mirror of
https://github.com/torvalds/linux.git
synced 2024-11-16 17:12:06 +00:00
cb77cb5abe
blk_keyslot_manager is misnamed because it doesn't necessarily manage keyslots. It actually does several different things: - Contains the crypto capabilities of the device. - Provides functions to control the inline encryption hardware. Originally these were just for programming/evicting keyslots; however, new functionality (hardware-wrapped keys) will require new functions here which are unrelated to keyslots. Moreover, device-mapper devices already (ab)use "keyslot_evict" to pass key eviction requests to their underlying devices even though device-mapper devices don't have any keyslots themselves (so it really should be "evict_key", not "keyslot_evict"). - Sometimes (but not always!) it manages keyslots. Originally it always did, but device-mapper devices don't have keyslots themselves, so they use a "passthrough keyslot manager" which doesn't actually manage keyslots. This hack works, but the terminology is unnatural. Also, some hardware doesn't have keyslots and thus also uses a "passthrough keyslot manager" (support for such hardware is yet to be upstreamed, but it will happen eventually). Let's stop having keyslot managers which don't actually manage keyslots. Instead, rename blk_keyslot_manager to blk_crypto_profile. This is a fairly big change, since for consistency it also has to update keyslot manager-related function names, variable names, and comments -- not just the actual struct name. However it's still a fairly straightforward change, as it doesn't change any actual functionality. Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # For MMC Reviewed-by: Mike Snitzer <snitzer@redhat.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Eric Biggers <ebiggers@google.com> Link: https://lore.kernel.org/r/20211018180453.40441-4-ebiggers@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
566 lines
16 KiB
C
566 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright 2019 Google LLC
|
|
*/
|
|
|
|
/**
|
|
* DOC: blk-crypto profiles
|
|
*
|
|
* 'struct blk_crypto_profile' contains all generic inline encryption-related
|
|
* state for a particular inline encryption device. blk_crypto_profile serves
|
|
* as the way that drivers for inline encryption hardware expose their crypto
|
|
* capabilities and certain functions (e.g., functions to program and evict
|
|
* keys) to upper layers. Device drivers that want to support inline encryption
|
|
* construct a crypto profile, then associate it with the disk's request_queue.
|
|
*
|
|
* If the device has keyslots, then its blk_crypto_profile also handles managing
|
|
* these keyslots in a device-independent way, using the driver-provided
|
|
* functions to program and evict keys as needed. This includes keeping track
|
|
* of which key and how many I/O requests are using each keyslot, getting
|
|
* keyslots for I/O requests, and handling key eviction requests.
|
|
*
|
|
* For more information, see Documentation/block/inline-encryption.rst.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "blk-crypto: " fmt
|
|
|
|
#include <linux/blk-crypto-profile.h>
|
|
#include <linux/device.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/blk-integrity.h>
|
|
|
|
struct blk_crypto_keyslot {
|
|
atomic_t slot_refs;
|
|
struct list_head idle_slot_node;
|
|
struct hlist_node hash_node;
|
|
const struct blk_crypto_key *key;
|
|
struct blk_crypto_profile *profile;
|
|
};
|
|
|
|
static inline void blk_crypto_hw_enter(struct blk_crypto_profile *profile)
|
|
{
|
|
/*
|
|
* Calling into the driver requires profile->lock held and the device
|
|
* resumed. But we must resume the device first, since that can acquire
|
|
* and release profile->lock via blk_crypto_reprogram_all_keys().
|
|
*/
|
|
if (profile->dev)
|
|
pm_runtime_get_sync(profile->dev);
|
|
down_write(&profile->lock);
|
|
}
|
|
|
|
static inline void blk_crypto_hw_exit(struct blk_crypto_profile *profile)
|
|
{
|
|
up_write(&profile->lock);
|
|
if (profile->dev)
|
|
pm_runtime_put_sync(profile->dev);
|
|
}
|
|
|
|
/**
|
|
* blk_crypto_profile_init() - Initialize a blk_crypto_profile
|
|
* @profile: the blk_crypto_profile to initialize
|
|
* @num_slots: the number of keyslots
|
|
*
|
|
* Storage drivers must call this when starting to set up a blk_crypto_profile,
|
|
* before filling in additional fields.
|
|
*
|
|
* Return: 0 on success, or else a negative error code.
