2. Perform page ops and let the controller fill the DMA bounce buffer with
|
|
// de-interleaved sector data and set FDM registers.
|
|
// 3. Return the data as:
|
|
// +---------+---------+-----+------+------+-----+
|
|
// | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
|
|
// +---------+---------+-----+------+------+-----+
|
|
// 4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
|
|
// read the data with auto-format off into the bounce buffer and copy
|
|
// needed data to the buffer specified in the request.
|
|
//
|
|
// Write requests operates in a similar manner.
|
|
// As a limitation of this strategy, we won't be able to access any ECC parity
|
|
// data at all in Linux.
|
|
//
|
|
// Here's the bad block mark situation on MTK chips:
|
|
// In older chips like mt7622, MTK uses the first FDM byte in the first sector
|
|
// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
|
|
// in the returned data, which is the BBM position expected by kernel. However,
|
|
// the conventional bad block mark is the first byte of the OOB, which is part
|
|
// of the last sector data in the interleaved layout. Instead of fixing their
|
|
// hardware, MTK decided to address this inconsistency in software. On these
|
|
// later chips, the BootROM expects the following:
|
|
// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
|
|
// (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
|
|
// 2. The original byte stored at that position in the DMA buffer will be stored
|
|
// as the first byte of the FDM section in the last sector.
|
|
// We can't disagree with the BootROM, so after de-interleaving, we need to
|
|
// perform the following swaps in read:
|
|
// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
|
|
// which is the expected BBM position by kernel.
|
|
// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
|
|
// [page_size - (nsectors - 1) * spare_size]
|
|
// Similarly, when writing, we need to perform swaps in the other direction.
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/device.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/mtd/nand-ecc-mtk.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/spi-mem.h>
|
|
#include <linux/mtd/nand.h>
|
|
|
|
// NFI registers
|
|
#define NFI_CNFG 0x000
|
|
#define CNFG_OP_MODE_S 12
|
|
#define CNFG_OP_MODE_CUST 6
|
|
#define CNFG_OP_MODE_PROGRAM 3
|
|
#define CNFG_AUTO_FMT_EN BIT(9)
|
|
#define CNFG_HW_ECC_EN BIT(8)
|
|
#define CNFG_DMA_BURST_EN BIT(2)
|
|
#define CNFG_READ_MODE BIT(1)
|
|
#define CNFG_DMA_MODE BIT(0)
|
|
|
|
#define NFI_PAGEFMT 0x0004
|
|
#define NFI_SPARE_SIZE_LS_S 16
|
|
#define NFI_FDM_ECC_NUM_S 12
|
|
#define NFI_FDM_NUM_S 8
|
|
#define NFI_SPARE_SIZE_S 4
|
|
#define NFI_SEC_SEL_512 BIT(2)
|
|
#define NFI_PAGE_SIZE_S 0
|
|
#define NFI_PAGE_SIZE_512_2K 0
|
|
#define NFI_PAGE_SIZE_2K_4K 1
|
|
#define NFI_PAGE_SIZE_4K_8K 2
|
|
#define NFI_PAGE_SIZE_8K_16K 3
|
|
|
|
#define NFI_CON 0x008
|
|
#define CON_SEC_NUM_S 12
|
|
#define CON_BWR BIT(9)
|
|
#define CON_BRD BIT(8)
|
|
#define CON_NFI_RST BIT(1)
|
|
#define CON_FIFO_FLUSH BIT(0)
|
|
|
|
#define NFI_INTR_EN 0x010
|
|
#define NFI_INTR_STA 0x014
|
|
#define NFI_IRQ_INTR_EN BIT(31)
|
|
#define NFI_IRQ_CUS_READ BIT(8)
|
|
#define NFI_IRQ_CUS_PG BIT(7)
|
|
|
|
#define NFI_CMD 0x020
|
|
#define NFI_CMD_DUMMY_READ 0x00
|
|
#define NFI_CMD_DUMMY_WRITE 0x80
|
|
|
|
#define NFI_STRDATA 0x040
|
|
#define STR_DATA BIT(0)
|
|
|
|
#define NFI_STA 0x060
|
|
#define NFI_NAND_FSM_7622 GENMASK(28, 24)
|
|
#define NFI_NAND_FSM_7986 GENMASK(29, 23)
|
|
#define NFI_FSM GENMASK(19, 16)
|
|
#define READ_EMPTY BIT(12)
|
|
|
|
#define NFI_FIFOSTA 0x064
|
|
#define FIFO_WR_REMAIN_S 8
|
|
#define FIFO_RD_REMAIN_S 0
|
|
|
|
#define NFI_ADDRCNTR 0x070
|
|
#define SEC_CNTR GENMASK(16, 12)
|
|
#define SEC_CNTR_S 12
|
|
#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
|
|
|
|
#define NFI_STRADDR 0x080
|
|
|
|
#define NFI_BYTELEN 0x084
|
|
#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
|
|
|
|
#define NFI_FDM0L 0x0a0
|
|
#define NFI_FDM0M 0x0a4
|
|
#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
|
|
#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
|
|
|
|
#define NFI_DEBUG_CON1 0x220
|
|
#define WBUF_EN BIT(2)
|
|
|
|
#define NFI_MASTERSTA 0x224
|
|
#define MAS_ADDR GENMASK(11, 9)
|
|
#define MAS_RD GENMASK(8, 6)
|
|
#define MAS_WR GENMASK(5, 3)
|
|
#define MAS_RDDLY GENMASK(2, 0)
|
|
#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
|
|
#define NFI_MASTERSTA_MASK_7986 3
|
|
|
|
// SNFI registers
|
|
#define SNF_MAC_CTL 0x500
|
|
#define MAC_XIO_SEL BIT(4)
|
|
#define SF_MAC_EN BIT(3)
|
|
#define SF_TRIG BIT(2)
|
|
#define WIP_READY BIT(1)
|
|
#define WIP BIT(0)
|
|
|
|
#define SNF_MAC_OUTL 0x504
|
|
#define SNF_MAC_INL 0x508
|
|
|
|
#define SNF_RD_CTL2 0x510
|
|
#define DATA_READ_DUMMY_S 8
|
|
#define DATA_READ_MAX_DUMMY 0xf
|
|
#define DATA_READ_CMD_S 0
|
|
|
|
#define SNF_RD_CTL3 0x514
|
|
|
|
#define SNF_PG_CTL1 0x524
|
|
#define PG_LOAD_CMD_S 8
|
|
|
|
#define SNF_PG_CTL2 0x528
|
|
|
|
#define SNF_MISC_CTL 0x538
|
|
#define SW_RST BIT(28)
