mirror of
https://github.com/torvalds/linux.git
synced 2024-11-15 00:21:59 +00:00
06646da014
The bpf_user_ringbuf_drain() BPF_CALL function uses an atomic_set() immediately preceded by smp_mb__before_atomic() so as to order storing of ring-buffer consumer and producer positions prior to the atomic_set() call's clearing of the ->busy flag, as follows: smp_mb__before_atomic(); atomic_set(&rb->busy, 0); Although this works given current architectures and implementations, and given that this only needs to order prior writes against a later write. However, it does so by accident because the smp_mb__before_atomic() is only guaranteed to work with read-modify-write atomic operations, and not at all with things like atomic_set() and atomic_read(). Note especially that smp_mb__before_atomic() will not, repeat *not*, order the prior write to "a" before the subsequent non-read-modify-write atomic read from "b", even on strongly ordered systems such as x86: WRITE_ONCE(a, 1); smp_mb__before_atomic(); r1 = atomic_read(&b); Therefore, replace the smp_mb__before_atomic() and atomic_set() with atomic_set_release() as follows: atomic_set_release(&rb->busy, 0); This is no slower (and sometimes is faster) than the original, and also provides a formal guarantee of ordering that the original lacks. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/bpf/ec86d38e-cfb4-44aa-8fdb-6c925922d93c@paulmck-laptop
790 lines
22 KiB
C
790 lines
22 KiB
C
#include <linux/bpf.h>
|
|
#include <linux/btf.h>
|
|
#include <linux/err.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <uapi/linux/btf.h>
|
|
#include <linux/btf_ids.h>
|
|
|
|
#define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
|
|
|
|
/* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
|
|
#define RINGBUF_PGOFF \
|
|
(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
|
|
/* consumer page and producer page */
|
|
#define RINGBUF_POS_PAGES 2
|
|
#define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES)
|
|
|
|
#define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
|
|
|
|
struct bpf_ringbuf {
|
|
wait_queue_head_t waitq;
|
|
struct irq_work work;
|
|
u64 mask;
|
|
struct page **pages;
|
|
int nr_pages;
|
|
spinlock_t spinlock ____cacheline_aligned_in_smp;
|
|
/* For user-space producer ring buffers, an atomic_t busy bit is used
|
|
* to synchronize access to the ring buffers in the kernel, rather than
|
|
* the spinlock that is used for kernel-producer ring buffers. This is
|
|
* done because the ring buffer must hold a lock across a BPF program's
|
|
* callback:
|
|
*
|
|
* __bpf_user_ringbuf_peek() // lock acquired
|
|
* -> program callback_fn()
|
|
* -> __bpf_user_ringbuf_sample_release() // lock released
|
|
*
|
|
* It is unsafe and incorrect to hold an IRQ spinlock across what could
|
|
* be a long execution window, so we instead simply disallow concurrent
|
|
* access to the ring buffer by kernel consumers, and return -EBUSY from
|
|
* __bpf_user_ringbuf_peek() if the busy bit is held by another task.
|
|
*/
|
|
atomic_t busy ____cacheline_aligned_in_smp;
|
|
/* Consumer and producer counters are put into separate pages to
|
|
* allow each position to be mapped with different permissions.
|
|
* This prevents a user-space application from modifying the
|
|
* position and ruining in-kernel tracking. The permissions of the
|
|
* pages depend on who is producing samples: user-space or the
|
|
* kernel.
|
|
*
|
|
* Kernel-producer
|
|
* ---------------
|
|
* The producer position and data pages are mapped as r/o in
|
|
* userspace. For this approach, bits in the header of samples are
|
|
* used to signal to user-space, and to other producers, whether a
|
|
* sample is currently being written.
|
|
*
|
|
* User-space producer
|
|
* -------------------
|
|
* Only the page containing the consumer position is mapped r/o in
|
|
* user-space. User-space producers also use bits of the header to
|
|
* communicate to the kernel, but the kernel must carefully check and
|
|
* validate each sample to ensure that they're correctly formatted, and
|
|
* fully contained within the ring buffer.
