mirror of
https://github.com/torvalds/linux.git
synced 2024-11-15 08:31:55 +00:00
9d2a55b403
For those PMU system registers defined in sys_reg_descs[], use macro PMU_SYS_REG() / PMU_PMEVCNTR_EL0 / PMU_PMEVTYPER_EL0 to define them, and later two macros call macro PMU_SYS_REG() actually. Currently the input parameter of PMU_SYS_REG() is another macro which is calculation formula of the value of system registers, so for example, if we want to "SYS_PMINTENSET_EL1" as the name of sys register, actually the name we get is as following: (((3) << 19) | ((0) << 16) | ((9) << 12) | ((14) << 8) | ((1) << 5)) The name of system register is used in some tracepoints such as trace_kvm_sys_access(), if not set correctly, we need to analyze the inaccurate name to get the exact name (which also is inconsistent with other system registers), and also the inaccurate name occupies more space. To fix the issue, use the name as a input parameter of PMU_SYS_REG like MTE_REG or EL2_REG. Signed-off-by: Xiang Chen <chenxiang66@hisilicon.com> Acked-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/1689305920-170523-1-git-send-email-chenxiang66@hisilicon.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
3592 lines
96 KiB
C
3592 lines
96 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012,2013 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* Derived from arch/arm/kvm/coproc.c:
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Authors: Rusty Russell <rusty@rustcorp.com.au>
|
|
* Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/bsearch.h>
|
|
#include <linux/cacheinfo.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/esr.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_hyp.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_nested.h>
|
|
#include <asm/perf_event.h>
|
|
#include <asm/sysreg.h>
|
|
|
|
#include <trace/events/kvm.h>
|
|
|
|
#include "sys_regs.h"
|
|
|
|
#include "trace.h"
|
|
|
|
/*
|
|
* For AArch32, we only take care of what is being trapped. Anything
|
|
* that has to do with init and userspace access has to go via the
|
|
* 64bit interface.
|
|
*/
|
|
|
|
static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
|
|
static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
u64 val);
|
|
|
|
static bool read_from_write_only(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *params,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
|
|
print_sys_reg_instr(params);
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
static bool write_to_read_only(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *params,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
|
|
print_sys_reg_instr(params);
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
|
|
{
|
|
u64 val = 0x8badf00d8badf00d;
|
|
|
|
if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
|
|
__vcpu_read_sys_reg_from_cpu(reg, &val))
|
|
return val;
|
|
|
|
return __vcpu_sys_reg(vcpu, reg);
|
|
}
|
|
|
|
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
|
|
{
|
|
if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
|
|
__vcpu_write_sys_reg_to_cpu(val, reg))
|
|
return;
|
|
|
|
__vcpu_sys_reg(vcpu, reg) = val;
|
|
}
|
|
|
|
/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
|
|
#define CSSELR_MAX 14
|
|
|
|
/*
|
|
* Returns the minimum line size for the selected cache, expressed as
|
|
* Log2(bytes).
|
|
*/
|
|
static u8 get_min_cache_line_size(bool icache)
|
|
{
|
|
u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
|
|
u8 field;
|
|
|
|
if (icache)
|
|
field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
|
|
else
|
|
field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
|
|
|
|
/*
|
|
* Cache line size is represented as Log2(words) in CTR_EL0.
|
|
* Log2(bytes) can be derived with the following:
|
|
*
|
|
* Log2(words) + 2 = Log2(bytes / 4) + 2
|
|
* = Log2(bytes) - 2 + 2
|
|
* = Log2(bytes)
|
|
*/
|
|
return field + 2;
|
|
}
|
|
|
|
/* Which cache CCSIDR represents depends on CSSELR value. */
|
|
static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
|
|
{
|
|
u8 line_size;
|
|
|
|
if (vcpu->arch.ccsidr)
|
|
return vcpu->arch.ccsidr[csselr];
|
|
|
|
line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
|
|
|
|
/*
|
|
* Fabricate a CCSIDR value as the overriding value does not exist.
|
|
* The real CCSIDR value will not be used as it can vary by the
|
|
* physical CPU which the vcpu currently resides in.
|
|
*
|
|
* The line size is determined with get_min_cache_line_size(), which
|
|
* should be valid for all CPUs even if they have different cache
|
|
* configuration.
|
|
*
|
|
* The associativity bits are cleared, meaning the geometry of all data
|
|
* and unified caches (which are guaranteed to be PIPT and thus
|
|
* non-aliasing) are 1 set and 1 way.
|
|
* Guests should not be doing cache operations by set/way at all, and
|
|
* for this reason, we trap them and attempt to infer the intent, so
|
|
* that we can flush the entire guest's address space at the appropriate
|
|
* time. The exposed geometry minimizes the number of the traps.
|
|
* [If guests should attempt to infer aliasing properties from the
|
|
* geometry (which is not permitted by the architecture), they would
|
|
* only do so for virtually indexed caches.]
|
|
*
|
|
* We don't check if the cache level exists as it is allowed to return
|
|
* an UNKNOWN value if not.
|
|
*/
|
|
return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
|
|
}
|
|
|
|
static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
|
|
{
|
|
u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
|
|
u32 *ccsidr = vcpu->arch.ccsidr;
|
|
u32 i;
|
|
|
|
if ((val & CCSIDR_EL1_RES0) ||
|
|
line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
|
|
return -EINVAL;
|
|
|
|
if (!ccsidr) {
|
|
if (val == get_ccsidr(vcpu, csselr))
|
|
return 0;
|
|
|
|
ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
|
|
if (!ccsidr)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < CSSELR_MAX; i++)
|
|
ccsidr[i] = get_ccsidr(vcpu, i);
|
|
|
|
vcpu->arch.ccsidr = ccsidr;
|
|
}
|
|
|
|
ccsidr[csselr] = val;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool access_rw(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write)
|
|
vcpu_write_sys_reg(vcpu, p->regval, r->reg);
|
|
else
|
|
p->regval = vcpu_read_sys_reg(vcpu, r->reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
|
|
*/
|
|
static bool access_dcsw(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (!p->is_write)
|
|
return read_from_write_only(vcpu, p, r);
|
|
|
|
/*
|
|
* Only track S/W ops if we don't have FWB. It still indicates
|
|
* that the guest is a bit broken (S/W operations should only
|
|
* be done by firmware, knowing that there is only a single
|
|
* CPU left in the system, and certainly not from non-secure
|
|
* software).
|
|
*/
|
|
if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
|
|
kvm_set_way_flush(vcpu);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_dcgsw(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (!kvm_has_mte(vcpu->kvm)) {
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
/* Treat MTE S/W ops as we treat the classic ones: with contempt */
|
|
return access_dcsw(vcpu, p, r);
|
|
}
|
|
|
|
static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
|
|
{
|
|
switch (r->aarch32_map) {
|
|
case AA32_LO:
|
|
*mask = GENMASK_ULL(31, 0);
|
|
*shift = 0;
|
|
break;
|
|
case AA32_HI:
|
|
*mask = GENMASK_ULL(63, 32);
|
|
*shift = 32;
|
|
break;
|
|
default:
|
|
*mask = GENMASK_ULL(63, 0);
|
|
*shift = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generic accessor for VM registers. Only called as long as HCR_TVM
|
|
* is set. If the guest enables the MMU, we stop trapping the VM
|
|
* sys_regs and leave it in complete control of the caches.
|
|
*/
|
|
static bool access_vm_reg(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
bool was_enabled = vcpu_has_cache_enabled(vcpu);
|
|
u64 val, mask, shift;
|
|
|
|
BUG_ON(!p->is_write);
|
|
|
|
get_access_mask(r, &mask, &shift);
|
|
|
|
if (~mask) {
|
|
val = vcpu_read_sys_reg(vcpu, r->reg);
|
|
val &= ~mask;
|
|
} else {
|
|
val = 0;
|
|
}
|
|
|
|
val |= (p->regval & (mask >> shift)) << shift;
|
|
vcpu_write_sys_reg(vcpu, val, r->reg);
|
|
|
|
kvm_toggle_cache(vcpu, was_enabled);
|
|
return true;
|
|
}
|
|
|
|
static bool access_actlr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 mask, shift;
|
|
|
|
if (p->is_write)
|
|
return ignore_write(vcpu, p);
|
|
|
|
get_access_mask(r, &mask, &shift);
|
|
p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Trap handler for the GICv3 SGI generation system register.
|
|
* Forward the request to the VGIC emulation.
|
|
* The cp15_64 code makes sure this automatically works
|
|
* for both AArch64 and AArch32 accesses.
|
|
*/
|
|
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
bool g1;
|
|
|
|
if (!p->is_write)
|
|
return read_from_write_only(vcpu, p, r);
|
|
|
|
/*
|
|
* In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
|
|
* Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
|
|
* depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
|
|
* equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
|
|
* group.
|
|
*/
|
|
if (p->Op0 == 0) { /* AArch32 */
|
|
switch (p->Op1) {
|
|
default: /* Keep GCC quiet */
|
|
case 0: /* ICC_SGI1R */
|
|
g1 = true;
|
|
break;
|
|
case 1: /* ICC_ASGI1R */
|
|
case 2: /* ICC_SGI0R */
|
|
g1 = false;
|
|
break;
|
|
}
|
|
} else { /* AArch64 */
|
|
switch (p->Op2) {
|
|
default: /* Keep GCC quiet */
|
|
case 5: /* ICC_SGI1R_EL1 */
|
|
g1 = true;
|
|
break;
|
|
case 6: /* ICC_ASGI1R_EL1 */
|
|
case 7: /* ICC_SGI0R_EL1 */
|
|
g1 = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_gic_sre(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write)
|
|
return ignore_write(vcpu, p);
|
|
|
|
p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
|
|
return true;
|
|
}
|
|
|
|
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write)
|
|
return ignore_write(vcpu, p);
|
|
else
|
|
return read_zero(vcpu, p);
|
|
}
|
|
|
|
static bool trap_undef(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* ARMv8.1 mandates at least a trivial LORegion implementation, where all the
|
|
* RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
|
|
* system, these registers should UNDEF. LORID_EL1 being a RO register, we
|
|
* treat it separately.
|
|
*/
|
|
static bool trap_loregion(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
|
|
u32 sr = reg_to_encoding(r);
|
|
|
|
if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
if (p->is_write && sr == SYS_LORID_EL1)
|
|
return write_to_read_only(vcpu, p, r);
|
|
|
|
return trap_raz_wi(vcpu, p, r);
|
|
}
|
|
|
|
static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 oslsr;
|
|
|
|
if (!p->is_write)
|
|
return read_from_write_only(vcpu, p, r);
|
|
|
|
/* Forward the OSLK bit to OSLSR */
|
|
oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
|
|
if (p->regval & OSLAR_EL1_OSLK)
|
|
oslsr |= OSLSR_EL1_OSLK;
|
|
|
|
__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
|
|
return true;
|
|
}
|
|
|
|
static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write)
|
|
return write_to_read_only(vcpu, p, r);
|
|
|
|
p->regval = __vcpu_sys_reg(vcpu, r->reg);
|
|
return true;
|
|
}
|
|
|
|
static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
u64 val)
|
|
{
|
|
/*
|
|
* The only modifiable bit is the OSLK bit. Refuse the write if
|
|
* userspace attempts to change any other bit in the register.
|
|
*/
|
|
if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
|
|
return -EINVAL;
|
|
|
|
__vcpu_sys_reg(vcpu, rd->reg) = val;
|
|
return 0;
|
|
}
|
|
|
|
static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write) {
|
|
return ignore_write(vcpu, p);
|
|
} else {
|
|
p->regval = read_sysreg(dbgauthstatus_el1);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We want to avoid world-switching all the DBG registers all the
|
|
* time:
|
|
*
|
|
* - If we've touched any debug register, it is likely that we're
|
|
* going to touch more of them. It then makes sense to disable the
|
|
* traps and start doing the save/restore dance
|
|
* - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
|
|
* then mandatory to save/restore the registers, as the guest
|
|
* depends on them.
|
|
*
|
|
* For this, we use a DIRTY bit, indicating the guest has modified the
|
|
* debug registers, used as follow:
|
|
*
|
|
* On guest entry:
|
|
* - If the dirty bit is set (because we're coming back from trapping),
|
|
* disable the traps, save host registers, restore guest registers.
|
|
* - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
|
|
* set the dirty bit, disable the traps, save host registers,
|
|
* restore guest registers.
|
|
* - Otherwise, enable the traps
|
|
*
|
|
* On guest exit:
|
|
* - If the dirty bit is set, save guest registers, restore host
|
|
* registers and clear the dirty bit. This ensure that the host can
|
|
* now use the debug registers.