|
|
*/
|
|
int blk_crypto_profile_init(struct blk_crypto_profile *profile,
|
|
unsigned int num_slots)
|
|
{
|
|
unsigned int slot;
|
|
unsigned int i;
|
|
unsigned int slot_hashtable_size;
|
|
|
|
memset(profile, 0, sizeof(*profile));
|
|
init_rwsem(&profile->lock);
|
|
|
|
if (num_slots == 0)
|
|
return 0;
|
|
|
|
/* Initialize keyslot management data. */
|
|
|
|
profile->slots = kvcalloc(num_slots, sizeof(profile->slots[0]),
|
|
GFP_KERNEL);
|
|
if (!profile->slots)
|
|
return -ENOMEM;
|
|
|
|
profile->num_slots = num_slots;
|
|
|
|
init_waitqueue_head(&profile->idle_slots_wait_queue);
|
|
INIT_LIST_HEAD(&profile->idle_slots);
|
|
|
|
for (slot = 0; slot < num_slots; slot++) {
|
|
profile->slots[slot].profile = profile;
|
|
list_add_tail(&profile->slots[slot].idle_slot_node,
|
|
&profile->idle_slots);
|
|
}
|
|
|
|
spin_lock_init(&profile->idle_slots_lock);
|
|
|
|
slot_hashtable_size = roundup_pow_of_two(num_slots);
|
|
/*
|
|
* hash_ptr() assumes bits != 0, so ensure the hash table has at least 2
|
|
* buckets. This only makes a difference when there is only 1 keyslot.
|
|
*/
|
|
if (slot_hashtable_size < 2)
|
|
slot_hashtable_size = 2;
|
|
|
|
profile->log_slot_ht_size = ilog2(slot_hashtable_size);
|
|
profile->slot_hashtable =
|
|
kvmalloc_array(slot_hashtable_size,
|
|
sizeof(profile->slot_hashtable[0]), GFP_KERNEL);
|
|
if (!profile->slot_hashtable)
|
|
goto err_destroy;
|
|
for (i = 0; i < slot_hashtable_size; i++)
|
|
INIT_HLIST_HEAD(&profile->slot_hashtable[i]);
|
|
|
|
return 0;
|
|
|
|
err_destroy:
|
|
blk_crypto_profile_destroy(profile);
|
|
return -ENOMEM;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_profile_init);
|
|
|
|
static void blk_crypto_profile_destroy_callback(void *profile)
|
|
{
|
|
blk_crypto_profile_destroy(profile);
|
|
}
|
|
|
|
/**
|
|
* devm_blk_crypto_profile_init() - Resource-managed blk_crypto_profile_init()
|
|
* @dev: the device which owns the blk_crypto_profile
|
|
* @profile: the blk_crypto_profile to initialize
|
|
* @num_slots: the number of keyslots
|
|
*
|
|
* Like blk_crypto_profile_init(), but causes blk_crypto_profile_destroy() to be
|
|
* called automatically on driver detach.
|
|
*
|
|
* Return: 0 on success, or else a negative error code.
|
|
*/
|
|
int devm_blk_crypto_profile_init(struct device *dev,
|
|
struct blk_crypto_profile *profile,
|
|
unsigned int num_slots)
|
|
{
|
|
int err = blk_crypto_profile_init(profile, num_slots);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
return devm_add_action_or_reset(dev,
|
|
blk_crypto_profile_destroy_callback,
|
|
profile);
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_blk_crypto_profile_init);
|
|
|
|
static inline struct hlist_head *
|
|
blk_crypto_hash_bucket_for_key(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_key *key)
|
|
{
|
|
return &profile->slot_hashtable[
|
|
hash_ptr(key, profile->log_slot_ht_size)];
|
|
}
|
|
|
|
static void
|
|
blk_crypto_remove_slot_from_lru_list(struct blk_crypto_keyslot *slot)
|
|
{
|
|
struct blk_crypto_profile *profile = slot->profile;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&profile->idle_slots_lock, flags);
|
|
list_del(&slot->idle_slot_node);
|
|
spin_unlock_irqrestore(&profile->idle_slots_lock, flags);
|
|
}
|
|
|
|
static struct blk_crypto_keyslot *
|
|
blk_crypto_find_keyslot(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_key *key)
|
|
{
|
|
const struct hlist_head *head =
|
|
blk_crypto_hash_bucket_for_key(profile, key);
|
|
struct blk_crypto_keyslot *slotp;
|
|
|
|
hlist_for_each_entry(slotp, head, hash_node) {
|
|
if (slotp->key == key)
|
|
return slotp;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct blk_crypto_keyslot *
|
|
blk_crypto_find_and_grab_keyslot(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_key *key)
|
|
{
|
|
struct blk_crypto_keyslot *slot;
|
|
|
|
slot = blk_crypto_find_keyslot(profile, key);
|
|
if (!slot)
|
|
return NULL;
|
|
if (atomic_inc_return(&slot->slot_refs) == 1) {
|
|
/* Took first reference to this slot; remove it from LRU list */
|
|
blk_crypto_remove_slot_from_lru_list(slot);
|
|
}
|
|
return slot;
|
|
}
|
|
|
|
/**
|
|
* blk_crypto_keyslot_index() - Get the index of a keyslot
|
|
* @slot: a keyslot that blk_crypto_get_keyslot() returned
|
|
*
|
|
* Return: the 0-based index of the keyslot within the device's keyslots.