|
|
*/
|
|
unsigned long consumer_pos __aligned(PAGE_SIZE);
|
|
unsigned long producer_pos __aligned(PAGE_SIZE);
|
|
char data[] __aligned(PAGE_SIZE);
|
|
};
|
|
|
|
struct bpf_ringbuf_map {
|
|
struct bpf_map map;
|
|
struct bpf_ringbuf *rb;
|
|
};
|
|
|
|
/* 8-byte ring buffer record header structure */
|
|
struct bpf_ringbuf_hdr {
|
|
u32 len;
|
|
u32 pg_off;
|
|
};
|
|
|
|
static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
|
|
{
|
|
const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
|
|
__GFP_NOWARN | __GFP_ZERO;
|
|
int nr_meta_pages = RINGBUF_NR_META_PAGES;
|
|
int nr_data_pages = data_sz >> PAGE_SHIFT;
|
|
int nr_pages = nr_meta_pages + nr_data_pages;
|
|
struct page **pages, *page;
|
|
struct bpf_ringbuf *rb;
|
|
size_t array_size;
|
|
int i;
|
|
|
|
/* Each data page is mapped twice to allow "virtual"
|
|
* continuous read of samples wrapping around the end of ring
|
|
* buffer area:
|
|
* ------------------------------------------------------
|
|
* | meta pages | real data pages | same data pages |
|
|
* ------------------------------------------------------
|
|
* | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
|
|
* ------------------------------------------------------
|
|
* | | TA DA | TA DA |
|
|
* ------------------------------------------------------
|
|
* ^^^^^^^
|
|
* |
|
|
* Here, no need to worry about special handling of wrapped-around
|
|
* data due to double-mapped data pages. This works both in kernel and
|
|
* when mmap()'ed in user-space, simplifying both kernel and
|
|
* user-space implementations significantly.
|
|
*/
|
|
array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
|
|
pages = bpf_map_area_alloc(array_size, numa_node);
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
page = alloc_pages_node(numa_node, flags, 0);
|
|
if (!page) {
|
|
nr_pages = i;
|
|
goto err_free_pages;
|
|
}
|
|
pages[i] = page;
|
|
if (i >= nr_meta_pages)
|
|
pages[nr_data_pages + i] = page;
|
|
}
|
|
|
|
rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
|
|
VM_MAP | VM_USERMAP, PAGE_KERNEL);
|
|
if (rb) {
|
|
kmemleak_not_leak(pages);
|
|
rb->pages = pages;
|
|
rb->nr_pages = nr_pages;
|
|
return rb;
|
|
}
|
|
|
|
err_free_pages:
|
|
for (i = 0; i < nr_pages; i++)
|
|
__free_page(pages[i]);
|
|
bpf_map_area_free(pages);
|
|
return NULL;
|
|
}
|
|
|
|
static void bpf_ringbuf_notify(struct irq_work *work)
|
|
{
|
|
struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
|
|
|
|
wake_up_all(&rb->waitq);
|
|
}
|
|
|
|
/* Maximum size of ring buffer area is limited by 32-bit page offset within
|
|
* record header, counted in pages. Reserve 8 bits for extensibility, and
|
|
* take into account few extra pages for consumer/producer pages and
|
|
* non-mmap()'able parts, the current maximum size would be:
|
|
*
|
|
* (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
|
|
*
|
|
* This gives 64GB limit, which seems plenty for single ring buffer. Now
|
|
* considering that the maximum value of data_sz is (4GB - 1), there
|
|
* will be no overflow, so just note the size limit in the comments.