|
|
#define FIFO_RD_LTC_S 25
|
|
#define PG_LOAD_X4_EN BIT(20)
|
|
#define DATA_READ_MODE_S 16
|
|
#define DATA_READ_MODE GENMASK(18, 16)
|
|
#define DATA_READ_MODE_X1 0
|
|
#define DATA_READ_MODE_X2 1
|
|
#define DATA_READ_MODE_X4 2
|
|
#define DATA_READ_MODE_DUAL 5
|
|
#define DATA_READ_MODE_QUAD 6
|
|
#define DATA_READ_LATCH_LAT GENMASK(9, 8)
|
|
#define DATA_READ_LATCH_LAT_S 8
|
|
#define PG_LOAD_CUSTOM_EN BIT(7)
|
|
#define DATARD_CUSTOM_EN BIT(6)
|
|
#define CS_DESELECT_CYC_S 0
|
|
|
|
#define SNF_MISC_CTL2 0x53c
|
|
#define PROGRAM_LOAD_BYTE_NUM_S 16
|
|
#define READ_DATA_BYTE_NUM_S 11
|
|
|
|
#define SNF_DLY_CTL3 0x548
|
|
#define SFCK_SAM_DLY_S 0
|
|
#define SFCK_SAM_DLY GENMASK(5, 0)
|
|
#define SFCK_SAM_DLY_TOTAL 9
|
|
#define SFCK_SAM_DLY_RANGE 47
|
|
|
|
#define SNF_STA_CTL1 0x550
|
|
#define CUS_PG_DONE BIT(28)
|
|
#define CUS_READ_DONE BIT(27)
|
|
#define SPI_STATE_S 0
|
|
#define SPI_STATE GENMASK(3, 0)
|
|
|
|
#define SNF_CFG 0x55c
|
|
#define SPI_MODE BIT(0)
|
|
|
|
#define SNF_GPRAM 0x800
|
|
#define SNF_GPRAM_SIZE 0xa0
|
|
|
|
#define SNFI_POLL_INTERVAL 1000000
|
|
|
|
static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
|
|
|
|
static const u8 mt7986_spare_sizes[] = {
|
|
16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
|
|
74
|
|
};
|
|
|
|
struct mtk_snand_caps {
|
|
u16 sector_size;
|
|
u16 max_sectors;
|
|
u16 fdm_size;
|
|
u16 fdm_ecc_size;
|
|
u16 fifo_size;
|
|
|
|
bool bbm_swap;
|
|
bool empty_page_check;
|
|
u32 mastersta_mask;
|
|
u32 nandfsm_mask;
|
|
|
|
const u8 *spare_sizes;
|
|
u32 num_spare_size;
|
|
};
|
|
|
|
static const struct mtk_snand_caps mt7622_snand_caps = {
|
|
.sector_size = 512,
|
|
.max_sectors = 8,
|
|
.fdm_size = 8,
|
|
.fdm_ecc_size = 1,
|
|
.fifo_size = 32,
|
|
.bbm_swap = false,
|
|
.empty_page_check = false,
|
|
.mastersta_mask = NFI_MASTERSTA_MASK_7622,
|
|
.nandfsm_mask = NFI_NAND_FSM_7622,
|
|
.spare_sizes = mt7622_spare_sizes,
|
|
.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
|
|
};
|
|
|
|
static const struct mtk_snand_caps mt7629_snand_caps = {
|
|
.sector_size = 512,
|
|
.max_sectors = 8,
|
|
.fdm_size = 8,
|
|
.fdm_ecc_size = 1,
|
|
.fifo_size = 32,
|
|
.bbm_swap = true,
|
|
.empty_page_check = false,
|
|
.mastersta_mask = NFI_MASTERSTA_MASK_7622,
|
|
.nandfsm_mask = NFI_NAND_FSM_7622,
|
|
.spare_sizes = mt7622_spare_sizes,
|
|
.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
|
|
};
|
|
|
|
static const struct mtk_snand_caps mt7986_snand_caps = {
|
|
.sector_size = 1024,
|
|
.max_sectors = 8,
|
|
.fdm_size = 8,
|
|
.fdm_ecc_size = 1,
|
|
.fifo_size = 64,
|
|
.bbm_swap = true,
|
|
.empty_page_check = true,
|
|
.mastersta_mask = NFI_MASTERSTA_MASK_7986,
|
|
.nandfsm_mask = NFI_NAND_FSM_7986,
|
|
.spare_sizes = mt7986_spare_sizes,
|
|
.num_spare_size = ARRAY_SIZE(mt7986_spare_sizes)
|
|
};
|
|
|
|
struct mtk_snand_conf {
|
|
size_t page_size;
|
|
size_t oob_size;
|
|
u8 nsectors;
|
|
u8 spare_size;
|
|
};
|
|
|
|
struct mtk_snand {
|
|
struct spi_controller *ctlr;
|
|
struct device *dev;
|
|
struct clk *nfi_clk;
|
|
struct clk *pad_clk;
|
|
struct clk *nfi_hclk;
|
|
void __iomem *nfi_base;
|
|
int irq;
|
|
struct completion op_done;
|
|
const struct mtk_snand_caps *caps;
|
|
struct mtk_ecc_config *ecc_cfg;
|
|
struct mtk_ecc *ecc;
|
|
struct mtk_snand_conf nfi_cfg;
|
|
struct mtk_ecc_stats ecc_stats;
|
|
struct nand_ecc_engine ecc_eng;
|
|
bool autofmt;
|
|
u8 *buf;
|
|
size_t buf_len;
|
|
};
|
|
|
|
static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
|
|
{
|
|
struct nand_ecc_engine *eng = nand->ecc.engine;
|
|
|
|
return container_of(eng, struct mtk_snand, ecc_eng);
|
|
}
|
|
|
|
static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
|
|
{
|
|
if (snf->buf_len >= size)
|
|
return 0;
|
|
kfree(snf->buf);
|
|
snf->buf = kmalloc(size, GFP_KERNEL);
|
|
if (!snf->buf)
|
|
return -ENOMEM;
|
|
snf->buf_len = size;
|
|
memset(snf->buf, 0xff, snf->buf_len);
|
|
return 0;
|
|
}
|
|
|
|
static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
|
|
{
|
|
return readl(snf->nfi_base + reg);
|
|
}
|
|
|
|
static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
|
|
{
|
|
writel(val, snf->nfi_base + reg);
|
|
}
|
|
|
|
static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
|
|
{
|
|
writew(val, snf->nfi_base + reg);
|
|
}
|
|
|
|
static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
|
|
{
|
|
u32 val;
|
|
|
|
val = readl(snf->nfi_base + reg);
|
|
val &= ~clr;
|
|
val |= set;
|
|
writel(val, snf->nfi_base + reg);
|
|
}
|
|
|
|
static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
|
|
{
|
|
u32 i, val = 0, es = sizeof(u32);
|
|
|
|
for (i = reg; i < reg + len; i++) {
|
|
if (i == reg || i % es == 0)
|
|
val = nfi_read32(snf, i & ~(es - 1));
|
|
|
|
*data++ = (u8)(val >> (8 * (i % es)));
|
|
}
|
|
}
|
|
|
|
static int mtk_nfi_reset(struct mtk_snand *snf)
|
|
{
|
|
u32 val, fifo_mask;
|
|
int ret;
|
|
|
|
nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
|
|
|
|
ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
|
|
!(val & snf->caps->mastersta_mask), 0,
|
|