|
|
*/
|
|
unsigned int blk_crypto_keyslot_index(struct blk_crypto_keyslot *slot)
|
|
{
|
|
return slot - slot->profile->slots;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_keyslot_index);
|
|
|
|
/**
|
|
* blk_crypto_get_keyslot() - Get a keyslot for a key, if needed.
|
|
* @profile: the crypto profile of the device the key will be used on
|
|
* @key: the key that will be used
|
|
* @slot_ptr: If a keyslot is allocated, an opaque pointer to the keyslot struct
|
|
* will be stored here; otherwise NULL will be stored here.
|
|
*
|
|
* If the device has keyslots, this gets a keyslot that's been programmed with
|
|
* the specified key. If the key is already in a slot, this reuses it;
|
|
* otherwise this waits for a slot to become idle and programs the key into it.
|
|
*
|
|
* This must be paired with a call to blk_crypto_put_keyslot().
|
|
*
|
|
* Context: Process context. Takes and releases profile->lock.
|
|
* Return: BLK_STS_OK on success, meaning that either a keyslot was allocated or
|
|
* one wasn't needed; or a blk_status_t error on failure.
|
|
*/
|
|
blk_status_t blk_crypto_get_keyslot(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_key *key,
|
|
struct blk_crypto_keyslot **slot_ptr)
|
|
{
|
|
struct blk_crypto_keyslot *slot;
|
|
int slot_idx;
|
|
int err;
|
|
|
|
*slot_ptr = NULL;
|
|
|
|
/*
|
|
* If the device has no concept of "keyslots", then there is no need to
|
|
* get one.
|
|
*/
|
|
if (profile->num_slots == 0)
|
|
return BLK_STS_OK;
|
|
|
|
down_read(&profile->lock);
|
|
slot = blk_crypto_find_and_grab_keyslot(profile, key);
|
|
up_read(&profile->lock);
|
|
if (slot)
|
|
goto success;
|
|
|
|
for (;;) {
|
|
blk_crypto_hw_enter(profile);
|
|
slot = blk_crypto_find_and_grab_keyslot(profile, key);
|
|
if (slot) {
|
|
blk_crypto_hw_exit(profile);
|
|
goto success;
|
|
}
|
|
|
|
/*
|
|
* If we're here, that means there wasn't a slot that was
|
|
* already programmed with the key. So try to program it.
|
|
*/
|
|
if (!list_empty(&profile->idle_slots))
|
|
break;
|
|
|
|
blk_crypto_hw_exit(profile);
|
|
wait_event(profile->idle_slots_wait_queue,
|
|
!list_empty(&profile->idle_slots));
|
|
}
|
|
|
|
slot = list_first_entry(&profile->idle_slots, struct blk_crypto_keyslot,
|
|
idle_slot_node);
|
|
slot_idx = blk_crypto_keyslot_index(slot);
|
|
|
|
err = profile->ll_ops.keyslot_program(profile, key, slot_idx);
|
|
if (err) {
|
|
wake_up(&profile->idle_slots_wait_queue);
|
|
blk_crypto_hw_exit(profile);
|
|
return errno_to_blk_status(err);
|
|
}
|
|
|
|
/* Move this slot to the hash list for the new key. */
|
|
if (slot->key)
|
|
hlist_del(&slot->hash_node);
|
|
slot->key = key;
|
|
hlist_add_head(&slot->hash_node,
|
|
blk_crypto_hash_bucket_for_key(profile, key));
|
|
|
|
atomic_set(&slot->slot_refs, 1);
|
|
|
|
blk_crypto_remove_slot_from_lru_list(slot);
|
|
|
|
blk_crypto_hw_exit(profile);
|
|
success:
|
|
*slot_ptr = slot;
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
/**
|
|
* blk_crypto_put_keyslot() - Release a reference to a keyslot
|
|
* @slot: The keyslot to release the reference of (may be NULL).