|
|
*/
|
|
static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
|
|
{
|
|
struct bpf_ringbuf *rb;
|
|
|
|
rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
|
|
if (!rb)
|
|
return NULL;
|
|
|
|
spin_lock_init(&rb->spinlock);
|
|
atomic_set(&rb->busy, 0);
|
|
init_waitqueue_head(&rb->waitq);
|
|
init_irq_work(&rb->work, bpf_ringbuf_notify);
|
|
|
|
rb->mask = data_sz - 1;
|
|
rb->consumer_pos = 0;
|
|
rb->producer_pos = 0;
|
|
|
|
return rb;
|
|
}
|
|
|
|
static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (attr->key_size || attr->value_size ||
|
|
!is_power_of_2(attr->max_entries) ||
|
|
!PAGE_ALIGNED(attr->max_entries))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
|
|
if (!rb_map)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
bpf_map_init_from_attr(&rb_map->map, attr);
|
|
|
|
rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
|
|
if (!rb_map->rb) {
|
|
bpf_map_area_free(rb_map);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
return &rb_map->map;
|
|
}
|
|
|
|
static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
|
|
{
|
|
/* copy pages pointer and nr_pages to local variable, as we are going
|
|
* to unmap rb itself with vunmap() below
|
|
*/
|
|
struct page **pages = rb->pages;
|
|
int i, nr_pages = rb->nr_pages;
|
|
|
|
vunmap(rb);
|
|
for (i = 0; i < nr_pages; i++)
|
|
__free_page(pages[i]);
|
|
bpf_map_area_free(pages);
|
|
}
|
|
|
|
static void ringbuf_map_free(struct bpf_map *map)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
bpf_ringbuf_free(rb_map->rb);
|
|
bpf_map_area_free(rb_map);
|
|
}
|
|
|
|
static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
|
|
{
|
|
return ERR_PTR(-ENOTSUPP);
|
|
}
|
|
|
|
static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
|
|
u64 flags)
|
|
{
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static long ringbuf_map_delete_elem(struct bpf_map *map, void *key)
|
|
{
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
|
|
void *next_key)
|
|
{
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
|
|
if (vma->vm_flags & VM_WRITE) {
|
|
/* allow writable mapping for the consumer_pos only */
|
|
if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
|
|
return -EPERM;
|
|
} else {
|
|
vm_flags_clear(vma, VM_MAYWRITE);
|
|
}
|
|
/* remap_vmalloc_range() checks size and offset constraints */
|
|
return remap_vmalloc_range(vma, rb_map->rb,
|
|
vma->vm_pgoff + RINGBUF_PGOFF);
|
|
}
|
|
|
|
static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
|
|
if (vma->vm_flags & VM_WRITE) {
|
|
if (vma->vm_pgoff == 0)
|
|
/* Disallow writable mappings to the consumer pointer,
|
|
* and allow writable mappings to both the producer
|
|
* position, and the ring buffer data itself.
|
|
*/
|
|
return -EPERM;
|
|
} else {
|
|
vm_flags_clear(vma, VM_MAYWRITE);
|
|
}
|
|
/* remap_vmalloc_range() checks size and offset constraints */
|
|
return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
|
|
}
|
|
|
|
static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
|
|
{
|
|
unsigned long cons_pos, prod_pos;
|
|
|
|
cons_pos = smp_load_acquire(&rb->consumer_pos);
|
|
prod_pos = smp_load_acquire(&rb->producer_pos);
|
|
return prod_pos - cons_pos;
|
|
}
|
|
|
|
static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
|
|
{
|
|
return rb->mask + 1;
|
|
}
|
|
|
|
static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
|
|
struct poll_table_struct *pts)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
poll_wait(filp, &rb_map->rb->waitq, pts);
|
|
|
|
if (ringbuf_avail_data_sz(rb_map->rb))
|
|
return EPOLLIN | EPOLLRDNORM;
|
|
return 0;
|
|
}
|
|
|
|
static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
|
|
struct poll_table_struct *pts)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
poll_wait(filp, &rb_map->rb->waitq, pts);
|
|
|
|
if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
|
|
return EPOLLOUT | EPOLLWRNORM;
|
|
return 0;
|
|
}
|
|
|
|
static u64 ringbuf_map_mem_usage(const struct bpf_map *map)
|
|
{
|
|
struct bpf_ringbuf *rb;
|
|
int nr_data_pages;
|
|
int nr_meta_pages;
|
|
u64 usage = sizeof(struct bpf_ringbuf_map);
|
|
|
|
rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
|
|
usage += (u64)rb->nr_pages << PAGE_SHIFT;
|
|
nr_meta_pages = RINGBUF_NR_META_PAGES;
|
|
nr_data_pages = map->max_entries >> PAGE_SHIFT;
|
|
usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *);
|
|
return usage;
|
|
}
|
