linux/arch/x86/kernel/kvm.c
Florian Westphal 8fbe6a541f KVM guest: disable stealtime on reboot to avoid mem corruption
else, host continues to update stealtime after reboot,
which can corrupt e.g. initramfs area.
found when tracking down initramfs unpack error on initial reboot
(with qemu-kvm -smp 2, no problem with single-core).

Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2012-08-15 15:31:24 -03:00

505 lines
11 KiB
C

/*
* KVM paravirt_ops implementation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
* Copyright IBM Corporation, 2007
* Authors: Anthony Liguori <aliguori@us.ibm.com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/kvm_para.h>
#include <linux/cpu.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/hardirq.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <linux/hash.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/kprobes.h>
#include <asm/timer.h>
#include <asm/cpu.h>
#include <asm/traps.h>
#include <asm/desc.h>
#include <asm/tlbflush.h>
#include <asm/idle.h>
#include <asm/apic.h>
#include <asm/apicdef.h>
#include <asm/hypervisor.h>
static int kvmapf = 1;
static int parse_no_kvmapf(char *arg)
{
kvmapf = 0;
return 0;
}
early_param("no-kvmapf", parse_no_kvmapf);
static int steal_acc = 1;
static int parse_no_stealacc(char *arg)
{
steal_acc = 0;
return 0;
}
early_param("no-steal-acc", parse_no_stealacc);
static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64);
static int has_steal_clock = 0;
/*
* No need for any "IO delay" on KVM
*/
static void kvm_io_delay(void)
{
}
#define KVM_TASK_SLEEP_HASHBITS 8
#define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
struct kvm_task_sleep_node {
struct hlist_node link;
wait_queue_head_t wq;
u32 token;
int cpu;
bool halted;
};
static struct kvm_task_sleep_head {
spinlock_t lock;
struct hlist_head list;
} async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
u32 token)
{
struct hlist_node *p;
hlist_for_each(p, &b->list) {
struct kvm_task_sleep_node *n =
hlist_entry(p, typeof(*n), link);
if (n->token == token)
return n;
}
return NULL;
}
void kvm_async_pf_task_wait(u32 token)
{
u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
struct kvm_task_sleep_node n, *e;
DEFINE_WAIT(wait);
int cpu, idle;
cpu = get_cpu();
idle = idle_cpu(cpu);
put_cpu();
spin_lock(&b->lock);
e = _find_apf_task(b, token);
if (e) {
/* dummy entry exist -> wake up was delivered ahead of PF */
hlist_del(&e->link);
kfree(e);
spin_unlock(&b->lock);
return;
}
n.token = token;
n.cpu = smp_processor_id();
n.halted = idle || preempt_count() > 1;
init_waitqueue_head(&n.wq);
hlist_add_head(&n.link, &b->list);
spin_unlock(&b->lock);
for (;;) {
if (!n.halted)
prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
if (hlist_unhashed(&n.link))
break;
if (!n.halted) {
local_irq_enable();
schedule();
local_irq_disable();
} else {
/*
* We cannot reschedule. So halt.
*/
native_safe_halt();
local_irq_disable();
}
}
if (!n.halted)
finish_wait(&n.wq, &wait);
return;
}
EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
static void apf_task_wake_one(struct kvm_task_sleep_node *n)
{
hlist_del_init(&n->link);
if (n->halted)
smp_send_reschedule(n->cpu);
else if (waitqueue_active(&n->wq))
wake_up(&n->wq);
}
static void apf_task_wake_all(void)
{
int i;
for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
struct hlist_node *p, *next;
struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
spin_lock(&b->lock);
hlist_for_each_safe(p, next, &b->list) {
struct kvm_task_sleep_node *n =
hlist_entry(p, typeof(*n), link);
if (n->cpu == smp_processor_id())
apf_task_wake_one(n);
}
spin_unlock(&b->lock);
}
}
void kvm_async_pf_task_wake(u32 token)
{
u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
struct kvm_task_sleep_node *n;
if (token == ~0) {
apf_task_wake_all();
return;
}
again:
spin_lock(&b->lock);
n = _find_apf_task(b, token);
if (!n) {
/*
* async PF was not yet handled.
* Add dummy entry for the token.
*/
n = kzalloc(sizeof(*n), GFP_ATOMIC);
if (!n) {
/*
* Allocation failed! Busy wait while other cpu
* handles async PF.
*/
spin_unlock(&b->lock);
cpu_relax();
goto again;
}
n->token = token;
n->cpu = smp_processor_id();
init_waitqueue_head(&n->wq);
hlist_add_head(&n->link, &b->list);
} else
apf_task_wake_one(n);
spin_unlock(&b->lock);
return;
}
EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
u32 kvm_read_and_reset_pf_reason(void)
{
u32 reason = 0;
if (__get_cpu_var(apf_reason).enabled) {
reason = __get_cpu_var(apf_reason).reason;
__get_cpu_var(apf_reason).reason = 0;
}
return reason;
}
EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
dotraplinkage void __kprobes
do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
{
switch (kvm_read_and_reset_pf_reason()) {
default:
do_page_fault(regs, error_code);
break;
case KVM_PV_REASON_PAGE_NOT_PRESENT:
/* page is swapped out by the host. */
kvm_async_pf_task_wait((u32)read_cr2());
break;
case KVM_PV_REASON_PAGE_READY:
rcu_irq_enter();
exit_idle();
kvm_async_pf_task_wake((u32)read_cr2());
rcu_irq_exit();
break;
}
}
static void __init paravirt_ops_setup(void)
{
pv_info.name = "KVM";
pv_info.paravirt_enabled = 1;
if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
pv_cpu_ops.io_delay = kvm_io_delay;