|
|
*
|
|
* Context: Any context.
|
|
*/
|
|
void blk_crypto_put_keyslot(struct blk_crypto_keyslot *slot)
|
|
{
|
|
struct blk_crypto_profile *profile;
|
|
unsigned long flags;
|
|
|
|
if (!slot)
|
|
return;
|
|
|
|
profile = slot->profile;
|
|
|
|
if (atomic_dec_and_lock_irqsave(&slot->slot_refs,
|
|
&profile->idle_slots_lock, flags)) {
|
|
list_add_tail(&slot->idle_slot_node, &profile->idle_slots);
|
|
spin_unlock_irqrestore(&profile->idle_slots_lock, flags);
|
|
wake_up(&profile->idle_slots_wait_queue);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __blk_crypto_cfg_supported() - Check whether the given crypto profile
|
|
* supports the given crypto configuration.
|
|
* @profile: the crypto profile to check
|
|
* @cfg: the crypto configuration to check for
|
|
*
|
|
* Return: %true if @profile supports the given @cfg.
|
|
*/
|
|
bool __blk_crypto_cfg_supported(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_config *cfg)
|
|
{
|
|
if (!profile)
|
|
return false;
|
|
if (!(profile->modes_supported[cfg->crypto_mode] & cfg->data_unit_size))
|
|
return false;
|
|
if (profile->max_dun_bytes_supported < cfg->dun_bytes)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* __blk_crypto_evict_key() - Evict a key from a device.
|
|
* @profile: the crypto profile of the device
|
|
* @key: the key to evict. It must not still be used in any I/O.
|
|
*
|
|
* If the device has keyslots, this finds the keyslot (if any) that contains the
|
|
* specified key and calls the driver's keyslot_evict function to evict it.
|
|
*
|
|
* Otherwise, this just calls the driver's keyslot_evict function if it is
|
|
* implemented, passing just the key (without any particular keyslot). This
|
|
* allows layered devices to evict the key from their underlying devices.
|
|
*
|
|
* Context: Process context. Takes and releases profile->lock.
|
|
* Return: 0 on success or if there's no keyslot with the specified key, -EBUSY
|
|
* if the keyslot is still in use, or another -errno value on other
|
|
* error.
|
|
*/
|
|
int __blk_crypto_evict_key(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_key *key)
|
|
{
|
|
struct blk_crypto_keyslot *slot;
|
|
int err = 0;
|
|
|
|
if (profile->num_slots == 0) {
|
|
if (profile->ll_ops.keyslot_evict) {
|
|
blk_crypto_hw_enter(profile);
|
|
err = profile->ll_ops.keyslot_evict(profile, key, -1);
|
|
blk_crypto_hw_exit(profile);
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
blk_crypto_hw_enter(profile);
|
|
slot = blk_crypto_find_keyslot(profile, key);
|
|
if (!slot)
|
|
goto out_unlock;
|
|
|
|
if (WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)) {
|
|
err = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
err = profile->ll_ops.keyslot_evict(profile, key,
|
|
blk_crypto_keyslot_index(slot));
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
hlist_del(&slot->hash_node);
|
|
slot->key = NULL;
|
|
err = 0;
|
|
out_unlock:
|
|
blk_crypto_hw_exit(profile);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* blk_crypto_reprogram_all_keys() - Re-program all keyslots.
|
|
* @profile: The crypto profile
|
|
*
|
|
* Re-program all keyslots that are supposed to have a key programmed. This is
|
|
* intended only for use by drivers for hardware that loses its keys on reset.
|
|
*
|
|
* Context: Process context. Takes and releases profile->lock.