|
|
*/
|
|
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
access_rw(vcpu, p, r);
|
|
if (p->is_write)
|
|
vcpu_set_flag(vcpu, DEBUG_DIRTY);
|
|
|
|
trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* reg_to_dbg/dbg_to_reg
|
|
*
|
|
* A 32 bit write to a debug register leave top bits alone
|
|
* A 32 bit read from a debug register only returns the bottom bits
|
|
*
|
|
* All writes will set the DEBUG_DIRTY flag to ensure the hyp code
|
|
* switches between host and guest values in future.
|
|
*/
|
|
static void reg_to_dbg(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd,
|
|
u64 *dbg_reg)
|
|
{
|
|
u64 mask, shift, val;
|
|
|
|
get_access_mask(rd, &mask, &shift);
|
|
|
|
val = *dbg_reg;
|
|
val &= ~mask;
|
|
val |= (p->regval & (mask >> shift)) << shift;
|
|
*dbg_reg = val;
|
|
|
|
vcpu_set_flag(vcpu, DEBUG_DIRTY);
|
|
}
|
|
|
|
static void dbg_to_reg(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd,
|
|
u64 *dbg_reg)
|
|
{
|
|
u64 mask, shift;
|
|
|
|
get_access_mask(rd, &mask, &shift);
|
|
p->regval = (*dbg_reg & mask) >> shift;
|
|
}
|
|
|
|
static bool trap_bvr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
|
|
|
|
if (p->is_write)
|
|
reg_to_dbg(vcpu, p, rd, dbg_reg);
|
|
else
|
|
dbg_to_reg(vcpu, p, rd, dbg_reg);
|
|
|
|
trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
u64 val)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
|
|
return 0;
|
|
}
|
|
|
|
static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
u64 *val)
|
|
{
|
|
*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
|
|
return 0;
|
|
}
|
|
|
|
static u64 reset_bvr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
|
|
return rd->val;
|
|
}
|
|
|
|
static bool trap_bcr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
|
|
|
|
if (p->is_write)
|
|
reg_to_dbg(vcpu, p, rd, dbg_reg);
|
|
else
|
|
dbg_to_reg(vcpu, p, rd, dbg_reg);
|
|
|
|
trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
u64 val)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
|
|
return 0;
|
|
}
|
|
|
|
static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
u64 *val)
|
|
{
|
|
*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
|
|
return 0;
|
|
}
|
|
|
|
static u64 reset_bcr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
|
|
return rd->val;
|
|
}
|
|
|
|
static bool trap_wvr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
|
|
|
|
if (p->is_write)
|
|
reg_to_dbg(vcpu, p, rd, dbg_reg);
|
|
else
|
|
dbg_to_reg(vcpu, p, rd, dbg_reg);
|
|
|
|
trace_trap_reg(__func__, rd->CRm, p->is_write,
|
|
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
u64 val)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
|
|
return 0;
|
|
}
|
|
|
|
static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
u64 *val)
|
|
{
|
|
*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
|
|
return 0;
|
|
}
|
|
|
|
static u64 reset_wvr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
|
|
return rd->val;
|
|
}
|
|
|
|
static bool trap_wcr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
|
|
|
|
if (p->is_write)
|
|
reg_to_dbg(vcpu, p, rd, dbg_reg);
|
|
else
|
|
dbg_to_reg(vcpu, p, rd, dbg_reg);
|
|
|
|
trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
u64 val)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
|
|
return 0;
|
|
}
|
|
|
|
static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
u64 *val)
|
|
{
|
|
*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
|
|
return 0;
|
|
}
|
|
|
|
static u64 reset_wcr(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
|
|
return rd->val;
|
|
}
|
|
|
|
static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
|
|
{
|
|
u64 amair = read_sysreg(amair_el1);
|
|
vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
|
|
return amair;
|
|
}
|
|
|
|
static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
|
|
{
|
|
u64 actlr = read_sysreg(actlr_el1);
|
|
vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
|
|
return actlr;
|
|
}
|
|
|
|
static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
|
|
{
|
|
u64 mpidr;
|
|
|
|
/*
|
|
* Map the vcpu_id into the first three affinity level fields of
|
|
* the MPIDR. We limit the number of VCPUs in level 0 due to a
|
|
* limitation to 16 CPUs in that level in the ICC_SGIxR registers
|
|
* of the GICv3 to be able to address each CPU directly when
|
|
* sending IPIs.
|
|
*/
|
|
mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
|
|
mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
|
|
mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
|
|
mpidr |= (1ULL << 31);
|
|
vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
|
|
|
|
return mpidr;
|
|
}
|
|
|
|
static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (kvm_vcpu_has_pmu(vcpu))
|
|
return 0;
|
|
|
|
return REG_HIDDEN;
|
|
}
|
|
|
|
static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
|
|
{
|
|
u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
|
|
|
|
/* No PMU available, any PMU reg may UNDEF... */
|
|
if (!kvm_arm_support_pmu_v3())
|
|
return 0;
|
|
|
|
n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
|
|
n &= ARMV8_PMU_PMCR_N_MASK;
|
|
if (n)
|
|
mask |= GENMASK(n - 1, 0);
|
|
|
|
reset_unknown(vcpu, r);
|
|
__vcpu_sys_reg(vcpu, r->reg) &= mask;
|
|
|
|
return __vcpu_sys_reg(vcpu, r->reg);
|
|
}
|
|
|
|
static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
|
|
{
|
|
reset_unknown(vcpu, r);
|
|
__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
|
|
|
|
return __vcpu_sys_reg(vcpu, r->reg);
|
|
}
|
|
|
|
static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
|
|
{
|
|
reset_unknown(vcpu, r);
|
|
__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
|
|
|
|
return __vcpu_sys_reg(vcpu, r->reg);
|
|
}
|
|
|
|
static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
|
|
{
|
|
reset_unknown(vcpu, r);
|
|
__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
|
|
|
|
return __vcpu_sys_reg(vcpu, r->reg);
|
|
}
|
|
|
|
static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
|
|
{
|
|
u64 pmcr;
|
|
|
|
/* No PMU available, PMCR_EL0 may UNDEF... */
|
|
if (!kvm_arm_support_pmu_v3())
|
|
return 0;
|
|
|
|
/* Only preserve PMCR_EL0.N, and reset the rest to 0 */
|
|
pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
|
|
if (!kvm_supports_32bit_el0())
|
|
pmcr |= ARMV8_PMU_PMCR_LC;
|
|
|
|
__vcpu_sys_reg(vcpu, r->reg) = pmcr;
|
|
|
|
return __vcpu_sys_reg(vcpu, r->reg);
|
|
}
|
|
|
|
static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
|
|
{
|
|
u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
|
|
bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
|
|
|
|
if (!enabled)
|
|
kvm_inject_undefined(vcpu);
|
|
|
|
return !enabled;
|
|
}
|
|
|
|
static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
|
|
}
|
|
|
|
static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
|
|
}
|
|
|
|
static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
|
|
}
|
|
|
|
static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
|
|
}
|
|
|
|
static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 val;
|
|
|
|
if (pmu_access_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
if (p->is_write) {
|
|
/*
|
|
* Only update writeable bits of PMCR (continuing into
|
|
* kvm_pmu_handle_pmcr() as well)
|
|
*/
|
|
val = __vcpu_sys_reg(vcpu, PMCR_EL0);
|
|
val &= ~ARMV8_PMU_PMCR_MASK;
|
|
val |= p->regval & ARMV8_PMU_PMCR_MASK;
|
|
if (!kvm_supports_32bit_el0())
|
|
val |= ARMV8_PMU_PMCR_LC;
|
|
kvm_pmu_handle_pmcr(vcpu, val);
|
|
} else {
|
|
/* PMCR.P & PMCR.C are RAZ */
|
|
val = __vcpu_sys_reg(vcpu, PMCR_EL0)
|
|
& ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
|
|
p->regval = val;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (pmu_access_event_counter_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
if (p->is_write)
|
|
__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
|
|
else
|
|
/* return PMSELR.SEL field */
|
|
p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
|
|
& ARMV8_PMU_COUNTER_MASK;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 pmceid, mask, shift;
|
|
|
|
BUG_ON(p->is_write);
|
|
|
|
if (pmu_access_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
get_access_mask(r, &mask, &shift);
|
|
|
|
pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
|
|
pmceid &= mask;
|
|
pmceid >>= shift;
|
|
|
|
p->regval = pmceid;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
|
|
{
|
|
u64 pmcr, val;
|
|
|
|
pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
|
|
val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
|
|
if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
|
|
u64 *val)
|
|
{
|
|
u64 idx;
|
|
|
|
if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
|
|
/* PMCCNTR_EL0 */
|
|
idx = ARMV8_PMU_CYCLE_IDX;
|
|
else
|
|
/* PMEVCNTRn_EL0 */
|
|
idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
|
|
|
|
*val = kvm_pmu_get_counter_value(vcpu, idx);
|
|
return 0;
|
|
}
|
|
|
|
static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 idx = ~0UL;
|
|
|
|
if (r->CRn == 9 && r->CRm == 13) {
|
|
if (r->Op2 == 2) {
|
|
/* PMXEVCNTR_EL0 */
|
|
if (pmu_access_event_counter_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
|
|
& ARMV8_PMU_COUNTER_MASK;
|
|
} else if (r->Op2 == 0) {
|
|
/* PMCCNTR_EL0 */
|
|
if (pmu_access_cycle_counter_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
idx = ARMV8_PMU_CYCLE_IDX;
|
|
}
|
|
} else if (r->CRn == 0 && r->CRm == 9) {
|
|
/* PMCCNTR */
|
|
if (pmu_access_event_counter_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
idx = ARMV8_PMU_CYCLE_IDX;
|
|
} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
|
|
/* PMEVCNTRn_EL0 */
|
|
if (pmu_access_event_counter_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
|
|
}
|
|
|
|
/* Catch any decoding mistake */
|
|
WARN_ON(idx == ~0UL);
|
|
|
|
if (!pmu_counter_idx_valid(vcpu, idx))
|
|
return false;
|
|
|
|
if (p->is_write) {
|
|
if (pmu_access_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
kvm_pmu_set_counter_value(vcpu, idx, p->regval);
|
|
} else {
|
|
p->regval = kvm_pmu_get_counter_value(vcpu, idx);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 idx, reg;
|
|
|
|
if (pmu_access_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
|
|
/* PMXEVTYPER_EL0 */
|
|
idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
|
|
reg = PMEVTYPER0_EL0 + idx;
|
|
} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
|
|
idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
|
|
if (idx == ARMV8_PMU_CYCLE_IDX)
|
|
reg = PMCCFILTR_EL0;
|
|
else
|
|
/* PMEVTYPERn_EL0 */
|
|
reg = PMEVTYPER0_EL0 + idx;
|
|
} else {
|
|
BUG();
|
|
}
|
|
|
|
if (!pmu_counter_idx_valid(vcpu, idx))
|
|
return false;
|
|
|
|
if (p->is_write) {
|
|
kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
|
|
kvm_vcpu_pmu_restore_guest(vcpu);
|
|
} else {
|
|
p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 val, mask;
|
|
|
|
if (pmu_access_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
mask = kvm_pmu_valid_counter_mask(vcpu);
|
|
if (p->is_write) {
|
|
val = p->regval & mask;
|
|
if (r->Op2 & 0x1) {
|
|
/* accessing PMCNTENSET_EL0 */
|
|
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
|
|
kvm_pmu_enable_counter_mask(vcpu, val);
|
|
kvm_vcpu_pmu_restore_guest(vcpu);
|
|
} else {
|
|
/* accessing PMCNTENCLR_EL0 */
|
|
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
|
|
kvm_pmu_disable_counter_mask(vcpu, val);
|
|
}
|
|
} else {
|
|
p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 mask = kvm_pmu_valid_counter_mask(vcpu);
|
|
|
|
if (check_pmu_access_disabled(vcpu, 0))
|
|
return false;
|
|
|
|
if (p->is_write) {
|
|
u64 val = p->regval & mask;
|
|
|
|
if (r->Op2 & 0x1)
|
|
/* accessing PMINTENSET_EL1 */
|
|
__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
|
|
else
|
|
/* accessing PMINTENCLR_EL1 */
|
|
__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
|
|
} else {
|
|
p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 mask = kvm_pmu_valid_counter_mask(vcpu);
|
|
|
|
if (pmu_access_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
if (p->is_write) {
|
|
if (r->CRm & 0x2)
|
|
/* accessing PMOVSSET_EL0 */
|
|
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
|
|
else
|
|
/* accessing PMOVSCLR_EL0 */
|
|
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
|
|
} else {
|
|
p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u64 mask;
|
|
|
|
if (!p->is_write)
|
|
return read_from_write_only(vcpu, p, r);
|
|
|
|
if (pmu_write_swinc_el0_disabled(vcpu))
|
|
return false;
|
|
|
|
mask = kvm_pmu_valid_counter_mask(vcpu);
|
|
kvm_pmu_software_increment(vcpu, p->regval & mask);
|
|
return true;
|
|
}
|
|
|
|
static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write) {
|
|
if (!vcpu_mode_priv(vcpu)) {
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
|
|
p->regval & ARMV8_PMU_USERENR_MASK;
|
|
} else {
|
|
p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
|
|
& ARMV8_PMU_USERENR_MASK;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
|
|
#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
|
|
{ SYS_DESC(SYS_DBGBVRn_EL1(n)), \
|
|
trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
|
|
{ SYS_DESC(SYS_DBGBCRn_EL1(n)), \
|
|
trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
|
|
{ SYS_DESC(SYS_DBGWVRn_EL1(n)), \
|
|
trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
|
|
{ SYS_DESC(SYS_DBGWCRn_EL1(n)), \
|
|
trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
|
|
|
|
#define PMU_SYS_REG(name) \
|
|
SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \
|
|
.visibility = pmu_visibility
|
|
|
|
/* Macro to expand the PMEVCNTRn_EL0 register */
|
|
#define PMU_PMEVCNTR_EL0(n) \
|
|
{ PMU_SYS_REG(PMEVCNTRn_EL0(n)), \
|
|
.reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \
|
|
.access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
|
|
|
|
/* Macro to expand the PMEVTYPERn_EL0 register */
|
|
#define PMU_PMEVTYPER_EL0(n) \
|
|
{ PMU_SYS_REG(PMEVTYPERn_EL0(n)), \
|
|
.reset = reset_pmevtyper, \
|
|
.access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
|
|
|
|
static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
kvm_inject_undefined(vcpu);
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Macro to expand the AMU counter and type registers*/
|
|
#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
|
|
#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
|
|
#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
|
|
#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
|
|
|
|
static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
|
|
}
|
|
|
|
/*
|
|
* If we land here on a PtrAuth access, that is because we didn't
|
|
* fixup the access on exit by allowing the PtrAuth sysregs. The only
|
|
* way this happens is when the guest does not have PtrAuth support
|
|
* enabled.