|
|
|
BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
|
|
const struct bpf_map_ops ringbuf_map_ops = {
|
|
.map_meta_equal = bpf_map_meta_equal,
|
|
.map_alloc = ringbuf_map_alloc,
|
|
.map_free = ringbuf_map_free,
|
|
.map_mmap = ringbuf_map_mmap_kern,
|
|
.map_poll = ringbuf_map_poll_kern,
|
|
.map_lookup_elem = ringbuf_map_lookup_elem,
|
|
.map_update_elem = ringbuf_map_update_elem,
|
|
.map_delete_elem = ringbuf_map_delete_elem,
|
|
.map_get_next_key = ringbuf_map_get_next_key,
|
|
.map_mem_usage = ringbuf_map_mem_usage,
|
|
.map_btf_id = &ringbuf_map_btf_ids[0],
|
|
};
|
|
|
|
BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
|
|
const struct bpf_map_ops user_ringbuf_map_ops = {
|
|
.map_meta_equal = bpf_map_meta_equal,
|
|
.map_alloc = ringbuf_map_alloc,
|
|
.map_free = ringbuf_map_free,
|
|
.map_mmap = ringbuf_map_mmap_user,
|
|
.map_poll = ringbuf_map_poll_user,
|
|
.map_lookup_elem = ringbuf_map_lookup_elem,
|
|
.map_update_elem = ringbuf_map_update_elem,
|
|
.map_delete_elem = ringbuf_map_delete_elem,
|
|
.map_get_next_key = ringbuf_map_get_next_key,
|
|
.map_mem_usage = ringbuf_map_mem_usage,
|
|
.map_btf_id = &user_ringbuf_map_btf_ids[0],
|
|
};
|
|
|
|
/* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
|
|
* calculate offset from record metadata to ring buffer in pages, rounded
|
|
* down. This page offset is stored as part of record metadata and allows to
|
|
* restore struct bpf_ringbuf * from record pointer. This page offset is
|
|
* stored at offset 4 of record metadata header.
|
|
*/
|
|
static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
|
|
struct bpf_ringbuf_hdr *hdr)
|
|
{
|
|
return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
|
|
}
|
|
|
|
/* Given pointer to ring buffer record header, restore pointer to struct
|
|
* bpf_ringbuf itself by using page offset stored at offset 4
|
|
*/
|
|
static struct bpf_ringbuf *
|
|
bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
|
|
{
|
|
unsigned long addr = (unsigned long)(void *)hdr;
|
|
unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
|
|
|
|
return (void*)((addr & PAGE_MASK) - off);
|
|
}
|
|
|
|
static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
|
|
{
|
|
unsigned long cons_pos, prod_pos, new_prod_pos, flags;
|
|
u32 len, pg_off;
|
|
struct bpf_ringbuf_hdr *hdr;
|
|
|
|
if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
|
|
return NULL;
|
|
|
|
len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
|
|
if (len > ringbuf_total_data_sz(rb))
|
|
return NULL;
|
|
|
|
cons_pos = smp_load_acquire(&rb->consumer_pos);
|
|
|
|
if (in_nmi()) {
|
|
if (!spin_trylock_irqsave(&rb->spinlock, flags))
|
|
return NULL;
|
|
} else {
|
|
spin_lock_irqsave(&rb->spinlock, flags);
|
|
}
|
|
|
|
prod_pos = rb->producer_pos;
|
|
new_prod_pos = prod_pos + len;
|
|
|
|
/* check for out of ringbuf space by ensuring producer position
|
|
* doesn't advance more than (ringbuf_size - 1) ahead
|
|
*/
|
|
if (new_prod_pos - cons_pos > rb->mask) {
|
|
spin_unlock_irqrestore(&rb->spinlock, flags);
|
|
return NULL;
|
|
}
|
|
|
|
hdr = (void *)rb->data + (prod_pos & rb->mask);
|
|
pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
|
|
hdr->len = size | BPF_RINGBUF_BUSY_BIT;
|
|
hdr->pg_off = pg_off;
|
|
|
|
/* pairs with consumer's smp_load_acquire() */
|
|
smp_store_release(&rb->producer_pos, new_prod_pos);
|
|
|
|
spin_unlock_irqrestore(&rb->spinlock, flags);
|
|
|
|
return (void *)hdr + BPF_RINGBUF_HDR_SZ;
|
|
}
|
|
|
|
BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
if (unlikely(flags))
|
|
return 0;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
|
|
.func = bpf_ringbuf_reserve,
|
|
.ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
|
|
{
|
|
unsigned long rec_pos, cons_pos;
|
|
struct bpf_ringbuf_hdr *hdr;
|
|
struct bpf_ringbuf *rb;
|
|
u32 new_len;
|
|
|
|
hdr = sample - BPF_RINGBUF_HDR_SZ;
|
|
rb = bpf_ringbuf_restore_from_rec(hdr);
|
|
new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
|
|
if (discard)
|
|
new_len |= BPF_RINGBUF_DISCARD_BIT;
|
|
|
|
/* update record header with correct final size prefix */
|
|
xchg(&hdr->len, new_len);
|
|
|
|
/* if consumer caught up and is waiting for our record, notify about
|
|
* new data availability
|
|
*/
|
|
rec_pos = (void *)hdr - (void *)rb->data;
|
|
cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
|
|
|
|
if (flags & BPF_RB_FORCE_WAKEUP)
|
|
irq_work_queue(&rb->work);