SNFI_POLL_INTERVAL);
|
|
if (ret) {
|
|
dev_err(snf->dev, "NFI master is still busy after reset\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
|
|
!(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0,
|
|
SNFI_POLL_INTERVAL);
|
|
if (ret) {
|
|
dev_err(snf->dev, "Failed to reset NFI\n");
|
|
return ret;
|
|
}
|
|
|
|
fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
|
|
((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
|
|
ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
|
|
!(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
|
|
if (ret) {
|
|
dev_err(snf->dev, "NFI FIFOs are not empty\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_snand_mac_reset(struct mtk_snand *snf)
|
|
{
|
|
int ret;
|
|
u32 val;
|
|
|
|
nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
|
|
|
|
ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
|
|
!(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
|
|
if (ret)
|
|
dev_err(snf->dev, "Failed to reset SNFI MAC\n");
|
|
|
|
nfi_write32(snf, SNF_MISC_CTL,
|
|
(2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
|
|
{
|
|
int ret;
|
|
u32 val;
|
|
|
|
nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
|
|
nfi_write32(snf, SNF_MAC_OUTL, outlen);
|
|
nfi_write32(snf, SNF_MAC_INL, inlen);
|
|
|
|
nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
|
|
|
|
ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
|
|
val & WIP_READY, 0, SNFI_POLL_INTERVAL);
|
|
if (ret) {
|
|
dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
|
|
0, SNFI_POLL_INTERVAL);
|
|
if (ret)
|
|
dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
|
|
|
|
cleanup:
|
|
nfi_write32(snf, SNF_MAC_CTL, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
|
|
{
|
|
u32 rx_len = 0;
|
|
u32 reg_offs = 0;
|
|
u32 val = 0;
|
|
const u8 *tx_buf = NULL;
|
|
u8 *rx_buf = NULL;
|
|
int i, ret;
|
|
u8 b;
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_IN) {
|
|
rx_len = op->data.nbytes;
|
|
rx_buf = op->data.buf.in;
|
|
} else {
|
|
tx_buf = op->data.buf.out;
|
|
}
|
|
|
|
mtk_snand_mac_reset(snf);
|
|
|
|
for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
|
|
b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
|
|
val |= b << (8 * (reg_offs % 4));
|
|
if (reg_offs % 4 == 3) {
|
|
nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
|
|
val = 0;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
|
|
b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
|
|
val |= b << (8 * (reg_offs % 4));
|
|
if (reg_offs % 4 == 3) {
|
|
nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
|
|
val = 0;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
|
|
if (reg_offs % 4 == 3) {
|
|
nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
|
|
val = 0;
|
|
}
|
|
}
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_OUT) {
|
|
for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
|
|
val |= tx_buf[i] << (8 * (reg_offs % 4));
|
|
if (reg_offs % 4 == 3) {
|
|
nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
|
|
val = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (reg_offs % 4)
|
|
nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
|
|
|
|
for (i = 0; i < reg_offs; i += 4)
|
|
dev_dbg(snf->dev, "%d: %08X", i,
|
|
nfi_read32(snf, SNF_GPRAM + i));
|
|
|
|
dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
|
|
|
|
ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!rx_len)
|
|
return 0;
|
|
|
|
nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
|
|
u32 oob_size)
|
|
{
|
|
int spare_idx = -1;
|
|
u32 spare_size, spare_size_shift, pagesize_idx;
|
|
u32 sector_size_512;
|
|
u8 nsectors;
|
|
int i;
|
|
|
|
// skip if it's already configured as required.
|
|
if (snf->nfi_cfg.page_size == page_size &&
|
|
snf->nfi_cfg.oob_size == oob_size)
|
|
return 0;
|
|
|
|
nsectors = page_size / snf->caps->sector_size;
|
|
if (nsectors > snf->caps->max_sectors) {
|
|
dev_err(snf->dev, "too many sectors required.\n");
|
|
goto err;
|
|
}
|
|
|
|
if (snf->caps->sector_size == 512) {
|
|
sector_size_512 = NFI_SEC_SEL_512;
|
|
spare_size_shift = NFI_SPARE_SIZE_S;
|
|
} else {
|
|
sector_size_512 = 0;
|
|
spare_size_shift = NFI_SPARE_SIZE_LS_S;
|
|
}
|
|
|
|
switch (page_size) {
|
|
case SZ_512:
|
|
pagesize_idx = NFI_PAGE_SIZE_512_2K;
|
|
break;
|
|
case SZ_2K:
|
|
if (snf->caps->sector_size == 512)
|
|
pagesize_idx = NFI_PAGE_SIZE_2K_4K;
|
|
else
|
|
pagesize_idx = NFI_PAGE_SIZE_512_2K;
|
|
break;
|
|
case SZ_4K:
|
|
if (snf->caps->sector_size == 512)
|
|
pagesize_idx = NFI_PAGE_SIZE_4K_8K;
|
|
else
|
|
pagesize_idx = NFI_PAGE_SIZE_2K_4K;
|
|
break;
|
|
case SZ_8K:
|
|
if (snf->caps->sector_size == 512)
|
|
pagesize_idx = NFI_PAGE_SIZE_8K_16K;
|
|
else
|
|
pagesize_idx = NFI_PAGE_SIZE_4K_8K;
|
|
break;
|
|
case SZ_16K:
|
|
pagesize_idx = NFI_PAGE_SIZE_8K_16K;
|
|
break;
|
|
default:
|
|
dev_err(snf->dev, "unsupported page size.\n");
|
|
goto err;
|
|
}
|
|
|
|
spare_size = oob_size / nsectors;
|
|
// If we're using the 1KB sector size, HW will automatically double the
|
|
// spare size. We should only use half of the value in this case.