|
|
*/
|
|
#define __PTRAUTH_KEY(k) \
|
|
{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
|
|
.visibility = ptrauth_visibility}
|
|
|
|
#define PTRAUTH_KEY(k) \
|
|
__PTRAUTH_KEY(k ## KEYLO_EL1), \
|
|
__PTRAUTH_KEY(k ## KEYHI_EL1)
|
|
|
|
static bool access_arch_timer(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
enum kvm_arch_timers tmr;
|
|
enum kvm_arch_timer_regs treg;
|
|
u64 reg = reg_to_encoding(r);
|
|
|
|
switch (reg) {
|
|
case SYS_CNTP_TVAL_EL0:
|
|
case SYS_AARCH32_CNTP_TVAL:
|
|
tmr = TIMER_PTIMER;
|
|
treg = TIMER_REG_TVAL;
|
|
break;
|
|
case SYS_CNTP_CTL_EL0:
|
|
case SYS_AARCH32_CNTP_CTL:
|
|
tmr = TIMER_PTIMER;
|
|
treg = TIMER_REG_CTL;
|
|
break;
|
|
case SYS_CNTP_CVAL_EL0:
|
|
case SYS_AARCH32_CNTP_CVAL:
|
|
tmr = TIMER_PTIMER;
|
|
treg = TIMER_REG_CVAL;
|
|
break;
|
|
case SYS_CNTPCT_EL0:
|
|
case SYS_CNTPCTSS_EL0:
|
|
case SYS_AARCH32_CNTPCT:
|
|
tmr = TIMER_PTIMER;
|
|
treg = TIMER_REG_CNT;
|
|
break;
|
|
default:
|
|
print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
if (p->is_write)
|
|
kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
|
|
else
|
|
p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
|
|
|
|
return true;
|
|
}
|
|
|
|
static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
|
|
s64 new, s64 cur)
|
|
{
|
|
struct arm64_ftr_bits kvm_ftr = *ftrp;
|
|
|
|
/* Some features have different safe value type in KVM than host features */
|
|
switch (id) {
|
|
case SYS_ID_AA64DFR0_EL1:
|
|
if (kvm_ftr.shift == ID_AA64DFR0_EL1_PMUVer_SHIFT)
|
|
kvm_ftr.type = FTR_LOWER_SAFE;
|
|
break;
|
|
case SYS_ID_DFR0_EL1:
|
|
if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
|
|
kvm_ftr.type = FTR_LOWER_SAFE;
|
|
break;
|
|
}
|
|
|
|
return arm64_ftr_safe_value(&kvm_ftr, new, cur);
|
|
}
|
|
|
|
/**
|
|
* arm64_check_features() - Check if a feature register value constitutes
|
|
* a subset of features indicated by the idreg's KVM sanitised limit.
|
|
*
|
|
* This function will check if each feature field of @val is the "safe" value
|
|
* against idreg's KVM sanitised limit return from reset() callback.
|
|
* If a field value in @val is the same as the one in limit, it is always
|
|
* considered the safe value regardless For register fields that are not in
|
|
* writable, only the value in limit is considered the safe value.
|
|
*
|
|
* Return: 0 if all the fields are safe. Otherwise, return negative errno.
|
|
*/
|
|
static int arm64_check_features(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd,
|
|
u64 val)
|
|
{
|
|
const struct arm64_ftr_reg *ftr_reg;
|
|
const struct arm64_ftr_bits *ftrp = NULL;
|
|
u32 id = reg_to_encoding(rd);
|
|
u64 writable_mask = rd->val;
|
|
u64 limit = rd->reset(vcpu, rd);
|
|
u64 mask = 0;
|
|
|
|
/*
|
|
* Hidden and unallocated ID registers may not have a corresponding
|
|
* struct arm64_ftr_reg. Of course, if the register is RAZ we know the
|
|
* only safe value is 0.
|
|
*/
|
|
if (sysreg_visible_as_raz(vcpu, rd))
|
|
return val ? -E2BIG : 0;
|
|
|
|
ftr_reg = get_arm64_ftr_reg(id);
|
|
if (!ftr_reg)
|
|
return -EINVAL;
|
|
|
|
ftrp = ftr_reg->ftr_bits;
|
|
|
|
for (; ftrp && ftrp->width; ftrp++) {
|
|
s64 f_val, f_lim, safe_val;
|
|
u64 ftr_mask;
|
|
|
|
ftr_mask = arm64_ftr_mask(ftrp);
|
|
if ((ftr_mask & writable_mask) != ftr_mask)
|
|
continue;
|
|
|
|
f_val = arm64_ftr_value(ftrp, val);
|
|
f_lim = arm64_ftr_value(ftrp, limit);
|
|
mask |= ftr_mask;
|
|
|
|
if (f_val == f_lim)
|
|
safe_val = f_val;
|
|
else
|
|
safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
|
|
|
|
if (safe_val != f_val)
|
|
return -E2BIG;
|
|
}
|
|
|
|
/* For fields that are not writable, values in limit are the safe values. */
|
|
if ((val & ~mask) != (limit & ~mask))
|
|
return -E2BIG;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u8 pmuver_to_perfmon(u8 pmuver)
|
|
{
|
|
switch (pmuver) {
|
|
case ID_AA64DFR0_EL1_PMUVer_IMP:
|
|
return ID_DFR0_EL1_PerfMon_PMUv3;
|
|
case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
|
|
return ID_DFR0_EL1_PerfMon_IMPDEF;
|
|
default:
|
|
/* Anything ARMv8.1+ and NI have the same value. For now. */
|
|
return pmuver;
|
|
}
|
|
}
|
|
|
|
/* Read a sanitised cpufeature ID register by sys_reg_desc */
|
|
static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u32 id = reg_to_encoding(r);
|
|
u64 val;
|
|
|
|
if (sysreg_visible_as_raz(vcpu, r))
|
|
return 0;
|
|
|
|
val = read_sanitised_ftr_reg(id);
|
|
|
|
switch (id) {
|
|
case SYS_ID_AA64PFR1_EL1:
|
|
if (!kvm_has_mte(vcpu->kvm))
|
|
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
|
|
|
|
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
|
|
break;
|
|
case SYS_ID_AA64ISAR1_EL1:
|
|
if (!vcpu_has_ptrauth(vcpu))
|
|
val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
|
|
ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
|
|
ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
|
|
ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
|
|
break;
|
|
case SYS_ID_AA64ISAR2_EL1:
|
|
if (!vcpu_has_ptrauth(vcpu))
|
|
val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
|
|
ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
|
|
if (!cpus_have_final_cap(ARM64_HAS_WFXT))
|
|
val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
|
|
val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_MOPS);
|
|
break;
|
|
case SYS_ID_AA64MMFR2_EL1:
|
|
val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
|
|
break;
|
|
case SYS_ID_MMFR4_EL1:
|
|
val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
|
|
break;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
return __kvm_read_sanitised_id_reg(vcpu, r);
|
|
}
|
|
|
|
static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
|
|
{
|
|
return IDREG(vcpu->kvm, reg_to_encoding(r));
|
|
}
|
|
|
|
/*
|
|
* Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
|
|
* (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
|
|
*/
|
|
static inline bool is_id_reg(u32 id)
|
|
{
|
|
return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
|
|
sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
|
|
sys_reg_CRm(id) < 8);
|
|
}
|
|
|
|
static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u32 id = reg_to_encoding(r);
|
|
|
|
switch (id) {
|
|
case SYS_ID_AA64ZFR0_EL1:
|
|
if (!vcpu_has_sve(vcpu))
|
|
return REG_RAZ;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
/*
|
|
* AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
|
|
* EL. Promote to RAZ/WI in order to guarantee consistency between
|
|
* systems.
|
|
*/
|
|
if (!kvm_supports_32bit_el0())
|
|
return REG_RAZ | REG_USER_WI;
|
|
|
|
return id_visibility(vcpu, r);
|
|
}
|
|
|
|
static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
return REG_RAZ;
|
|
}
|
|
|
|
/* cpufeature ID register access trap handlers */
|
|
|
|
static bool access_id_reg(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write)
|
|
return write_to_read_only(vcpu, p, r);
|
|
|
|
p->regval = read_id_reg(vcpu, r);
|
|
if (vcpu_has_nv(vcpu))
|
|
access_nested_id_reg(vcpu, p, r);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Visibility overrides for SVE-specific control registers */
|
|
static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
if (vcpu_has_sve(vcpu))
|
|
return 0;
|
|
|
|
return REG_HIDDEN;
|
|
}
|
|
|
|
static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
|
|
|
|
if (!vcpu_has_sve(vcpu))
|
|
val &= ~ID_AA64PFR0_EL1_SVE_MASK;
|
|
|
|
/*
|
|
* The default is to expose CSV2 == 1 if the HW isn't affected.
|
|
* Although this is a per-CPU feature, we make it global because
|
|
* asymmetric systems are just a nuisance.
|
|
*
|
|
* Userspace can override this as long as it doesn't promise
|
|
* the impossible.
|
|
*/
|
|
if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
|
|
val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
|
|
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
|
|
}
|
|
if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
|
|
val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
|
|
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
|
|
}
|
|
|
|
if (kvm_vgic_global_state.type == VGIC_V3) {
|
|
val &= ~ID_AA64PFR0_EL1_GIC_MASK;
|
|
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
|
|
}
|
|
|
|
val &= ~ID_AA64PFR0_EL1_AMU_MASK;
|
|
|
|
return val;
|
|
}
|
|
|
|
static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
|
|
|
|
/* Limit debug to ARMv8.0 */
|
|
val &= ~ID_AA64DFR0_EL1_DebugVer_MASK;
|
|
val |= SYS_FIELD_PREP_ENUM(ID_AA64DFR0_EL1, DebugVer, IMP);
|
|
|
|
/*
|
|
* Only initialize the PMU version if the vCPU was configured with one.
|
|
*/
|
|
val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
|
|
if (kvm_vcpu_has_pmu(vcpu))
|
|
val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
|
|
kvm_arm_pmu_get_pmuver_limit());
|
|
|
|
/* Hide SPE from guests */
|
|
val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
|
|
|
|
return val;
|
|
}
|
|
|
|
static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd,
|
|
u64 val)
|
|
{
|
|
u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
|
|
|
|
/*
|
|
* Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
|
|
* ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
|
|
* exposed an IMP_DEF PMU to userspace and the guest on systems w/
|
|
* non-architectural PMUs. Of course, PMUv3 is the only game in town for
|
|
* PMU virtualization, so the IMP_DEF value was rather user-hostile.