|
|
else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
|
|
irq_work_queue(&rb->work);
|
|
}
|
|
|
|
BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
|
|
{
|
|
bpf_ringbuf_commit(sample, flags, false /* discard */);
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_submit_proto = {
|
|
.func = bpf_ringbuf_submit,
|
|
.ret_type = RET_VOID,
|
|
.arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
|
|
{
|
|
bpf_ringbuf_commit(sample, flags, true /* discard */);
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_discard_proto = {
|
|
.func = bpf_ringbuf_discard,
|
|
.ret_type = RET_VOID,
|
|
.arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
|
|
u64, flags)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
void *rec;
|
|
|
|
if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
|
|
return -EINVAL;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
rec = __bpf_ringbuf_reserve(rb_map->rb, size);
|
|
if (!rec)
|
|
return -EAGAIN;
|
|
|
|
memcpy(rec, data, size);
|
|
bpf_ringbuf_commit(rec, flags, false /* discard */);
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_output_proto = {
|
|
.func = bpf_ringbuf_output,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
|
|
{
|
|
struct bpf_ringbuf *rb;
|
|
|
|
rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
|
|
|
|
switch (flags) {
|
|
case BPF_RB_AVAIL_DATA:
|
|
return ringbuf_avail_data_sz(rb);
|
|
case BPF_RB_RING_SIZE:
|
|
return ringbuf_total_data_sz(rb);
|
|
case BPF_RB_CONS_POS:
|
|
return smp_load_acquire(&rb->consumer_pos);
|
|
case BPF_RB_PROD_POS:
|
|
return smp_load_acquire(&rb->producer_pos);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_query_proto = {
|
|
.func = bpf_ringbuf_query,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
|
|
struct bpf_dynptr_kern *, ptr)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
void *sample;
|
|
int err;
|
|
|
|
if (unlikely(flags)) {
|
|
bpf_dynptr_set_null(ptr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = bpf_dynptr_check_size(size);
|
|
if (err) {
|
|
bpf_dynptr_set_null(ptr);
|
|
return err;
|
|
}
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
|
|
sample = __bpf_ringbuf_reserve(rb_map->rb, size);
|
|
if (!sample) {
|
|
bpf_dynptr_set_null(ptr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
|
|
.func = bpf_ringbuf_reserve_dynptr,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_ANYTHING,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
|
|
{
|
|
if (!ptr->data)
|
|
return 0;
|
|
|
|
bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
|
|
|
|
bpf_dynptr_set_null(ptr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
|
|
.func = bpf_ringbuf_submit_dynptr,
|
|
.ret_type = RET_VOID,
|
|
.arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
|
|
{
|
|
if (!ptr->data)
|
|
return 0;
|
|
|
|
bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
|
|
|
|
bpf_dynptr_set_null(ptr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
|
|
.func = bpf_ringbuf_discard_dynptr,
|
|
.ret_type = RET_VOID,
|
|
.arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
|
|
{
|
|
int err;
|
|
u32 hdr_len, sample_len, total_len, flags, *hdr;
|
|
u64 cons_pos, prod_pos;
|
|
|
|
/* Synchronizes with smp_store_release() in user-space producer. */
|
|
prod_pos = smp_load_acquire(&rb->producer_pos);
|
|
if (prod_pos % 8)
|
|
return -EINVAL;
|
|
|
|
/* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
|
|
cons_pos = smp_load_acquire(&rb->consumer_pos);
|
|
if (cons_pos >= prod_pos)
|
|
return -ENODATA;
|
|
|
|
hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
|
|
/* Synchronizes with smp_store_release() in user-space producer. */
|
|
hdr_len = smp_load_acquire(hdr);
|
|
flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
|
|
sample_len = hdr_len & ~flags;
|
|
total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);
|
|
|
|
/* The sample must fit within the region advertised by the producer position. */
|
|
if (total_len > prod_pos - cons_pos)
|
|
return -EINVAL;
|
|
|
|
/* The sample must fit within the data region of the ring buffer. */
|
|
if (total_len > ringbuf_total_data_sz(rb))
|
|
return -E2BIG;
|
|
|
|
/* The sample must fit into a struct bpf_dynptr. */
|
|
err = bpf_dynptr_check_size(sample_len);
|
|
if (err)
|
|
return -E2BIG;
|
|
|
|
if (flags & BPF_RINGBUF_DISCARD_BIT) {
|
|
/* If the discard bit is set, the sample should be skipped.