#ifdef CONFIG_X86_IO_APIC
no_timer_check = 1;
#endif
}
static void kvm_register_steal_time(void)
{
int cpu = smp_processor_id();
struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
if (!has_steal_clock)
return;
memset(st, 0, sizeof(*st));
wrmsrl(MSR_KVM_STEAL_TIME, (__pa(st) | KVM_MSR_ENABLED));
printk(KERN_INFO "kvm-stealtime: cpu %d, msr %lx\n",
cpu, __pa(st));
}
static DEFINE_PER_CPU(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
static void kvm_guest_apic_eoi_write(u32 reg, u32 val)
{
/**
* This relies on __test_and_clear_bit to modify the memory
* in a way that is atomic with respect to the local CPU.
* The hypervisor only accesses this memory from the local CPU so
* there's no need for lock or memory barriers.
* An optimization barrier is implied in apic write.
*/
if (__test_and_clear_bit(KVM_PV_EOI_BIT, &__get_cpu_var(kvm_apic_eoi)))
return;
apic_write(APIC_EOI, APIC_EOI_ACK);
}
void __cpuinit kvm_guest_cpu_init(void)
{
if (!kvm_para_available())
return;
if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
u64 pa = __pa(&__get_cpu_var(apf_reason));
#ifdef CONFIG_PREEMPT
pa |= KVM_ASYNC_PF_SEND_ALWAYS;
#endif
wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
__get_cpu_var(apf_reason).enabled = 1;
printk(KERN_INFO"KVM setup async PF for cpu %d\n",
smp_processor_id());
}
if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
unsigned long pa;
/* Size alignment is implied but just to make it explicit. */
BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
__get_cpu_var(kvm_apic_eoi) = 0;
pa = __pa(&__get_cpu_var(kvm_apic_eoi)) | KVM_MSR_ENABLED;
wrmsrl(MSR_KVM_PV_EOI_EN, pa);
}
if (has_steal_clock)
kvm_register_steal_time();
}
static void kvm_pv_disable_apf(void)
{
if (!__get_cpu_var(apf_reason).enabled)
return;
wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
__get_cpu_var(apf_reason).enabled = 0;
printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
smp_processor_id());
}
static void kvm_pv_guest_cpu_reboot(void *unused)
{
/*
* We disable PV EOI before we load a new kernel by kexec,
* since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory.
* New kernel can re-enable when it boots.
*/
if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
wrmsrl(MSR_KVM_PV_EOI_EN, 0);
kvm_pv_disable_apf();
kvm_disable_steal_time();
}
static int kvm_pv_reboot_notify(struct notifier_block *nb,
unsigned long code, void *unused)
{
if (code == SYS_RESTART)
on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
return NOTIFY_DONE;
}
static struct notifier_block kvm_pv_reboot_nb = {
.notifier_call = kvm_pv_reboot_notify,
};
static u64 kvm_steal_clock(int cpu)
{
u64 steal;
struct kvm_steal_time *src;
int version;
src = &per_cpu(steal_time, cpu);
do {
version = src->version;
rmb();
steal = src->steal;
rmb();
} while ((version & 1) || (version != src->version));
return steal;
}
void kvm_disable_steal_time(void)
{
if (!has_steal_clock)
return;
wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
}
#ifdef CONFIG_SMP
static void __init kvm_smp_prepare_boot_cpu(void)
{
#ifdef CONFIG_KVM_CLOCK
WARN_ON(kvm_register_clock("primary cpu clock"));
#endif
kvm_guest_cpu_init();
native_smp_prepare_boot_cpu();
}
static void __cpuinit kvm_guest_cpu_online(void *dummy)
{
kvm_guest_cpu_init();
}
static void kvm_guest_cpu_offline(void *dummy)
{
kvm_disable_steal_time();
if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
wrmsrl(MSR_KVM_PV_EOI_EN, 0);
kvm_pv_disable_apf();
apf_task_wake_all();
}
static int __cpuinit kvm_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
int cpu = (unsigned long)hcpu;
switch (action) {
case CPU_ONLINE:
case CPU_DOWN_FAILED:
case CPU_ONLINE_FROZEN:
smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
break;
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
break;
default:
break;
}
return NOTIFY_OK;
}
static struct notifier_block __cpuinitdata kvm_cpu_notifier = {
.notifier_call = kvm_cpu_notify,
};
#endif
static void __init kvm_apf_trap_init(void)
{
set_intr_gate(14, &async_page_fault);
}
void __init kvm_guest_init(void)
{
int i;
if (!kvm_para_available())
return;
paravirt_ops_setup();
register_reboot_notifier(&kvm_pv_reboot_nb);
for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
spin_lock_init(&async_pf_sleepers[i].lock);
if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
x86_init.irqs.trap_init = kvm_apf_trap_init;
if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
has_steal_clock = 1;
pv_time_ops.steal_clock = kvm_steal_clock;
}
if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
apic_set_eoi_write(kvm_guest_apic_eoi_write);
#ifdef CONFIG_SMP
smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
register_cpu_notifier(&kvm_cpu_notifier);
#else
kvm_guest_cpu_init();
#endif
}
static bool __init kvm_detect(void)
{
if (!kvm_para_available())
return false;
return true;
}
const struct hypervisor_x86 x86_hyper_kvm __refconst = {
.name = "KVM",
.detect = kvm_detect,
};
EXPORT_SYMBOL_GPL(x86_hyper_kvm);
static __init int activate_jump_labels(void)
{
if (has_steal_clock) {
static_key_slow_inc(&paravirt_steal_enabled);
if (steal_acc)
static_key_slow_inc(&paravirt_steal_rq_enabled);
}
return 0;
}
arch_initcall(activate_jump_labels);