|
|
if (snf->caps->sector_size == 1024)
|
|
spare_size /= 2;
|
|
|
|
for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
|
|
if (snf->caps->spare_sizes[i] <= spare_size) {
|
|
spare_size = snf->caps->spare_sizes[i];
|
|
if (snf->caps->sector_size == 1024)
|
|
spare_size *= 2;
|
|
spare_idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (spare_idx < 0) {
|
|
dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
|
|
goto err;
|
|
}
|
|
|
|
nfi_write32(snf, NFI_PAGEFMT,
|
|
(snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
|
|
(snf->caps->fdm_size << NFI_FDM_NUM_S) |
|
|
(spare_idx << spare_size_shift) |
|
|
(pagesize_idx << NFI_PAGE_SIZE_S) |
|
|
sector_size_512);
|
|
|
|
snf->nfi_cfg.page_size = page_size;
|
|
snf->nfi_cfg.oob_size = oob_size;
|
|
snf->nfi_cfg.nsectors = nsectors;
|
|
snf->nfi_cfg.spare_size = spare_size;
|
|
|
|
dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
|
|
snf->caps->sector_size, spare_size, nsectors);
|
|
return snand_prepare_bouncebuf(snf, page_size + oob_size);
|
|
err:
|
|
dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
|
|
oob_size);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobecc)
|
|
{
|
|
// ECC area is not accessible
|
|
return -ERANGE;
|
|
}
|
|
|
|
static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobfree)
|
|
{
|
|
struct nand_device *nand = mtd_to_nanddev(mtd);
|
|
struct mtk_snand *ms = nand_to_mtk_snand(nand);
|
|
|
|
if (section >= ms->nfi_cfg.nsectors)
|
|
return -ERANGE;
|
|
|
|
oobfree->length = ms->caps->fdm_size - 1;
|
|
oobfree->offset = section * ms->caps->fdm_size + 1;
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
|
|
.ecc = mtk_snand_ooblayout_ecc,
|
|
.free = mtk_snand_ooblayout_free,
|
|
};
|
|
|
|
static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
|
|
{
|
|
struct mtk_snand *snf = nand_to_mtk_snand(nand);
|
|
struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
|
|
struct nand_ecc_props *reqs = &nand->ecc.requirements;
|
|
struct nand_ecc_props *user = &nand->ecc.user_conf;
|
|
struct mtd_info *mtd = nanddev_to_mtd(nand);
|
|
int step_size = 0, strength = 0, desired_correction = 0, steps;
|
|
bool ecc_user = false;
|
|
int ret;
|
|
u32 parity_bits, max_ecc_bytes;
|
|
struct mtk_ecc_config *ecc_cfg;
|
|
|
|
ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
|
|
nand->memorg.oobsize);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
|
|
if (!ecc_cfg)
|
|
return -ENOMEM;
|
|
|
|
nand->ecc.ctx.priv = ecc_cfg;
|
|
|
|
if (user->step_size && user->strength) {
|
|
step_size = user->step_size;
|
|
strength = user->strength;
|
|
ecc_user = true;
|
|
} else if (reqs->step_size && reqs->strength) {
|
|
step_size = reqs->step_size;
|
|
strength = reqs->strength;
|
|
}
|
|
|
|
if (step_size && strength) {
|
|
steps = mtd->writesize / step_size;
|
|
desired_correction = steps * strength;
|
|
strength = desired_correction / snf->nfi_cfg.nsectors;
|
|
}
|
|
|
|
ecc_cfg->mode = ECC_NFI_MODE;
|
|
ecc_cfg->sectors = snf->nfi_cfg.nsectors;
|
|
ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
|
|
|
|
// calculate the max possible strength under current page format
|
|
parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
|
|
max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
|
|
ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
|
|
mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
|
|
|
|
// if there's a user requested strength, find the minimum strength that
|
|
// meets the requirement. Otherwise use the maximum strength which is
|
|
// expected by BootROM.