|
|
*/
|
|
void blk_crypto_reprogram_all_keys(struct blk_crypto_profile *profile)
|
|
{
|
|
unsigned int slot;
|
|
|
|
if (profile->num_slots == 0)
|
|
return;
|
|
|
|
/* This is for device initialization, so don't resume the device */
|
|
down_write(&profile->lock);
|
|
for (slot = 0; slot < profile->num_slots; slot++) {
|
|
const struct blk_crypto_key *key = profile->slots[slot].key;
|
|
int err;
|
|
|
|
if (!key)
|
|
continue;
|
|
|
|
err = profile->ll_ops.keyslot_program(profile, key, slot);
|
|
WARN_ON(err);
|
|
}
|
|
up_write(&profile->lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_reprogram_all_keys);
|
|
|
|
void blk_crypto_profile_destroy(struct blk_crypto_profile *profile)
|
|
{
|
|
if (!profile)
|
|
return;
|
|
kvfree(profile->slot_hashtable);
|
|
kvfree_sensitive(profile->slots,
|
|
sizeof(profile->slots[0]) * profile->num_slots);
|
|
memzero_explicit(profile, sizeof(*profile));
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_profile_destroy);
|
|
|
|
bool blk_crypto_register(struct blk_crypto_profile *profile,
|
|
struct request_queue *q)
|
|
{
|
|
if (blk_integrity_queue_supports_integrity(q)) {
|
|
pr_warn("Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n");
|
|
return false;
|
|
}
|
|
q->crypto_profile = profile;
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_register);
|
|
|
|
void blk_crypto_unregister(struct request_queue *q)
|
|
{
|
|
q->crypto_profile = NULL;
|
|
}
|
|
|
|
/**
|
|
* blk_crypto_intersect_capabilities() - restrict supported crypto capabilities
|
|
* by child device
|
|
* @parent: the crypto profile for the parent device
|
|
* @child: the crypto profile for the child device, or NULL
|
|
*
|
|
* This clears all crypto capabilities in @parent that aren't set in @child. If
|
|
* @child is NULL, then this clears all parent capabilities.
|
|
*
|
|
* Only use this when setting up the crypto profile for a layered device, before
|
|
* it's been exposed yet.
|
|
*/
|
|
void blk_crypto_intersect_capabilities(struct blk_crypto_profile *parent,
|
|
const struct blk_crypto_profile *child)
|
|
{
|
|
if (child) {
|
|
unsigned int i;
|
|
|
|
parent->max_dun_bytes_supported =
|
|
min(parent->max_dun_bytes_supported,
|
|
child->max_dun_bytes_supported);
|
|
for (i = 0; i < ARRAY_SIZE(child->modes_supported); i++)
|
|
parent->modes_supported[i] &= child->modes_supported[i];
|
|
} else {
|
|
parent->max_dun_bytes_supported = 0;
|
|
memset(parent->modes_supported, 0,
|
|
sizeof(parent->modes_supported));
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_intersect_capabilities);
|
|
|
|
/**
|
|
* blk_crypto_has_capabilities() - Check whether @target supports at least all
|
|
* the crypto capabilities that @reference does.
|
|
* @target: the target profile
|
|
* @reference: the reference profile
|
|
*
|
|
* Return: %true if @target supports all the crypto capabilities of @reference.
|
|
*/
|
|
bool blk_crypto_has_capabilities(const struct blk_crypto_profile *target,
|
|
const struct blk_crypto_profile *reference)
|
|
{
|
|
int i;
|
|
|
|
if (!reference)
|
|
return true;
|
|
|
|
if (!target)
|
|
return false;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(target->modes_supported); i++) {
|
|
if (reference->modes_supported[i] & ~target->modes_supported[i])
|
|
return false;
|
|
}
|
|
|
|
if (reference->max_dun_bytes_supported >
|
|
target->max_dun_bytes_supported)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_has_capabilities);
|
|
|
|
/**
|
|
* blk_crypto_update_capabilities() - Update the capabilities of a crypto
|
|
* profile to match those of another crypto
|
|
* profile.
|
|
* @dst: The crypto profile whose capabilities to update.
|
|
* @src: The crypto profile whose capabilities this function will update @dst's
|
|
* capabilities to.
|
|
*
|
|
* Blk-crypto requires that crypto capabilities that were
|
|
* advertised when a bio was created continue to be supported by the
|
|
* device until that bio is ended. This is turn means that a device cannot
|
|
* shrink its advertised crypto capabilities without any explicit
|
|
* synchronization with upper layers. So if there's no such explicit
|
|
* synchronization, @src must support all the crypto capabilities that
|
|
* @dst does (i.e. we need blk_crypto_has_capabilities(@src, @dst)).
|
|
*
|
|
* Note also that as long as the crypto capabilities are being expanded, the
|
|
* order of updates becoming visible is not important because it's alright
|
|
* for blk-crypto to see stale values - they only cause blk-crypto to
|
|
* believe that a crypto capability isn't supported when it actually is (which
|
|
* might result in blk-crypto-fallback being used if available, or the bio being
|
|
* failed).
|
|
*/
|
|
void blk_crypto_update_capabilities(struct blk_crypto_profile *dst,
|
|
const struct blk_crypto_profile *src)
|
|
{
|
|
memcpy(dst->modes_supported, src->modes_supported,
|
|
sizeof(dst->modes_supported));
|
|
|
|
dst->max_dun_bytes_supported = src->max_dun_bytes_supported;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_update_capabilities);
|