|
|
*
|
|
* At minimum, we're on the hook to allow values that were given to
|
|
* userspace by KVM. Cover our tracks here and replace the IMP_DEF value
|
|
* with a more sensible NI. The value of an ID register changing under
|
|
* the nose of the guest is unfortunate, but is certainly no more
|
|
* surprising than an ill-guided PMU driver poking at impdef system
|
|
* registers that end in an UNDEF...
|
|
*/
|
|
if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
|
|
val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
|
|
|
|
return set_id_reg(vcpu, rd, val);
|
|
}
|
|
|
|
static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
|
|
u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
|
|
|
|
val &= ~ID_DFR0_EL1_PerfMon_MASK;
|
|
if (kvm_vcpu_has_pmu(vcpu))
|
|
val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
|
|
|
|
return val;
|
|
}
|
|
|
|
static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd,
|
|
u64 val)
|
|
{
|
|
u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
|
|
|
|
if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
|
|
val &= ~ID_DFR0_EL1_PerfMon_MASK;
|
|
perfmon = 0;
|
|
}
|
|
|
|
/*
|
|
* Allow DFR0_EL1.PerfMon to be set from userspace as long as
|
|
* it doesn't promise more than what the HW gives us on the
|
|
* AArch64 side (as everything is emulated with that), and
|
|
* that this is a PMUv3.
|
|
*/
|
|
if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
|
|
return -EINVAL;
|
|
|
|
return set_id_reg(vcpu, rd, val);
|
|
}
|
|
|
|
/*
|
|
* cpufeature ID register user accessors
|
|
*
|
|
* For now, these registers are immutable for userspace, so no values
|
|
* are stored, and for set_id_reg() we don't allow the effective value
|
|
* to be changed.
|
|
*/
|
|
static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
u64 *val)
|
|
{
|
|
/*
|
|
* Avoid locking if the VM has already started, as the ID registers are
|
|
* guaranteed to be invariant at that point.
|
|
*/
|
|
if (kvm_vm_has_ran_once(vcpu->kvm)) {
|
|
*val = read_id_reg(vcpu, rd);
|
|
return 0;
|
|
}
|
|
|
|
mutex_lock(&vcpu->kvm->arch.config_lock);
|
|
*val = read_id_reg(vcpu, rd);
|
|
mutex_unlock(&vcpu->kvm->arch.config_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
u64 val)
|
|
{
|
|
u32 id = reg_to_encoding(rd);
|
|
int ret;
|
|
|
|
mutex_lock(&vcpu->kvm->arch.config_lock);
|
|
|
|
/*
|
|
* Once the VM has started the ID registers are immutable. Reject any
|
|
* write that does not match the final register value.
|
|
*/
|
|
if (kvm_vm_has_ran_once(vcpu->kvm)) {
|
|
if (val != read_id_reg(vcpu, rd))
|
|
ret = -EBUSY;
|
|
else
|
|
ret = 0;
|
|
|
|
mutex_unlock(&vcpu->kvm->arch.config_lock);
|
|
return ret;
|
|
}
|
|
|
|
ret = arm64_check_features(vcpu, rd, val);
|
|
if (!ret)
|
|
IDREG(vcpu->kvm, id) = val;
|
|
|
|
mutex_unlock(&vcpu->kvm->arch.config_lock);
|
|
|
|
/*
|
|
* arm64_check_features() returns -E2BIG to indicate the register's
|
|
* feature set is a superset of the maximally-allowed register value.
|
|
* While it would be nice to precisely describe this to userspace, the
|
|
* existing UAPI for KVM_SET_ONE_REG has it that invalid register
|
|
* writes return -EINVAL.
|
|
*/
|
|
if (ret == -E2BIG)
|
|
ret = -EINVAL;
|
|
return ret;
|
|
}
|
|
|
|
static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
u64 *val)
|
|
{
|
|
*val = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
u64 val)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write)
|
|
return write_to_read_only(vcpu, p, r);
|
|
|
|
p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
|
|
return true;
|
|
}
|
|
|
|
static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write)
|
|
return write_to_read_only(vcpu, p, r);
|
|
|
|
p->regval = __vcpu_sys_reg(vcpu, r->reg);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
|
|
* by the physical CPU which the vcpu currently resides in.
|
|
*/
|
|
static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
|
|
{
|
|
u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
|
|
u64 clidr;
|
|
u8 loc;
|
|
|
|
if ((ctr_el0 & CTR_EL0_IDC)) {
|
|
/*
|
|
* Data cache clean to the PoU is not required so LoUU and LoUIS
|
|
* will not be set and a unified cache, which will be marked as
|
|
* LoC, will be added.
|
|
*
|
|
* If not DIC, let the unified cache L2 so that an instruction
|
|
* cache can be added as L1 later.
|
|
*/
|
|
loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
|
|
clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
|
|
} else {
|
|
/*
|
|
* Data cache clean to the PoU is required so let L1 have a data
|
|
* cache and mark it as LoUU and LoUIS. As L1 has a data cache,
|
|
* it can be marked as LoC too.
|
|
*/
|
|
loc = 1;
|
|
clidr = 1 << CLIDR_LOUU_SHIFT;
|
|
clidr |= 1 << CLIDR_LOUIS_SHIFT;
|
|
clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
|
|
}
|
|
|
|
/*
|
|
* Instruction cache invalidation to the PoU is required so let L1 have
|
|
* an instruction cache. If L1 already has a data cache, it will be
|
|
* CACHE_TYPE_SEPARATE.
|
|
*/
|
|
if (!(ctr_el0 & CTR_EL0_DIC))
|
|
clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
|
|
|
|
clidr |= loc << CLIDR_LOC_SHIFT;
|
|
|
|
/*
|
|
* Add tag cache unified to data cache. Allocation tags and data are
|
|
* unified in a cache line so that it looks valid even if there is only
|
|
* one cache line.
|
|
*/
|
|
if (kvm_has_mte(vcpu->kvm))
|
|
clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
|
|
|
|
__vcpu_sys_reg(vcpu, r->reg) = clidr;
|
|
|
|
return __vcpu_sys_reg(vcpu, r->reg);
|
|
}
|
|
|
|
static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
|
|
u64 val)
|
|
{
|
|
u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
|
|
u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
|
|
|
|
if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
|
|
return -EINVAL;
|
|
|
|
__vcpu_sys_reg(vcpu, rd->reg) = val;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
int reg = r->reg;
|
|
|
|
if (p->is_write)
|
|
vcpu_write_sys_reg(vcpu, p->regval, reg);
|
|
else
|
|
p->regval = vcpu_read_sys_reg(vcpu, reg);
|
|
return true;
|
|
}
|
|
|
|
static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
u32 csselr;
|
|
|
|
if (p->is_write)
|
|
return write_to_read_only(vcpu, p, r);
|
|
|
|
csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
|
|
csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
|
|
if (csselr < CSSELR_MAX)
|
|
p->regval = get_ccsidr(vcpu, csselr);
|
|
|
|
return true;
|
|
}
|
|
|
|
static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
if (kvm_has_mte(vcpu->kvm))
|
|
return 0;
|
|
|
|
return REG_HIDDEN;
|
|
}
|
|
|
|
#define MTE_REG(name) { \
|
|
SYS_DESC(SYS_##name), \
|
|
.access = undef_access, \
|
|
.reset = reset_unknown, \
|
|
.reg = name, \
|
|
.visibility = mte_visibility, \
|
|
}
|
|
|
|
static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
if (vcpu_has_nv(vcpu))
|
|
return 0;
|
|
|
|
return REG_HIDDEN;
|
|
}
|
|
|
|
#define EL2_REG(name, acc, rst, v) { \
|
|
SYS_DESC(SYS_##name), \
|
|
.access = acc, \
|
|
.reset = rst, \
|
|
.reg = name, \
|
|
.visibility = el2_visibility, \
|
|
.val = v, \
|
|
}
|
|
|
|
/*
|
|
* EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
|
|
* HCR_EL2.E2H==1, and only in the sysreg table for convenience of
|
|
* handling traps. Given that, they are always hidden from userspace.
|
|
*/
|
|
static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd)
|
|
{
|
|
return REG_HIDDEN_USER;
|
|
}
|
|
|
|
#define EL12_REG(name, acc, rst, v) { \
|
|
SYS_DESC(SYS_##name##_EL12), \
|
|
.access = acc, \
|
|
.reset = rst, \
|
|
.reg = name##_EL1, \
|
|
.val = v, \
|
|
.visibility = elx2_visibility, \
|
|
}
|
|
|
|
/*
|
|
* Since reset() callback and field val are not used for idregs, they will be
|
|
* used for specific purposes for idregs.
|
|
* The reset() would return KVM sanitised register value. The value would be the
|
|
* same as the host kernel sanitised value if there is no KVM sanitisation.
|
|
* The val would be used as a mask indicating writable fields for the idreg.
|
|
* Only bits with 1 are writable from userspace. This mask might not be
|
|
* necessary in the future whenever all ID registers are enabled as writable
|
|
* from userspace.
|
|
*/
|
|
|
|
/* sys_reg_desc initialiser for known cpufeature ID registers */
|
|
#define ID_SANITISED(name) { \
|
|
SYS_DESC(SYS_##name), \
|
|
.access = access_id_reg, \
|
|
.get_user = get_id_reg, \
|
|
.set_user = set_id_reg, \
|
|
.visibility = id_visibility, \
|
|
.reset = kvm_read_sanitised_id_reg, \
|
|
.val = 0, \
|
|
}
|
|
|
|
/* sys_reg_desc initialiser for known cpufeature ID registers */
|
|
#define AA32_ID_SANITISED(name) { \
|
|
SYS_DESC(SYS_##name), \
|
|
.access = access_id_reg, \
|
|
.get_user = get_id_reg, \
|
|
.set_user = set_id_reg, \
|
|
.visibility = aa32_id_visibility, \
|
|
.reset = kvm_read_sanitised_id_reg, \
|
|
.val = 0, \
|
|
}
|
|
|
|
/*
|
|
* sys_reg_desc initialiser for architecturally unallocated cpufeature ID
|
|
* register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
|
|
* (1 <= crm < 8, 0 <= Op2 < 8).
|
|
*/
|
|
#define ID_UNALLOCATED(crm, op2) { \
|
|
Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
|
|
.access = access_id_reg, \
|
|
.get_user = get_id_reg, \
|
|
.set_user = set_id_reg, \
|
|
.visibility = raz_visibility, \
|
|
.reset = kvm_read_sanitised_id_reg, \
|
|
.val = 0, \
|
|
}
|
|
|
|
/*
|
|
* sys_reg_desc initialiser for known ID registers that we hide from guests.
|
|
* For now, these are exposed just like unallocated ID regs: they appear
|
|
* RAZ for the guest.
|
|
*/
|
|
#define ID_HIDDEN(name) { \
|
|
SYS_DESC(SYS_##name), \
|
|
.access = access_id_reg, \
|
|
.get_user = get_id_reg, \
|
|
.set_user = set_id_reg, \
|
|
.visibility = raz_visibility, \
|
|
.reset = kvm_read_sanitised_id_reg, \
|
|
.val = 0, \
|
|
}
|
|
|
|
static bool access_sp_el1(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write)
|
|
__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
|
|
else
|
|
p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_elr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write)
|
|
vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
|
|
else
|
|
p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_spsr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write)
|
|
__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
|
|
else
|
|
p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Architected system registers.
|
|
* Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
|
|
*
|
|
* Debug handling: We do trap most, if not all debug related system
|
|
* registers. The implementation is good enough to ensure that a guest
|
|
* can use these with minimal performance degradation. The drawback is
|
|
* that we don't implement any of the external debug architecture.
|
|
* This should be revisited if we ever encounter a more demanding
|
|
* guest...
|
|
*/
|
|
static const struct sys_reg_desc sys_reg_descs[] = {
|
|
{ SYS_DESC(SYS_DC_ISW), access_dcsw },
|
|
{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
|
|
{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
|
|
{ SYS_DESC(SYS_DC_CSW), access_dcsw },
|
|
{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
|
|
{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
|
|
{ SYS_DESC(SYS_DC_CISW), access_dcsw },
|
|
{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
|
|
{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
|
|
|
|
DBG_BCR_BVR_WCR_WVR_EL1(0),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(1),
|
|
{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
|
|
{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
|
|
DBG_BCR_BVR_WCR_WVR_EL1(2),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(3),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(4),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(5),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(6),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(7),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(8),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(9),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(10),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(11),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(12),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(13),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(14),
|
|
DBG_BCR_BVR_WCR_WVR_EL1(15),
|
|
|
|
{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
|
|
{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
|
|
OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
|
|
{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
|
|
|
|
{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
|
|
{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
|
|
// DBGDTR[TR]X_EL0 share the same encoding
|
|
{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
|
|
|
|
{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
|
|
|
|
{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
|
|
|
|
/*
|
|
* ID regs: all ID_SANITISED() entries here must have corresponding
|
|
* entries in arm64_ftr_regs[].