|
|
if (ecc_user && strength) {
|
|
u32 s_next = ecc_cfg->strength - 1;
|
|
|
|
while (1) {
|
|
mtk_ecc_adjust_strength(snf->ecc, &s_next);
|
|
if (s_next >= ecc_cfg->strength)
|
|
break;
|
|
if (s_next < strength)
|
|
break;
|
|
s_next = ecc_cfg->strength - 1;
|
|
}
|
|
}
|
|
|
|
mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
|
|
|
|
conf->step_size = snf->caps->sector_size;
|
|
conf->strength = ecc_cfg->strength;
|
|
|
|
if (ecc_cfg->strength < strength)
|
|
dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
|
|
strength);
|
|
dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
|
|
ecc_cfg->strength, snf->caps->sector_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
|
|
{
|
|
struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
|
|
|
|
kfree(ecc_cfg);
|
|
}
|
|
|
|
static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
|
|
struct nand_page_io_req *req)
|
|
{
|
|
struct mtk_snand *snf = nand_to_mtk_snand(nand);
|
|
struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
|
|
int ret;
|
|
|
|
ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
|
|
nand->memorg.oobsize);
|
|
if (ret)
|
|
return ret;
|
|
snf->autofmt = true;
|
|
snf->ecc_cfg = ecc_cfg;
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
|
|
struct nand_page_io_req *req)
|
|
{
|
|
struct mtk_snand *snf = nand_to_mtk_snand(nand);
|
|
struct mtd_info *mtd = nanddev_to_mtd(nand);
|
|
|
|
snf->ecc_cfg = NULL;
|
|
snf->autofmt = false;
|
|
if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
|
|
return 0;
|
|
|
|
if (snf->ecc_stats.failed)
|
|
mtd->ecc_stats.failed += snf->ecc_stats.failed;
|
|
mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
|
|
return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
|
|
}
|
|
|
|
static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
|
|
.init_ctx = mtk_snand_ecc_init_ctx,
|
|
.cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
|
|
.prepare_io_req = mtk_snand_ecc_prepare_io_req,
|
|
.finish_io_req = mtk_snand_ecc_finish_io_req,
|
|
};
|
|
|
|
static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
|
|
{
|
|
u32 vall, valm;
|
|
u8 *oobptr = buf;
|
|
int i, j;
|
|
|
|
for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
|
|
vall = nfi_read32(snf, NFI_FDML(i));
|
|
valm = nfi_read32(snf, NFI_FDMM(i));
|
|
|
|
for (j = 0; j < snf->caps->fdm_size; j++)
|
|
oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
|
|
|
|
oobptr += snf->caps->fdm_size;
|
|
}
|
|
}
|
|
|
|
static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
|
|
{
|
|
u32 fdm_size = snf->caps->fdm_size;
|
|
const u8 *oobptr = buf;
|
|
u32 vall, valm;
|
|
int i, j;
|
|
|
|
for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
|
|
vall = 0;
|
|
valm = 0;
|
|
|
|
for (j = 0; j < 8; j++) {
|
|
if (j < 4)
|
|
vall |= (j < fdm_size ? oobptr[j] : 0xff)
|
|
<< (j * 8);
|
|
else
|
|
valm |= (j < fdm_size ? oobptr[j] : 0xff)
|
|
<< ((j - 4) * 8);
|
|
}
|
|
|
|
nfi_write32(snf, NFI_FDML(i), vall);
|
|
nfi_write32(snf, NFI_FDMM(i), valm);
|
|
|
|
oobptr += fdm_size;
|
|
}
|
|
}
|
|
|
|
static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
|
|
{
|
|
u32 buf_bbm_pos, fdm_bbm_pos;
|
|
|
|
if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
|
|
return;
|
|
|
|
// swap [pagesize] byte on nand with the first fdm byte
|
|
// in the last sector.
|
|
buf_bbm_pos = snf->nfi_cfg.page_size -
|
|
(snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
|
|
fdm_bbm_pos = snf->nfi_cfg.page_size +
|
|
(snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
|
|
|
|
swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
|
|
}
|
|
|
|
static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
|
|
{
|
|
u32 fdm_bbm_pos1, fdm_bbm_pos2;
|
|
|
|
if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
|
|
return;
|
|
|
|
// swap the first fdm byte in the first and the last sector.
|
|
fdm_bbm_pos1 = snf->nfi_cfg.page_size;
|
|
fdm_bbm_pos2 = snf->nfi_cfg.page_size +
|
|
(snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
|
|
swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
|
|
}
|
|
|
|
static int mtk_snand_read_page_cache(struct mtk_snand *snf,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
u8 *buf = snf->buf;
|
|
u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
|
|
// the address part to be sent by the controller
|
|
u32 op_addr = op->addr.val;
|
|
// where to start copying data from bounce buffer
|
|
u32 rd_offset = 0;
|
|
u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
|
|
u32 op_mode = 0;
|
|
u32 dma_len = snf->buf_len;
|
|
int ret = 0;
|
|
u32 rd_mode, rd_bytes, val;
|
|
dma_addr_t buf_dma;
|
|
|
|
if (snf->autofmt) {
|
|
u32 last_bit;
|
|
u32 mask;
|
|
|
|
dma_len = snf->nfi_cfg.page_size;
|
|
op_mode = CNFG_AUTO_FMT_EN;
|
|
if (op->data.ecc)
|
|
op_mode |= CNFG_HW_ECC_EN;
|
|
// extract the plane bit:
|
|
// Find the highest bit set in (pagesize+oobsize).
|
|
// Bits higher than that in op->addr are kept and sent over SPI
|
|
// Lower bits are used as an offset for copying data from DMA
|
|
// bounce buffer.
|
|
last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
|
|
mask = (1 << last_bit) - 1;
|
|
rd_offset = op_addr & mask;
|
|
op_addr &= ~mask;
|
|
|
|
// check if we can dma to the caller memory
|
|
if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
|
|
buf = op->data.buf.in;
|
|
}
|
|
mtk_snand_mac_reset(snf);
|
|
mtk_nfi_reset(snf);
|
|
|
|
// command and dummy cycles
|
|
nfi_write32(snf, SNF_RD_CTL2,
|
|