|
|
*
|
|
* Update the consumer pos, and return -EAGAIN so the caller
|
|
* knows to skip this sample and try to read the next one.
|
|
*/
|
|
smp_store_release(&rb->consumer_pos, cons_pos + total_len);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (flags & BPF_RINGBUF_BUSY_BIT)
|
|
return -ENODATA;
|
|
|
|
*sample = (void *)((uintptr_t)rb->data +
|
|
(uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
|
|
*size = sample_len;
|
|
return 0;
|
|
}
|
|
|
|
static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
|
|
{
|
|
u64 consumer_pos;
|
|
u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
|
|
|
|
/* Using smp_load_acquire() is unnecessary here, as the busy-bit
|
|
* prevents another task from writing to consumer_pos after it was read
|
|
* by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
|
|
*/
|
|
consumer_pos = rb->consumer_pos;
|
|
/* Synchronizes with smp_load_acquire() in user-space producer. */
|
|
smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
|
|
}
|
|
|
|
BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
|
|
void *, callback_fn, void *, callback_ctx, u64, flags)
|
|
{
|
|
struct bpf_ringbuf *rb;
|
|
long samples, discarded_samples = 0, ret = 0;
|
|
bpf_callback_t callback = (bpf_callback_t)callback_fn;
|
|
u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
|
|
int busy = 0;
|
|
|
|
if (unlikely(flags & ~wakeup_flags))
|
|
return -EINVAL;
|
|
|
|
rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
|
|
|
|
/* If another consumer is already consuming a sample, wait for them to finish. */
|
|
if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
|
|
return -EBUSY;
|
|
|
|
for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
|
|
int err;
|
|
u32 size;
|
|
void *sample;
|
|
struct bpf_dynptr_kern dynptr;
|
|
|
|
err = __bpf_user_ringbuf_peek(rb, &sample, &size);
|
|
if (err) {
|
|
if (err == -ENODATA) {
|
|
break;
|
|
} else if (err == -EAGAIN) {
|
|
discarded_samples++;
|
|
continue;
|
|
} else {
|
|
ret = err;
|
|
goto schedule_work_return;
|
|
}
|
|
}
|
|
|
|
bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
|
|
ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
|
|
__bpf_user_ringbuf_sample_release(rb, size, flags);
|
|
}
|
|
ret = samples - discarded_samples;
|
|
|
|
schedule_work_return:
|
|
/* Prevent the clearing of the busy-bit from being reordered before the
|
|
* storing of any rb consumer or producer positions.
|
|
*/
|
|
atomic_set_release(&rb->busy, 0);
|
|
|
|
if (flags & BPF_RB_FORCE_WAKEUP)
|
|
irq_work_queue(&rb->work);
|
|
else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
|
|
irq_work_queue(&rb->work);
|
|
return ret;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
|
|
.func = bpf_user_ringbuf_drain,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_PTR_TO_FUNC,
|
|
.arg3_type = ARG_PTR_TO_STACK_OR_NULL,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|