|
|
*/
|
|
|
|
/* AArch64 mappings of the AArch32 ID registers */
|
|
/* CRm=1 */
|
|
AA32_ID_SANITISED(ID_PFR0_EL1),
|
|
AA32_ID_SANITISED(ID_PFR1_EL1),
|
|
{ SYS_DESC(SYS_ID_DFR0_EL1),
|
|
.access = access_id_reg,
|
|
.get_user = get_id_reg,
|
|
.set_user = set_id_dfr0_el1,
|
|
.visibility = aa32_id_visibility,
|
|
.reset = read_sanitised_id_dfr0_el1,
|
|
.val = ID_DFR0_EL1_PerfMon_MASK, },
|
|
ID_HIDDEN(ID_AFR0_EL1),
|
|
AA32_ID_SANITISED(ID_MMFR0_EL1),
|
|
AA32_ID_SANITISED(ID_MMFR1_EL1),
|
|
AA32_ID_SANITISED(ID_MMFR2_EL1),
|
|
AA32_ID_SANITISED(ID_MMFR3_EL1),
|
|
|
|
/* CRm=2 */
|
|
AA32_ID_SANITISED(ID_ISAR0_EL1),
|
|
AA32_ID_SANITISED(ID_ISAR1_EL1),
|
|
AA32_ID_SANITISED(ID_ISAR2_EL1),
|
|
AA32_ID_SANITISED(ID_ISAR3_EL1),
|
|
AA32_ID_SANITISED(ID_ISAR4_EL1),
|
|
AA32_ID_SANITISED(ID_ISAR5_EL1),
|
|
AA32_ID_SANITISED(ID_MMFR4_EL1),
|
|
AA32_ID_SANITISED(ID_ISAR6_EL1),
|
|
|
|
/* CRm=3 */
|
|
AA32_ID_SANITISED(MVFR0_EL1),
|
|
AA32_ID_SANITISED(MVFR1_EL1),
|
|
AA32_ID_SANITISED(MVFR2_EL1),
|
|
ID_UNALLOCATED(3,3),
|
|
AA32_ID_SANITISED(ID_PFR2_EL1),
|
|
ID_HIDDEN(ID_DFR1_EL1),
|
|
AA32_ID_SANITISED(ID_MMFR5_EL1),
|
|
ID_UNALLOCATED(3,7),
|
|
|
|
/* AArch64 ID registers */
|
|
/* CRm=4 */
|
|
{ SYS_DESC(SYS_ID_AA64PFR0_EL1),
|
|
.access = access_id_reg,
|
|
.get_user = get_id_reg,
|
|
.set_user = set_id_reg,
|
|
.reset = read_sanitised_id_aa64pfr0_el1,
|
|
.val = ID_AA64PFR0_EL1_CSV2_MASK | ID_AA64PFR0_EL1_CSV3_MASK, },
|
|
ID_SANITISED(ID_AA64PFR1_EL1),
|
|
ID_UNALLOCATED(4,2),
|
|
ID_UNALLOCATED(4,3),
|
|
ID_SANITISED(ID_AA64ZFR0_EL1),
|
|
ID_HIDDEN(ID_AA64SMFR0_EL1),
|
|
ID_UNALLOCATED(4,6),
|
|
ID_UNALLOCATED(4,7),
|
|
|
|
/* CRm=5 */
|
|
{ SYS_DESC(SYS_ID_AA64DFR0_EL1),
|
|
.access = access_id_reg,
|
|
.get_user = get_id_reg,
|
|
.set_user = set_id_aa64dfr0_el1,
|
|
.reset = read_sanitised_id_aa64dfr0_el1,
|
|
.val = ID_AA64DFR0_EL1_PMUVer_MASK, },
|
|
ID_SANITISED(ID_AA64DFR1_EL1),
|
|
ID_UNALLOCATED(5,2),
|
|
ID_UNALLOCATED(5,3),
|
|
ID_HIDDEN(ID_AA64AFR0_EL1),
|
|
ID_HIDDEN(ID_AA64AFR1_EL1),
|
|
ID_UNALLOCATED(5,6),
|
|
ID_UNALLOCATED(5,7),
|
|
|
|
/* CRm=6 */
|
|
ID_SANITISED(ID_AA64ISAR0_EL1),
|
|
ID_SANITISED(ID_AA64ISAR1_EL1),
|
|
ID_SANITISED(ID_AA64ISAR2_EL1),
|
|
ID_UNALLOCATED(6,3),
|
|
ID_UNALLOCATED(6,4),
|
|
ID_UNALLOCATED(6,5),
|
|
ID_UNALLOCATED(6,6),
|
|
ID_UNALLOCATED(6,7),
|
|
|
|
/* CRm=7 */
|
|
ID_SANITISED(ID_AA64MMFR0_EL1),
|
|
ID_SANITISED(ID_AA64MMFR1_EL1),
|
|
ID_SANITISED(ID_AA64MMFR2_EL1),
|
|
ID_SANITISED(ID_AA64MMFR3_EL1),
|
|
ID_UNALLOCATED(7,4),
|
|
ID_UNALLOCATED(7,5),
|
|
ID_UNALLOCATED(7,6),
|
|
ID_UNALLOCATED(7,7),
|
|
|
|
{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
|
|
{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
|
|
{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
|
|
|
|
MTE_REG(RGSR_EL1),
|
|
MTE_REG(GCR_EL1),
|
|
|
|
{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
|
|
{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
|
|
{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
|
|
{ SYS_DESC(SYS_SMCR_EL1), undef_access },
|
|
{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
|
|
{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
|
|
{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
|
|
{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
|
|
|
|
PTRAUTH_KEY(APIA),
|
|
PTRAUTH_KEY(APIB),
|
|
PTRAUTH_KEY(APDA),
|
|
PTRAUTH_KEY(APDB),
|
|
PTRAUTH_KEY(APGA),
|
|
|
|
{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
|
|
{ SYS_DESC(SYS_ELR_EL1), access_elr},
|
|
|
|
{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
|
|
{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
|
|
{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
|
|
|
|
{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
|
|
{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
|
|
|
|
MTE_REG(TFSR_EL1),
|
|
MTE_REG(TFSRE0_EL1),
|
|
|
|
{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
|
|
{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
|
|
|
|
{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
|
|
{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
|
|
{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
|
|
{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
|
|
{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
|
|
{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
|
|
{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
|
|
{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
|
|
{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
|
|
{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
|
|
{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
|
|
/* PMBIDR_EL1 is not trapped */
|
|
|
|
{ PMU_SYS_REG(PMINTENSET_EL1),
|
|
.access = access_pminten, .reg = PMINTENSET_EL1 },
|
|
{ PMU_SYS_REG(PMINTENCLR_EL1),
|
|
.access = access_pminten, .reg = PMINTENSET_EL1 },
|
|
{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
|
|
|
|
{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
|
|
{ SYS_DESC(SYS_PIRE0_EL1), access_vm_reg, reset_unknown, PIRE0_EL1 },
|
|
{ SYS_DESC(SYS_PIR_EL1), access_vm_reg, reset_unknown, PIR_EL1 },
|
|
{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
|
|
|
|
{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
|
|
{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
|
|
{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
|
|
{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
|
|
{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
|
|
|
|
{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
|
|
{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
|
|
|
|
{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
|
|
{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
|
|
{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
|
|
{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
|
|
{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
|
|
{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
|
|
{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
|
|
{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
|
|
{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
|
|
{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
|
|
{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
|
|
{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
|
|
|
|
{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
|
|
{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
|
|
|
|
{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
|
|
|
|
{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
|
|
|
|
{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
|
|
{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
|
|
.set_user = set_clidr },
|
|
{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
|
|
{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
|
|
{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
|
|
{ SYS_DESC(SYS_CTR_EL0), access_ctr },
|
|
{ SYS_DESC(SYS_SVCR), undef_access },
|
|
|
|
{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr,
|
|
.reset = reset_pmcr, .reg = PMCR_EL0 },
|
|
{ PMU_SYS_REG(PMCNTENSET_EL0),
|
|
.access = access_pmcnten, .reg = PMCNTENSET_EL0 },
|
|
{ PMU_SYS_REG(PMCNTENCLR_EL0),
|
|
.access = access_pmcnten, .reg = PMCNTENSET_EL0 },
|
|
{ PMU_SYS_REG(PMOVSCLR_EL0),
|
|
.access = access_pmovs, .reg = PMOVSSET_EL0 },
|
|
/*
|
|
* PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
|
|
* previously (and pointlessly) advertised in the past...
|
|
*/
|
|
{ PMU_SYS_REG(PMSWINC_EL0),
|
|
.get_user = get_raz_reg, .set_user = set_wi_reg,
|
|
.access = access_pmswinc, .reset = NULL },
|
|
{ PMU_SYS_REG(PMSELR_EL0),
|
|
.access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
|
|
{ PMU_SYS_REG(PMCEID0_EL0),
|
|
.access = access_pmceid, .reset = NULL },
|
|
{ PMU_SYS_REG(PMCEID1_EL0),
|
|
.access = access_pmceid, .reset = NULL },
|
|
{ PMU_SYS_REG(PMCCNTR_EL0),
|
|
.access = access_pmu_evcntr, .reset = reset_unknown,
|
|
.reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
|
|
{ PMU_SYS_REG(PMXEVTYPER_EL0),
|
|
.access = access_pmu_evtyper, .reset = NULL },
|
|
{ PMU_SYS_REG(PMXEVCNTR_EL0),
|
|
.access = access_pmu_evcntr, .reset = NULL },
|
|
/*
|
|
* PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
|
|
* in 32bit mode. Here we choose to reset it as zero for consistency.