(dummy_clk << DATA_READ_DUMMY_S) |
|
|
(op->cmd.opcode << DATA_READ_CMD_S));
|
|
|
|
// read address
|
|
nfi_write32(snf, SNF_RD_CTL3, op_addr);
|
|
|
|
// Set read op_mode
|
|
if (op->data.buswidth == 4)
|
|
rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
|
|
DATA_READ_MODE_X4;
|
|
else if (op->data.buswidth == 2)
|
|
rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
|
|
DATA_READ_MODE_X2;
|
|
else
|
|
rd_mode = DATA_READ_MODE_X1;
|
|
rd_mode <<= DATA_READ_MODE_S;
|
|
nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
|
|
rd_mode | DATARD_CUSTOM_EN);
|
|
|
|
// Set bytes to read
|
|
rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
|
|
snf->nfi_cfg.nsectors;
|
|
nfi_write32(snf, SNF_MISC_CTL2,
|
|
(rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
|
|
|
|
// NFI read prepare
|
|
nfi_write16(snf, NFI_CNFG,
|
|
(CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
|
|
CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
|
|
|
|
nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
|
|
|
|
buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
|
|
ret = dma_mapping_error(snf->dev, buf_dma);
|
|
if (ret) {
|
|
dev_err(snf->dev, "DMA mapping failed.\n");
|
|
goto cleanup;
|
|
}
|
|
nfi_write32(snf, NFI_STRADDR, buf_dma);
|
|
if (op->data.ecc) {
|
|
snf->ecc_cfg->op = ECC_DECODE;
|
|
ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
|
|
if (ret)
|
|
goto cleanup_dma;
|
|
}
|
|
// Prepare for custom read interrupt
|
|
nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
|
|
reinit_completion(&snf->op_done);
|
|
|
|
// Trigger NFI into custom mode
|
|
nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
|
|
|
|
// Start DMA read
|
|
nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
|
|
nfi_write16(snf, NFI_STRDATA, STR_DATA);
|
|
|
|
if (!wait_for_completion_timeout(
|
|
&snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
|
|
dev_err(snf->dev, "DMA timed out for reading from cache.\n");
|
|
ret = -ETIMEDOUT;
|
|
goto cleanup;
|
|
}
|
|
|
|
// Wait for BUS_SEC_CNTR returning expected value
|
|
ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
|
|
BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
|
|
SNFI_POLL_INTERVAL);
|
|
if (ret) {
|
|
dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
|
|
goto cleanup2;
|
|
}
|
|
|
|
// Wait for bus becoming idle
|
|
ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
|
|
!(val & snf->caps->mastersta_mask), 0,
|
|
SNFI_POLL_INTERVAL);
|
|
if (ret) {
|
|
dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
|
|
goto cleanup2;
|
|
}
|
|
|
|
if (op->data.ecc) {
|
|
ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
|
|
if (ret) {
|
|
dev_err(snf->dev, "wait ecc done timeout\n");
|
|
goto cleanup2;
|
|
}
|
|
// save status before disabling ecc
|
|
mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
|
|
snf->nfi_cfg.nsectors);
|
|
}
|
|
|
|
dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
|
|
|
|
if (snf->autofmt) {
|
|
mtk_snand_read_fdm(snf, buf_fdm);
|
|
if (snf->caps->bbm_swap) {
|
|
mtk_snand_bm_swap(snf, buf);
|
|
mtk_snand_fdm_bm_swap(snf);
|
|
}
|
|
}
|
|
|
|
// copy data back
|
|
if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
|
|
memset(op->data.buf.in, 0xff, op->data.nbytes);
|
|
snf->ecc_stats.bitflips = 0;
|
|
snf->ecc_stats.failed = 0;
|
|
snf->ecc_stats.corrected = 0;
|
|
} else {
|
|
if (buf == op->data.buf.in) {
|
|
u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
|
|
u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
|
|
|
|
if (req_left)
|
|
memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
|
|
buf_fdm,
|
|
cap_len < req_left ? cap_len : req_left);
|
|
} else if (rd_offset < snf->buf_len) {
|
|
u32 cap_len = snf->buf_len - rd_offset;
|
|
|
|
if (op->data.nbytes < cap_len)
|
|
cap_len = op->data.nbytes;
|
|
memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
|
|
}
|
|
}
|
|
cleanup2:
|
|
if (op->data.ecc)
|
|
mtk_ecc_disable(snf->ecc);
|
|
cleanup_dma:
|
|
// unmap dma only if any error happens. (otherwise it's done before
|
|
// data copying)
|
|
if (ret)
|
|
dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
|
|
cleanup:
|
|
// Stop read
|
|
nfi_write32(snf, NFI_CON, 0);
|
|
nfi_write16(snf, NFI_CNFG, 0);
|
|
|
|
// Clear SNF done flag
|
|
nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
|
|
nfi_write32(snf, SNF_STA_CTL1, 0);
|
|
|
|
// Disable interrupt
|
|
nfi_read32(snf, NFI_INTR_STA);
|
|
nfi_write32(snf, NFI_INTR_EN, 0);
|
|
|
|
nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
|
|
return ret;
|
|
}
|
|
|
|
static int mtk_snand_write_page_cache(struct mtk_snand *snf,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
// the address part to be sent by the controller
|
|
u32 op_addr = op->addr.val;
|
|
// where to start copying data from bounce buffer
|
|
u32 wr_offset = 0;
|
|
u32 op_mode = 0;
|
|
int ret = 0;
|
|
u32 wr_mode = 0;
|
|
u32 dma_len = snf->buf_len;
|
|
u32 wr_bytes, val;
|
|
size_t cap_len;
|
|
dma_addr_t buf_dma;
|
|
|
|
if (snf->autofmt) {
|
|
u32 last_bit;
|
|
u32 mask;
|
|
|
|
dma_len = snf->nfi_cfg.page_size;
|
|
op_mode = CNFG_AUTO_FMT_EN;
|
|
if (op->data.ecc)
|
|
op_mode |= CNFG_HW_ECC_EN;
|
|
|
|
last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
|
|
mask = (1 << last_bit) - 1;
|
|
wr_offset = op_addr & mask;
|
|
op_addr &= ~mask;
|
|
}
|
|
mtk_snand_mac_reset(snf);
|
|
mtk_nfi_reset(snf);
|
|
|
|
if (wr_offset)
|
|
memset(snf->buf, 0xff, wr_offset);
|
|
|
|
cap_len = snf->buf_len - wr_offset;