|
|
*/
|
|
{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
|
|
.reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
|
|
{ PMU_SYS_REG(PMOVSSET_EL0),
|
|
.access = access_pmovs, .reg = PMOVSSET_EL0 },
|
|
|
|
{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
|
|
{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
|
|
{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
|
|
|
|
{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
|
|
|
|
{ SYS_DESC(SYS_AMCR_EL0), undef_access },
|
|
{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
|
|
{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
|
|
{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
|
|
{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
|
|
{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
|
|
{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
|
|
{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
|
|
AMU_AMEVCNTR0_EL0(0),
|
|
AMU_AMEVCNTR0_EL0(1),
|
|
AMU_AMEVCNTR0_EL0(2),
|
|
AMU_AMEVCNTR0_EL0(3),
|
|
AMU_AMEVCNTR0_EL0(4),
|
|
AMU_AMEVCNTR0_EL0(5),
|
|
AMU_AMEVCNTR0_EL0(6),
|
|
AMU_AMEVCNTR0_EL0(7),
|
|
AMU_AMEVCNTR0_EL0(8),
|
|
AMU_AMEVCNTR0_EL0(9),
|
|
AMU_AMEVCNTR0_EL0(10),
|
|
AMU_AMEVCNTR0_EL0(11),
|
|
AMU_AMEVCNTR0_EL0(12),
|
|
AMU_AMEVCNTR0_EL0(13),
|
|
AMU_AMEVCNTR0_EL0(14),
|
|
AMU_AMEVCNTR0_EL0(15),
|
|
AMU_AMEVTYPER0_EL0(0),
|
|
AMU_AMEVTYPER0_EL0(1),
|
|
AMU_AMEVTYPER0_EL0(2),
|
|
AMU_AMEVTYPER0_EL0(3),
|
|
AMU_AMEVTYPER0_EL0(4),
|
|
AMU_AMEVTYPER0_EL0(5),
|
|
AMU_AMEVTYPER0_EL0(6),
|
|
AMU_AMEVTYPER0_EL0(7),
|
|
AMU_AMEVTYPER0_EL0(8),
|
|
AMU_AMEVTYPER0_EL0(9),
|
|
AMU_AMEVTYPER0_EL0(10),
|
|
AMU_AMEVTYPER0_EL0(11),
|
|
AMU_AMEVTYPER0_EL0(12),
|
|
AMU_AMEVTYPER0_EL0(13),
|
|
AMU_AMEVTYPER0_EL0(14),
|
|
AMU_AMEVTYPER0_EL0(15),
|
|
AMU_AMEVCNTR1_EL0(0),
|
|
AMU_AMEVCNTR1_EL0(1),
|
|
AMU_AMEVCNTR1_EL0(2),
|
|
AMU_AMEVCNTR1_EL0(3),
|
|
AMU_AMEVCNTR1_EL0(4),
|
|
AMU_AMEVCNTR1_EL0(5),
|
|
AMU_AMEVCNTR1_EL0(6),
|
|
AMU_AMEVCNTR1_EL0(7),
|
|
AMU_AMEVCNTR1_EL0(8),
|
|
AMU_AMEVCNTR1_EL0(9),
|
|
AMU_AMEVCNTR1_EL0(10),
|
|
AMU_AMEVCNTR1_EL0(11),
|
|
AMU_AMEVCNTR1_EL0(12),
|
|
AMU_AMEVCNTR1_EL0(13),
|
|
AMU_AMEVCNTR1_EL0(14),
|
|
AMU_AMEVCNTR1_EL0(15),
|
|
AMU_AMEVTYPER1_EL0(0),
|
|
AMU_AMEVTYPER1_EL0(1),
|
|
AMU_AMEVTYPER1_EL0(2),
|
|
AMU_AMEVTYPER1_EL0(3),
|
|
AMU_AMEVTYPER1_EL0(4),
|
|
AMU_AMEVTYPER1_EL0(5),
|
|
AMU_AMEVTYPER1_EL0(6),
|
|
AMU_AMEVTYPER1_EL0(7),
|
|
AMU_AMEVTYPER1_EL0(8),
|
|
AMU_AMEVTYPER1_EL0(9),
|
|
AMU_AMEVTYPER1_EL0(10),
|
|
AMU_AMEVTYPER1_EL0(11),
|
|
AMU_AMEVTYPER1_EL0(12),
|
|
AMU_AMEVTYPER1_EL0(13),
|
|
AMU_AMEVTYPER1_EL0(14),
|
|
AMU_AMEVTYPER1_EL0(15),
|
|
|
|
{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
|
|
{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
|
|
{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
|
|
{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
|
|
{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
|
|
|
|
/* PMEVCNTRn_EL0 */
|
|
PMU_PMEVCNTR_EL0(0),
|
|
PMU_PMEVCNTR_EL0(1),
|
|
PMU_PMEVCNTR_EL0(2),
|
|
PMU_PMEVCNTR_EL0(3),
|
|
PMU_PMEVCNTR_EL0(4),
|
|
PMU_PMEVCNTR_EL0(5),
|
|
PMU_PMEVCNTR_EL0(6),
|
|
PMU_PMEVCNTR_EL0(7),
|
|
PMU_PMEVCNTR_EL0(8),
|
|
PMU_PMEVCNTR_EL0(9),
|
|
PMU_PMEVCNTR_EL0(10),
|
|
PMU_PMEVCNTR_EL0(11),
|
|
PMU_PMEVCNTR_EL0(12),
|
|
PMU_PMEVCNTR_EL0(13),
|
|
PMU_PMEVCNTR_EL0(14),
|
|
PMU_PMEVCNTR_EL0(15),
|
|
PMU_PMEVCNTR_EL0(16),
|
|
PMU_PMEVCNTR_EL0(17),
|
|
PMU_PMEVCNTR_EL0(18),
|
|
PMU_PMEVCNTR_EL0(19),
|
|
PMU_PMEVCNTR_EL0(20),
|
|
PMU_PMEVCNTR_EL0(21),
|
|
PMU_PMEVCNTR_EL0(22),
|
|
PMU_PMEVCNTR_EL0(23),
|
|
PMU_PMEVCNTR_EL0(24),
|
|
PMU_PMEVCNTR_EL0(25),
|
|
PMU_PMEVCNTR_EL0(26),
|
|
PMU_PMEVCNTR_EL0(27),
|
|
PMU_PMEVCNTR_EL0(28),
|
|
PMU_PMEVCNTR_EL0(29),
|
|
PMU_PMEVCNTR_EL0(30),
|
|
/* PMEVTYPERn_EL0 */
|
|
PMU_PMEVTYPER_EL0(0),
|
|
PMU_PMEVTYPER_EL0(1),
|
|
PMU_PMEVTYPER_EL0(2),
|
|
PMU_PMEVTYPER_EL0(3),
|
|
PMU_PMEVTYPER_EL0(4),
|
|
PMU_PMEVTYPER_EL0(5),
|
|
PMU_PMEVTYPER_EL0(6),
|
|
PMU_PMEVTYPER_EL0(7),
|
|
PMU_PMEVTYPER_EL0(8),
|
|
PMU_PMEVTYPER_EL0(9),
|
|
PMU_PMEVTYPER_EL0(10),
|
|
PMU_PMEVTYPER_EL0(11),
|
|
PMU_PMEVTYPER_EL0(12),
|
|
PMU_PMEVTYPER_EL0(13),
|
|
PMU_PMEVTYPER_EL0(14),
|
|
PMU_PMEVTYPER_EL0(15),
|
|
PMU_PMEVTYPER_EL0(16),
|
|
PMU_PMEVTYPER_EL0(17),
|
|
PMU_PMEVTYPER_EL0(18),
|
|
PMU_PMEVTYPER_EL0(19),
|
|
PMU_PMEVTYPER_EL0(20),
|
|
PMU_PMEVTYPER_EL0(21),
|
|
PMU_PMEVTYPER_EL0(22),
|
|
PMU_PMEVTYPER_EL0(23),
|
|
PMU_PMEVTYPER_EL0(24),
|
|
PMU_PMEVTYPER_EL0(25),
|
|
PMU_PMEVTYPER_EL0(26),
|
|
PMU_PMEVTYPER_EL0(27),
|
|
PMU_PMEVTYPER_EL0(28),
|
|
PMU_PMEVTYPER_EL0(29),
|
|
PMU_PMEVTYPER_EL0(30),
|
|
/*
|
|
* PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
|
|
* in 32bit mode. Here we choose to reset it as zero for consistency.
|
|
*/
|
|
{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
|
|
.reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
|
|
|
|
EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0),
|
|
EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0),
|
|
EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
|
|
EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
|
|
EL2_REG(HCR_EL2, access_rw, reset_val, 0),
|
|
EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
|
|
EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
|
|
EL2_REG(HSTR_EL2, access_rw, reset_val, 0),
|
|
EL2_REG(HACR_EL2, access_rw, reset_val, 0),
|
|
|
|
EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
|
|
EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
|
|
EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
|
|
EL2_REG(VTTBR_EL2, access_rw, reset_val, 0),
|
|
EL2_REG(VTCR_EL2, access_rw, reset_val, 0),
|
|
|
|
{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
|
|
EL2_REG(SPSR_EL2, access_rw, reset_val, 0),
|
|
EL2_REG(ELR_EL2, access_rw, reset_val, 0),
|
|
{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
|
|
|
|
{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
|
|
EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
|
|
EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
|
|
EL2_REG(ESR_EL2, access_rw, reset_val, 0),
|
|
{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
|
|
|
|
EL2_REG(FAR_EL2, access_rw, reset_val, 0),
|
|
EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
|
|
|
|
EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
|
|
EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
|
|
|
|
EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
|
|
EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
|
|
{ SYS_DESC(SYS_RMR_EL2), trap_undef },
|
|
|
|
EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
|
|
EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
|
|
|
|
EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0),
|
|
EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
|
|
|
|
EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078),
|
|
EL12_REG(CPACR, access_rw, reset_val, 0),
|
|
EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0),
|
|
EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0),
|
|
EL12_REG(TCR, access_vm_reg, reset_val, 0),
|
|
{ SYS_DESC(SYS_SPSR_EL12), access_spsr},
|
|
{ SYS_DESC(SYS_ELR_EL12), access_elr},
|
|
EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0),
|
|
EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0),
|
|
EL12_REG(ESR, access_vm_reg, reset_unknown, 0),
|
|
EL12_REG(FAR, access_vm_reg, reset_unknown, 0),
|
|
EL12_REG(MAIR, access_vm_reg, reset_unknown, 0),
|
|
EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0),
|
|
EL12_REG(VBAR, access_rw, reset_val, 0),
|
|
EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0),
|
|
EL12_REG(CNTKCTL, access_rw, reset_val, 0),
|
|
|
|
EL2_REG(SP_EL2, NULL, reset_unknown, 0),
|
|
};
|
|
|
|
static const struct sys_reg_desc *first_idreg;
|
|
|
|
static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *p,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
if (p->is_write) {
|
|
return ignore_write(vcpu, p);
|
|
} else {
|
|
u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
|
|
u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
|
|
u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
|
|
|
|
p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
|
|
(((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
|
|
(((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
|
|
| (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* AArch32 debug register mappings
|
|
*
|
|
* AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
|
|
* AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
|
|
*
|
|
* None of the other registers share their location, so treat them as
|
|
* if they were 64bit.
|
|
*/
|
|
#define DBG_BCR_BVR_WCR_WVR(n) \
|
|
/* DBGBVRn */ \
|
|
{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
|
|
/* DBGBCRn */ \
|
|
{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
|
|
/* DBGWVRn */ \
|
|
{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
|
|
/* DBGWCRn */ \
|
|
{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
|
|
|
|
#define DBGBXVR(n) \
|
|
{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
|
|
|
|
/*
|
|
* Trapped cp14 registers. We generally ignore most of the external
|
|
* debug, on the principle that they don't really make sense to a
|
|
* guest. Revisit this one day, would this principle change.
|
|
*/
|
|
static const struct sys_reg_desc cp14_regs[] = {
|
|
/* DBGDIDR */
|
|
{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
|
|
/* DBGDTRRXext */
|
|
{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
|
|
|
|
DBG_BCR_BVR_WCR_WVR(0),
|
|
/* DBGDSCRint */
|
|
{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
|
|
DBG_BCR_BVR_WCR_WVR(1),
|
|
/* DBGDCCINT */
|
|
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
|
|
/* DBGDSCRext */
|
|
{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
|
|
DBG_BCR_BVR_WCR_WVR(2),
|
|
/* DBGDTR[RT]Xint */
|
|
{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
|
|
/* DBGDTR[RT]Xext */
|
|
{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
|
|
DBG_BCR_BVR_WCR_WVR(3),
|
|
DBG_BCR_BVR_WCR_WVR(4),
|
|
DBG_BCR_BVR_WCR_WVR(5),
|
|
/* DBGWFAR */
|
|
{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
|
|
/* DBGOSECCR */
|
|
{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
|
|
DBG_BCR_BVR_WCR_WVR(6),
|
|
/* DBGVCR */
|
|
{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
|
|
DBG_BCR_BVR_WCR_WVR(7),
|
|
DBG_BCR_BVR_WCR_WVR(8),
|
|
DBG_BCR_BVR_WCR_WVR(9),
|
|
DBG_BCR_BVR_WCR_WVR(10),
|
|
DBG_BCR_BVR_WCR_WVR(11),
|
|
DBG_BCR_BVR_WCR_WVR(12),
|
|
DBG_BCR_BVR_WCR_WVR(13),
|
|
DBG_BCR_BVR_WCR_WVR(14),
|
|
DBG_BCR_BVR_WCR_WVR(15),
|
|
|
|
/* DBGDRAR (32bit) */
|
|
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
|
|
|
|
DBGBXVR(0),
|
|
/* DBGOSLAR */
|
|
{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
|
|
DBGBXVR(1),
|
|
/* DBGOSLSR */
|
|
{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
|
|
DBGBXVR(2),
|
|
DBGBXVR(3),
|
|
/* DBGOSDLR */
|
|
{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
|
|
DBGBXVR(4),
|
|
/* DBGPRCR */
|
|
{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
|
|
DBGBXVR(5),
|
|
DBGBXVR(6),
|
|
DBGBXVR(7),
|
|
DBGBXVR(8),
|
|
DBGBXVR(9),
|
|
DBGBXVR(10),
|
|
DBGBXVR(11),
|
|
DBGBXVR(12),
|
|
DBGBXVR(13),
|
|
DBGBXVR(14),
|
|
DBGBXVR(15),
|
|
|
|
/* DBGDSAR (32bit) */
|
|
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
|
|
|
|
/* DBGDEVID2 */
|
|
{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
|
|
/* DBGDEVID1 */
|
|
{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
|
|
/* DBGDEVID */
|
|
{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
|
|
/* DBGCLAIMSET */
|
|
{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
|
|
/* DBGCLAIMCLR */
|
|
{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
|
|
/* DBGAUTHSTATUS */
|
|
{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
|
|
};
|
|
|
|
/* Trapped cp14 64bit registers */
|
|
static const struct sys_reg_desc cp14_64_regs[] = {
|
|
/* DBGDRAR (64bit) */
|
|
{ Op1( 0), CRm( 1), .access = trap_raz_wi },
|
|
|
|
/* DBGDSAR (64bit) */
|
|
{ Op1( 0), CRm( 2), .access = trap_raz_wi },
|
|
};
|
|
|
|
#define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \
|
|
AA32(_map), \
|
|
Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \
|
|
.visibility = pmu_visibility
|
|
|
|
/* Macro to expand the PMEVCNTRn register */
|
|
#define PMU_PMEVCNTR(n) \
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
|
|
(0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
|
|
.access = access_pmu_evcntr }
|
|
|
|
/* Macro to expand the PMEVTYPERn register */
|
|
#define PMU_PMEVTYPER(n) \
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
|
|
(0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
|
|
.access = access_pmu_evtyper }
|
|
/*
|
|
* Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
|
|
* depending on the way they are accessed (as a 32bit or a 64bit
|
|
* register).