|
|
if (op->data.nbytes < cap_len)
|
|
cap_len = op->data.nbytes;
|
|
memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
|
|
if (snf->autofmt) {
|
|
if (snf->caps->bbm_swap) {
|
|
mtk_snand_fdm_bm_swap(snf);
|
|
mtk_snand_bm_swap(snf, snf->buf);
|
|
}
|
|
mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
|
|
}
|
|
|
|
// Command
|
|
nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
|
|
|
|
// write address
|
|
nfi_write32(snf, SNF_PG_CTL2, op_addr);
|
|
|
|
// Set read op_mode
|
|
if (op->data.buswidth == 4)
|
|
wr_mode = PG_LOAD_X4_EN;
|
|
|
|
nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
|
|
wr_mode | PG_LOAD_CUSTOM_EN);
|
|
|
|
// Set bytes to write
|
|
wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
|
|
snf->nfi_cfg.nsectors;
|
|
nfi_write32(snf, SNF_MISC_CTL2,
|
|
(wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
|
|
|
|
// NFI write prepare
|
|
nfi_write16(snf, NFI_CNFG,
|
|
(CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
|
|
CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
|
|
|
|
nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
|
|
buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
|
|
ret = dma_mapping_error(snf->dev, buf_dma);
|
|
if (ret) {
|
|
dev_err(snf->dev, "DMA mapping failed.\n");
|
|
goto cleanup;
|
|
}
|
|
nfi_write32(snf, NFI_STRADDR, buf_dma);
|
|
if (op->data.ecc) {
|
|
snf->ecc_cfg->op = ECC_ENCODE;
|
|
ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
|
|
if (ret)
|
|
goto cleanup_dma;
|
|
}
|
|
// Prepare for custom write interrupt
|
|
nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
|
|
reinit_completion(&snf->op_done);
|
|
;
|
|
|
|
// Trigger NFI into custom mode
|
|
nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
|
|
|
|
// Start DMA write
|
|
nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
|
|
nfi_write16(snf, NFI_STRDATA, STR_DATA);
|
|
|
|
if (!wait_for_completion_timeout(
|
|
&snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
|
|
dev_err(snf->dev, "DMA timed out for program load.\n");
|
|
ret = -ETIMEDOUT;
|
|
goto cleanup_ecc;
|
|
}
|
|
|
|
// Wait for NFI_SEC_CNTR returning expected value
|
|
ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
|
|
NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
|
|
SNFI_POLL_INTERVAL);
|
|
if (ret)
|
|
dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
|
|
|
|
cleanup_ecc:
|
|
if (op->data.ecc)
|
|
mtk_ecc_disable(snf->ecc);
|
|
cleanup_dma:
|
|
dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
|
|
cleanup:
|
|
// Stop write
|
|
nfi_write32(snf, NFI_CON, 0);
|
|
nfi_write16(snf, NFI_CNFG, 0);
|
|
|
|
// Clear SNF done flag
|
|
nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
|
|
nfi_write32(snf, SNF_STA_CTL1, 0);
|
|
|
|
// Disable interrupt
|
|
nfi_read32(snf, NFI_INTR_STA);
|
|
nfi_write32(snf, NFI_INTR_EN, 0);
|
|
|
|
nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* mtk_snand_is_page_ops() - check if the op is a controller supported page op.
|
|
* @op spi-mem op to check
|
|
*
|
|
* Check whether op can be executed with read_from_cache or program_load
|
|
* mode in the controller.
|
|
* This controller can execute typical Read From Cache and Program Load
|
|
* instructions found on SPI-NAND with 2-byte address.
|
|
* DTR and cmd buswidth & nbytes should be checked before calling this.
|
|
*
|
|
* Return: true if the op matches the instruction template
|
|
*/
|
|
static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
|
|
{
|
|
if (op->addr.nbytes != 2)
|
|
return false;
|
|
|
|
if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
|
|
op->addr.buswidth != 4)
|
|
return false;
|
|
|
|
// match read from page instructions
|
|
if (op->data.dir == SPI_MEM_DATA_IN) {
|
|
// check dummy cycle first
|
|
if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
|
|
DATA_READ_MAX_DUMMY)
|
|
return false;
|
|
// quad io / quad out
|
|
if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
|
|
op->data.buswidth == 4)
|
|
return true;
|
|
|
|
// dual io / dual out
|
|
if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
|
|
op->data.buswidth == 2)
|
|
return true;
|
|
|
|
// standard spi
|
|
if (op->addr.buswidth == 1 && op->data.buswidth == 1)
|
|
return true;
|
|
} else if (op->data.dir == SPI_MEM_DATA_OUT) {
|
|
// check dummy cycle first
|
|
if (op->dummy.nbytes)
|
|
return false;
|
|
// program load quad out
|
|
if (op->addr.buswidth == 1 && op->data.buswidth == 4)
|
|
return true;
|
|
// standard spi
|
|
if (op->addr.buswidth == 1 && op->data.buswidth == 1)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mtk_snand_supports_op(struct spi_mem *mem,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
if (!spi_mem_default_supports_op(mem, op))
|
|
return false;
|
|
if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
|
|
return false;
|
|
if (mtk_snand_is_page_ops(op))
|
|
return true;
|
|
return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
|
|
(op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
|
|
(op->data.nbytes == 0 || op->data.buswidth == 1));
|
|
}
|
|
|
|
static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
|
|
{
|
|
struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller);
|
|
// page ops transfer size must be exactly ((sector_size + spare_size) *
|
|
// nsectors). Limit the op size if the caller requests more than that.
|
|
// exec_op will read more than needed and discard the leftover if the
|
|
// caller requests less data.