|
|
*/
|
|
static const struct sys_reg_desc cp15_regs[] = {
|
|
{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
|
|
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
|
|
/* ACTLR */
|
|
{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
|
|
/* ACTLR2 */
|
|
{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
|
|
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
|
|
{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
|
|
/* TTBCR */
|
|
{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
|
|
/* TTBCR2 */
|
|
{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
|
|
{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
|
|
/* DFSR */
|
|
{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
|
|
{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
|
|
/* ADFSR */
|
|
{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
|
|
/* AIFSR */
|
|
{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
|
|
/* DFAR */
|
|
{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
|
|
/* IFAR */
|
|
{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
|
|
|
|
/*
|
|
* DC{C,I,CI}SW operations:
|
|
*/
|
|
{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
|
|
{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
|
|
{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
|
|
|
|
/* PMU */
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
|
|
{ CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid },
|
|
{ CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid },
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
|
|
{ CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid },
|
|
{ CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid },
|
|
/* PMMIR */
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
|
|
|
|
/* PRRR/MAIR0 */
|
|
{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
|
|
/* NMRR/MAIR1 */
|
|
{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
|
|
/* AMAIR0 */
|
|
{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
|
|
/* AMAIR1 */
|
|
{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
|
|
|
|
/* ICC_SRE */
|
|
{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
|
|
|
|
{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
|
|
|
|
/* Arch Tmers */
|
|
{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
|
|
{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
|
|
|
|
/* PMEVCNTRn */
|
|
PMU_PMEVCNTR(0),
|
|
PMU_PMEVCNTR(1),
|
|
PMU_PMEVCNTR(2),
|
|
PMU_PMEVCNTR(3),
|
|
PMU_PMEVCNTR(4),
|
|
PMU_PMEVCNTR(5),
|
|
PMU_PMEVCNTR(6),
|
|
PMU_PMEVCNTR(7),
|
|
PMU_PMEVCNTR(8),
|
|
PMU_PMEVCNTR(9),
|
|
PMU_PMEVCNTR(10),
|
|
PMU_PMEVCNTR(11),
|
|
PMU_PMEVCNTR(12),
|
|
PMU_PMEVCNTR(13),
|
|
PMU_PMEVCNTR(14),
|
|
PMU_PMEVCNTR(15),
|
|
PMU_PMEVCNTR(16),
|
|
PMU_PMEVCNTR(17),
|
|
PMU_PMEVCNTR(18),
|
|
PMU_PMEVCNTR(19),
|
|
PMU_PMEVCNTR(20),
|
|
PMU_PMEVCNTR(21),
|
|
PMU_PMEVCNTR(22),
|
|
PMU_PMEVCNTR(23),
|
|
PMU_PMEVCNTR(24),
|
|
PMU_PMEVCNTR(25),
|
|
PMU_PMEVCNTR(26),
|
|
PMU_PMEVCNTR(27),
|
|
PMU_PMEVCNTR(28),
|
|
PMU_PMEVCNTR(29),
|
|
PMU_PMEVCNTR(30),
|
|
/* PMEVTYPERn */
|
|
PMU_PMEVTYPER(0),
|
|
PMU_PMEVTYPER(1),
|
|
PMU_PMEVTYPER(2),
|
|
PMU_PMEVTYPER(3),
|
|
PMU_PMEVTYPER(4),
|
|
PMU_PMEVTYPER(5),
|
|
PMU_PMEVTYPER(6),
|
|
PMU_PMEVTYPER(7),
|
|
PMU_PMEVTYPER(8),
|
|
PMU_PMEVTYPER(9),
|
|
PMU_PMEVTYPER(10),
|
|
PMU_PMEVTYPER(11),
|
|
PMU_PMEVTYPER(12),
|
|
PMU_PMEVTYPER(13),
|
|
PMU_PMEVTYPER(14),
|
|
PMU_PMEVTYPER(15),
|
|
PMU_PMEVTYPER(16),
|
|
PMU_PMEVTYPER(17),
|
|
PMU_PMEVTYPER(18),
|
|
PMU_PMEVTYPER(19),
|
|
PMU_PMEVTYPER(20),
|
|
PMU_PMEVTYPER(21),
|
|
PMU_PMEVTYPER(22),
|
|
PMU_PMEVTYPER(23),
|
|
PMU_PMEVTYPER(24),
|
|
PMU_PMEVTYPER(25),
|
|
PMU_PMEVTYPER(26),
|
|
PMU_PMEVTYPER(27),
|
|
PMU_PMEVTYPER(28),
|
|
PMU_PMEVTYPER(29),
|
|
PMU_PMEVTYPER(30),
|
|
/* PMCCFILTR */
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
|
|
|
|
{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
|
|
{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
|
|
|
|
/* CCSIDR2 */
|
|
{ Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access },
|
|
|
|
{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
|
|
};
|
|
|
|
static const struct sys_reg_desc cp15_64_regs[] = {
|
|
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
|
|
{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
|
|
{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
|
|
{ SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer },
|
|
{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
|
|
{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
|
|
{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
|
|
{ SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
|
|
{ SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer },
|
|
};
|
|
|
|
static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
|
|
bool is_32)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (!is_32 && table[i].reg && !table[i].reset) {
|
|
kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
|
|
return false;
|
|
}
|
|
|
|
if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
|
|
kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static void perform_access(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *params,
|
|
const struct sys_reg_desc *r)
|
|
{
|
|
trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
|
|
|
|
/* Check for regs disabled by runtime config */
|
|
if (sysreg_hidden(vcpu, r)) {
|
|
kvm_inject_undefined(vcpu);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Not having an accessor means that we have configured a trap
|
|
* that we don't know how to handle. This certainly qualifies
|
|
* as a gross bug that should be fixed right away.
|
|
*/
|
|
BUG_ON(!r->access);
|
|
|
|
/* Skip instruction if instructed so */
|
|
if (likely(r->access(vcpu, params, r)))
|
|
kvm_incr_pc(vcpu);
|
|
}
|
|
|
|
/*
|
|
* emulate_cp -- tries to match a sys_reg access in a handling table, and
|
|
* call the corresponding trap handler.
|
|
*
|
|
* @params: pointer to the descriptor of the access
|
|
* @table: array of trap descriptors
|
|
* @num: size of the trap descriptor array
|
|
*
|
|
* Return true if the access has been handled, false if not.
|
|
*/
|
|
static bool emulate_cp(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *params,
|
|
const struct sys_reg_desc *table,
|
|
size_t num)
|
|
{
|
|
const struct sys_reg_desc *r;
|
|
|
|
if (!table)
|
|
return false; /* Not handled */
|
|
|
|
r = find_reg(params, table, num);
|
|
|
|
if (r) {
|
|
perform_access(vcpu, params, r);
|
|
return true;
|
|
}
|
|
|
|
/* Not handled */
|
|
return false;
|
|
}
|
|
|
|
static void unhandled_cp_access(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *params)
|
|
{
|
|
u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
|
|
int cp = -1;
|
|
|
|
switch (esr_ec) {
|
|
case ESR_ELx_EC_CP15_32:
|
|
case ESR_ELx_EC_CP15_64:
|
|
cp = 15;
|
|
break;
|
|
case ESR_ELx_EC_CP14_MR:
|
|
case ESR_ELx_EC_CP14_64:
|
|
cp = 14;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
|
|
print_sys_reg_msg(params,
|
|
"Unsupported guest CP%d access at: %08lx [%08lx]\n",
|
|
cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
|
|
kvm_inject_undefined(vcpu);
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The kvm_run struct
|
|
*/
|
|
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *global,
|
|
size_t nr_global)
|
|
{
|
|
struct sys_reg_params params;
|
|
u64 esr = kvm_vcpu_get_esr(vcpu);
|
|
int Rt = kvm_vcpu_sys_get_rt(vcpu);
|
|
int Rt2 = (esr >> 10) & 0x1f;
|
|
|
|
params.CRm = (esr >> 1) & 0xf;
|
|
params.is_write = ((esr & 1) == 0);
|
|
|
|
params.Op0 = 0;
|
|
params.Op1 = (esr >> 16) & 0xf;
|
|
params.Op2 = 0;
|
|
params.CRn = 0;
|
|
|
|
/*
|
|
* Make a 64-bit value out of Rt and Rt2. As we use the same trap
|
|
* backends between AArch32 and AArch64, we get away with it.
|
|
*/
|
|
if (params.is_write) {
|
|
params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
|
|
params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
|
|
}
|
|
|
|
/*
|
|
* If the table contains a handler, handle the
|
|
* potential register operation in the case of a read and return
|
|
* with success.
|
|
*/
|
|
if (emulate_cp(vcpu, ¶ms, global, nr_global)) {
|
|
/* Split up the value between registers for the read side */
|
|
if (!params.is_write) {
|
|
vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
|
|
vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
unhandled_cp_access(vcpu, ¶ms);
|
|
return 1;
|
|
}
|
|
|
|
static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
|
|
|
|
/*
|
|
* The CP10 ID registers are architecturally mapped to AArch64 feature
|
|
* registers. Abuse that fact so we can rely on the AArch64 handler for accesses
|
|
* from AArch32.
|
|
*/
|
|
static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
|
|
{
|
|
u8 reg_id = (esr >> 10) & 0xf;
|
|
bool valid;
|
|
|
|
params->is_write = ((esr & 1) == 0);
|
|
params->Op0 = 3;
|
|
params->Op1 = 0;
|
|
params->CRn = 0;
|
|
params->CRm = 3;
|
|
|
|
/* CP10 ID registers are read-only */
|
|
valid = !params->is_write;
|
|
|
|
switch (reg_id) {
|
|
/* MVFR0 */
|
|
case 0b0111:
|
|
params->Op2 = 0;
|
|
break;
|
|
/* MVFR1 */
|
|
case 0b0110:
|
|
params->Op2 = 1;
|
|
break;
|
|
/* MVFR2 */
|
|
case 0b0101:
|
|
params->Op2 = 2;
|
|
break;
|
|
default:
|
|
valid = false;
|
|
}
|
|
|
|
if (valid)
|
|
return true;
|
|
|
|
kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
|
|
params->is_write ? "write" : "read", reg_id);
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
|
|
* VFP Register' from AArch32.
|
|
* @vcpu: The vCPU pointer
|
|
*
|
|
* MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
|
|
* Work out the correct AArch64 system register encoding and reroute to the
|
|
* AArch64 system register emulation.
|
|
*/
|
|
int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
|
|
{
|
|
int Rt = kvm_vcpu_sys_get_rt(vcpu);
|
|
u64 esr = kvm_vcpu_get_esr(vcpu);
|
|
struct sys_reg_params params;
|
|
|
|
/* UNDEF on any unhandled register access */
|
|
if (!kvm_esr_cp10_id_to_sys64(esr, ¶ms)) {
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
if (emulate_sys_reg(vcpu, ¶ms))
|
|
vcpu_set_reg(vcpu, Rt, params.regval);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
|
|
* CRn=0, which corresponds to the AArch32 feature
|
|
* registers.
|
|
* @vcpu: the vCPU pointer
|
|
* @params: the system register access parameters.
|
|
*
|
|
* Our cp15 system register tables do not enumerate the AArch32 feature
|
|
* registers. Conveniently, our AArch64 table does, and the AArch32 system
|
|
* register encoding can be trivially remapped into the AArch64 for the feature
|
|
* registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
|
|
*
|
|
* According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
|
|
* System registers with (coproc=0b1111, CRn==c0)", read accesses from this
|
|
* range are either UNKNOWN or RES0. Rerouting remains architectural as we
|
|
* treat undefined registers in this range as RAZ.