|
|
if (mtk_snand_is_page_ops(op)) {
|
|
size_t l;
|
|
// skip adjust_op_size for page ops
|
|
if (ms->autofmt)
|
|
return 0;
|
|
l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
|
|
l *= ms->nfi_cfg.nsectors;
|
|
if (op->data.nbytes > l)
|
|
op->data.nbytes = l;
|
|
} else {
|
|
size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
|
|
|
|
if (hl >= SNF_GPRAM_SIZE)
|
|
return -EOPNOTSUPP;
|
|
if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
|
|
op->data.nbytes = SNF_GPRAM_SIZE - hl;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
|
|
{
|
|
struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller);
|
|
|
|
dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
|
|
op->addr.val, op->addr.buswidth, op->addr.nbytes,
|
|
op->data.buswidth, op->data.nbytes);
|
|
if (mtk_snand_is_page_ops(op)) {
|
|
if (op->data.dir == SPI_MEM_DATA_IN)
|
|
return mtk_snand_read_page_cache(ms, op);
|
|
else
|
|
return mtk_snand_write_page_cache(ms, op);
|
|
} else {
|
|
return mtk_snand_mac_io(ms, op);
|
|
}
|
|
}
|
|
|
|
static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
|
|
.adjust_op_size = mtk_snand_adjust_op_size,
|
|
.supports_op = mtk_snand_supports_op,
|
|
.exec_op = mtk_snand_exec_op,
|
|
};
|
|
|
|
static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
|
|
.ecc = true,
|
|
};
|
|
|
|
static irqreturn_t mtk_snand_irq(int irq, void *id)
|
|
{
|
|
struct mtk_snand *snf = id;
|
|
u32 sta, ien;
|
|
|
|
sta = nfi_read32(snf, NFI_INTR_STA);
|
|
ien = nfi_read32(snf, NFI_INTR_EN);
|
|
|
|
if (!(sta & ien))
|
|
return IRQ_NONE;
|
|
|
|
nfi_write32(snf, NFI_INTR_EN, 0);
|
|
complete(&snf->op_done);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static const struct of_device_id mtk_snand_ids[] = {
|
|
{ .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
|
|
{ .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
|
|
{ .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps },
|
|
{},
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, mtk_snand_ids);
|
|
|
|
static int mtk_snand_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
const struct of_device_id *dev_id;
|
|
struct spi_controller *ctlr;
|
|
struct mtk_snand *ms;
|
|
unsigned long spi_freq;
|
|
u32 val = 0;
|
|
int ret;
|
|
|
|
dev_id = of_match_node(mtk_snand_ids, np);
|
|
if (!dev_id)
|
|
return -EINVAL;
|
|
|
|
ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*ms));
|
|
if (!ctlr)
|
|
return -ENOMEM;
|
|
platform_set_drvdata(pdev, ctlr);
|
|
|
|
ms = spi_controller_get_devdata(ctlr);
|
|
|
|
ms->ctlr = ctlr;
|
|
ms->caps = dev_id->data;
|
|
|
|
ms->ecc = of_mtk_ecc_get(np);
|
|
if (IS_ERR(ms->ecc))
|
|
return PTR_ERR(ms->ecc);
|
|
else if (!ms->ecc)
|
|
return -ENODEV;
|
|
|
|
ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(ms->nfi_base)) {
|
|
ret = PTR_ERR(ms->nfi_base);
|
|
goto release_ecc;
|
|
}
|
|
|
|
ms->dev = &pdev->dev;
|
|
|
|
ms->nfi_clk = devm_clk_get_enabled(&pdev->dev, "nfi_clk");
|
|
if (IS_ERR(ms->nfi_clk)) {
|
|
ret = PTR_ERR(ms->nfi_clk);
|
|
dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
|
|
goto release_ecc;
|
|
}
|
|
|
|
ms->pad_clk = devm_clk_get_enabled(&pdev->dev, "pad_clk");
|
|
if (IS_ERR(ms->pad_clk)) {
|
|
ret = PTR_ERR(ms->pad_clk);
|
|
dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
|
|
goto release_ecc;
|
|
}
|
|
|
|
ms->nfi_hclk = devm_clk_get_optional_enabled(&pdev->dev, "nfi_hclk");
|
|
if (IS_ERR(ms->nfi_hclk)) {
|
|
ret = PTR_ERR(ms->nfi_hclk);
|
|
dev_err(&pdev->dev, "unable to get nfi_hclk, err = %d\n", ret);
|
|
goto release_ecc;
|
|
}
|
|
|
|
init_completion(&ms->op_done);
|
|
|
|
ms->irq = platform_get_irq(pdev, 0);
|
|
if (ms->irq < 0) {
|
|
ret = ms->irq;
|
|
goto release_ecc;
|
|
}
|
|
ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
|
|
"mtk-snand", ms);
|
|
if (ret) {
|
|
dev_err(ms->dev, "failed to request snfi irq\n");
|
|
goto release_ecc;
|
|
}
|
|
|
|
ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
|
|
if (ret) {
|
|
dev_err(ms->dev, "failed to set dma mask\n");
|
|
goto release_ecc;
|
|
}
|
|
|
|
// switch to SNFI mode
|
|
nfi_write32(ms, SNF_CFG, SPI_MODE);
|
|
|
|
ret = of_property_read_u32(np, "rx-sample-delay-ns", &val);
|
|
if (!ret)
|
|
nfi_rmw32(ms, SNF_DLY_CTL3, SFCK_SAM_DLY,
|
|
val * SFCK_SAM_DLY_RANGE / SFCK_SAM_DLY_TOTAL);
|
|
|
|
ret = of_property_read_u32(np, "mediatek,rx-latch-latency-ns", &val);
|
|
if (!ret) {
|
|
spi_freq = clk_get_rate(ms->pad_clk);
|
|
val = DIV_ROUND_CLOSEST(val, NSEC_PER_SEC / spi_freq);
|
|
nfi_rmw32(ms, SNF_MISC_CTL, DATA_READ_LATCH_LAT,
|
|
val << DATA_READ_LATCH_LAT_S);
|
|
}
|
|
|
|
// setup an initial page format for ops matching page_cache_op template
|
|
// before ECC is called.
|
|
ret = mtk_snand_setup_pagefmt(ms, SZ_2K, SZ_64);
|
|
if (ret) {
|
|
dev_err(ms->dev, "failed to set initial page format\n");
|
|
goto release_ecc;
|
|
}
|
|
|
|
// setup ECC engine
|
|
ms->ecc_eng.dev = &pdev->dev;
|
|
ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
|
|
ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
|
|
ms->ecc_eng.priv = ms;
|
|
|
|
ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to register ecc engine.\n");
|
|
goto release_ecc;
|
|
}
|
|
|
|
ctlr->num_chipselect = 1;
|
|
ctlr->mem_ops = &mtk_snand_mem_ops;
|
|
ctlr->mem_caps = &mtk_snand_mem_caps;
|
|
ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
|
|
ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
|
|
ctlr->dev.of_node = pdev->dev.of_node;
|
|
ret = spi_register_controller(ctlr);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "spi_register_controller failed.\n");
|
|
goto release_ecc;
|
|
}
|
|
|
|
return 0;
|
|
release_ecc:
|
|
mtk_ecc_release(ms->ecc);
|
|
return ret;
|
|
}
|
|
|
|
static void mtk_snand_remove(struct platform_device *pdev)
|
|
{
|
|
struct spi_controller *ctlr = platform_get_drvdata(pdev);
|
|
struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
|
|
|
|
spi_unregister_controller(ctlr);
|
|
mtk_ecc_release(ms->ecc);
|
|
kfree(ms->buf);
|
|
}
|
|
|
|
static struct platform_driver mtk_snand_driver = {
|
|
.probe = mtk_snand_probe,
|
|
.remove_new = mtk_snand_remove,
|
|
.driver = {
|
|
.name = "mtk-snand",
|
|
.of_match_table = mtk_snand_ids,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(mtk_snand_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
|
|
MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");
|