|
|
*/
|
|
static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *params)
|
|
{
|
|
int Rt = kvm_vcpu_sys_get_rt(vcpu);
|
|
|
|
/* Treat impossible writes to RO registers as UNDEFINED */
|
|
if (params->is_write) {
|
|
unhandled_cp_access(vcpu, params);
|
|
return 1;
|
|
}
|
|
|
|
params->Op0 = 3;
|
|
|
|
/*
|
|
* All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
|
|
* Avoid conflicting with future expansion of AArch64 feature registers
|
|
* and simply treat them as RAZ here.
|
|
*/
|
|
if (params->CRm > 3)
|
|
params->regval = 0;
|
|
else if (!emulate_sys_reg(vcpu, params))
|
|
return 1;
|
|
|
|
vcpu_set_reg(vcpu, Rt, params->regval);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The kvm_run struct
|
|
*/
|
|
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *params,
|
|
const struct sys_reg_desc *global,
|
|
size_t nr_global)
|
|
{
|
|
int Rt = kvm_vcpu_sys_get_rt(vcpu);
|
|
|
|
params->regval = vcpu_get_reg(vcpu, Rt);
|
|
|
|
if (emulate_cp(vcpu, params, global, nr_global)) {
|
|
if (!params->is_write)
|
|
vcpu_set_reg(vcpu, Rt, params->regval);
|
|
return 1;
|
|
}
|
|
|
|
unhandled_cp_access(vcpu, params);
|
|
return 1;
|
|
}
|
|
|
|
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
|
|
}
|
|
|
|
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct sys_reg_params params;
|
|
|
|
params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
|
|
|
|
/*
|
|
* Certain AArch32 ID registers are handled by rerouting to the AArch64
|
|
* system register table. Registers in the ID range where CRm=0 are
|
|
* excluded from this scheme as they do not trivially map into AArch64
|
|
* system register encodings.
|
|
*/
|
|
if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
|
|
return kvm_emulate_cp15_id_reg(vcpu, ¶ms);
|
|
|
|
return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs));
|
|
}
|
|
|
|
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
|
|
}
|
|
|
|
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct sys_reg_params params;
|
|
|
|
params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
|
|
|
|
return kvm_handle_cp_32(vcpu, ¶ms, cp14_regs, ARRAY_SIZE(cp14_regs));
|
|
}
|
|
|
|
static bool is_imp_def_sys_reg(struct sys_reg_params *params)
|
|
{
|
|
// See ARM DDI 0487E.a, section D12.3.2
|
|
return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
|
|
}
|
|
|
|
/**
|
|
* emulate_sys_reg - Emulate a guest access to an AArch64 system register
|
|
* @vcpu: The VCPU pointer
|
|
* @params: Decoded system register parameters
|
|
*
|
|
* Return: true if the system register access was successful, false otherwise.
|
|
*/
|
|
static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
|
|
struct sys_reg_params *params)
|
|
{
|
|
const struct sys_reg_desc *r;
|
|
|
|
r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
|
|
|
|
if (likely(r)) {
|
|
perform_access(vcpu, params, r);
|
|
return true;
|
|
}
|
|
|
|
if (is_imp_def_sys_reg(params)) {
|
|
kvm_inject_undefined(vcpu);
|
|
} else {
|
|
print_sys_reg_msg(params,
|
|
"Unsupported guest sys_reg access at: %lx [%08lx]\n",
|
|
*vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
|
|
kvm_inject_undefined(vcpu);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
const struct sys_reg_desc *idreg = first_idreg;
|
|
u32 id = reg_to_encoding(idreg);
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
|
|
return;
|
|
|
|
lockdep_assert_held(&kvm->arch.config_lock);
|
|
|
|
/* Initialize all idregs */
|
|
while (is_id_reg(id)) {
|
|
IDREG(kvm, id) = idreg->reset(vcpu, idreg);
|
|
|
|
idreg++;
|
|
id = reg_to_encoding(idreg);
|
|
}
|
|
|
|
set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
|
|
}
|
|
|
|
/**
|
|
* kvm_reset_sys_regs - sets system registers to reset value
|
|
* @vcpu: The VCPU pointer
|
|
*
|
|
* This function finds the right table above and sets the registers on the
|
|
* virtual CPU struct to their architecturally defined reset values.
|
|
*/
|
|
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long i;
|
|
|
|
kvm_reset_id_regs(vcpu);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
|
|
const struct sys_reg_desc *r = &sys_reg_descs[i];
|
|
|
|
if (is_id_reg(reg_to_encoding(r)))
|
|
continue;
|
|
|
|
if (r->reset)
|
|
r->reset(vcpu, r);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
|
|
* @vcpu: The VCPU pointer
|
|
*/
|
|
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct sys_reg_params params;
|
|
unsigned long esr = kvm_vcpu_get_esr(vcpu);
|
|
int Rt = kvm_vcpu_sys_get_rt(vcpu);
|
|
|
|
trace_kvm_handle_sys_reg(esr);
|
|
|
|
params = esr_sys64_to_params(esr);
|
|
params.regval = vcpu_get_reg(vcpu, Rt);
|
|
|
|
if (!emulate_sys_reg(vcpu, ¶ms))
|
|
return 1;
|
|
|
|
if (!params.is_write)
|
|
vcpu_set_reg(vcpu, Rt, params.regval);
|
|
return 1;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Userspace API
|
|
*****************************************************************************/
|
|
|
|
static bool index_to_params(u64 id, struct sys_reg_params *params)
|
|
{
|
|
switch (id & KVM_REG_SIZE_MASK) {
|
|
case KVM_REG_SIZE_U64:
|
|
/* Any unused index bits means it's not valid. */
|
|
if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
|
|
| KVM_REG_ARM_COPROC_MASK
|
|
| KVM_REG_ARM64_SYSREG_OP0_MASK
|
|
| KVM_REG_ARM64_SYSREG_OP1_MASK
|
|
| KVM_REG_ARM64_SYSREG_CRN_MASK
|
|
| KVM_REG_ARM64_SYSREG_CRM_MASK
|
|
| KVM_REG_ARM64_SYSREG_OP2_MASK))
|
|
return false;
|
|
params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
|
|
>> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
|
|
params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
|
|
>> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
|
|
params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
|
|
>> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
|
|
params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
|
|
>> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
|
|
params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
|
|
>> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const struct sys_reg_desc *get_reg_by_id(u64 id,
|
|
const struct sys_reg_desc table[],
|
|
unsigned int num)
|
|
{
|
|
struct sys_reg_params params;
|
|
|
|
if (!index_to_params(id, ¶ms))
|
|
return NULL;
|
|
|
|
return find_reg(¶ms, table, num);
|
|
}
|
|
|
|
/* Decode an index value, and find the sys_reg_desc entry. */
|
|
static const struct sys_reg_desc *
|
|
id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
|
|
const struct sys_reg_desc table[], unsigned int num)
|
|
|
|
{
|
|
const struct sys_reg_desc *r;
|
|
|
|
/* We only do sys_reg for now. */
|
|
if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
|
|
return NULL;
|
|
|
|
r = get_reg_by_id(id, table, num);
|
|
|
|
/* Not saved in the sys_reg array and not otherwise accessible? */
|
|
if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
|
|
r = NULL;
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* These are the invariant sys_reg registers: we let the guest see the
|
|
* host versions of these, so they're part of the guest state.
|
|
*
|
|
* A future CPU may provide a mechanism to present different values to
|
|
* the guest, or a future kvm may trap them.
|
|
*/
|
|
|
|
#define FUNCTION_INVARIANT(reg) \
|
|
static u64 get_##reg(struct kvm_vcpu *v, \
|
|
const struct sys_reg_desc *r) \
|
|
{ \
|
|
((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
|
|
return ((struct sys_reg_desc *)r)->val; \
|
|
}
|
|
|
|
FUNCTION_INVARIANT(midr_el1)
|
|
FUNCTION_INVARIANT(revidr_el1)
|
|
FUNCTION_INVARIANT(aidr_el1)
|
|
|
|
static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
|
|
{
|
|
((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
|
|
return ((struct sys_reg_desc *)r)->val;
|
|
}
|
|
|
|
/* ->val is filled in by kvm_sys_reg_table_init() */
|
|
static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
|
|
{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
|
|
{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
|
|
{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
|
|
{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
|
|
};
|
|
|
|
static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
|
|
{
|
|
const struct sys_reg_desc *r;
|
|
|
|
r = get_reg_by_id(id, invariant_sys_regs,
|
|
ARRAY_SIZE(invariant_sys_regs));
|
|
if (!r)
|
|
return -ENOENT;
|
|
|
|
return put_user(r->val, uaddr);
|
|
}
|
|
|
|
static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
|
|
{
|
|
const struct sys_reg_desc *r;
|
|
u64 val;
|
|
|
|
r = get_reg_by_id(id, invariant_sys_regs,
|
|
ARRAY_SIZE(invariant_sys_regs));
|
|
if (!r)
|
|
return -ENOENT;
|
|
|
|
if (get_user(val, uaddr))
|
|
return -EFAULT;
|
|
|
|
/* This is what we mean by invariant: you can't change it. */
|
|
if (r->val != val)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
|
|
{
|
|
u32 val;
|
|
u32 __user *uval = uaddr;
|
|
|
|
/* Fail if we have unknown bits set. */
|
|
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
|
|
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
|
|
return -ENOENT;
|
|
|
|
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
|
|
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
|
|
if (KVM_REG_SIZE(id) != 4)
|
|
return -ENOENT;
|
|
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
|
|
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
|
|
if (val >= CSSELR_MAX)
|
|
return -ENOENT;
|
|
|
|
return put_user(get_ccsidr(vcpu, val), uval);
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
}
|
|
|
|
static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
|
|
{
|
|
u32 val, newval;
|
|
u32 __user *uval = uaddr;
|
|
|
|
/* Fail if we have unknown bits set. */
|
|
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
|
|
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
|
|
return -ENOENT;
|
|
|
|
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
|
|
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
|
|
if (KVM_REG_SIZE(id) != 4)
|
|
return -ENOENT;
|
|
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
|
|
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
|
|
if (val >= CSSELR_MAX)
|
|
return -ENOENT;
|
|
|
|
if (get_user(newval, uval))
|
|
return -EFAULT;
|
|
|
|
return set_ccsidr(vcpu, val, newval);
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
}
|
|
|
|
int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
|
|
const struct sys_reg_desc table[], unsigned int num)
|
|
{
|
|
u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
|
|
const struct sys_reg_desc *r;
|
|
u64 val;
|
|
int ret;
|
|
|
|
r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
|
|
if (!r || sysreg_hidden_user(vcpu, r))
|
|
return -ENOENT;
|
|
|
|
if (r->get_user) {
|
|
ret = (r->get_user)(vcpu, r, &val);
|
|
} else {
|
|
val = __vcpu_sys_reg(vcpu, r->reg);
|
|
ret = 0;
|
|
}
|
|
|
|
if (!ret)
|
|
ret = put_user(val, uaddr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
void __user *uaddr = (void __user *)(unsigned long)reg->addr;
|
|
int err;
|
|
|
|
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
|
|
return demux_c15_get(vcpu, reg->id, uaddr);
|
|
|
|
err = get_invariant_sys_reg(reg->id, uaddr);
|
|
if (err != -ENOENT)
|
|
return err;
|
|
|
|
return kvm_sys_reg_get_user(vcpu, reg,
|
|
sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
|
|
}
|
|
|
|
int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
|
|
const struct sys_reg_desc table[], unsigned int num)
|
|
{
|
|
u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
|
|
const struct sys_reg_desc *r;
|
|
u64 val;
|
|
int ret;
|
|
|
|
if (get_user(val, uaddr))
|
|
return -EFAULT;
|
|
|
|
r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
|
|
if (!r || sysreg_hidden_user(vcpu, r))
|
|
return -ENOENT;
|
|
|
|
if (sysreg_user_write_ignore(vcpu, r))
|
|
return 0;
|
|
|
|
if (r->set_user) {
|
|
ret = (r->set_user)(vcpu, r, val);
|
|
} else {
|
|
__vcpu_sys_reg(vcpu, r->reg) = val;
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
void __user *uaddr = (void __user *)(unsigned long)reg->addr;
|
|
int err;
|
|
|
|
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
|
|
return demux_c15_set(vcpu, reg->id, uaddr);
|
|
|
|
err = set_invariant_sys_reg(reg->id, uaddr);
|
|
if (err != -ENOENT)
|
|
return err;
|
|
|
|
return kvm_sys_reg_set_user(vcpu, reg,
|
|
sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
|
|
}
|
|
|
|
static unsigned int num_demux_regs(void)
|
|
{
|
|
return CSSELR_MAX;
|
|
}
|
|
|
|
static int write_demux_regids(u64 __user *uindices)
|
|
{
|
|
u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
|
|
unsigned int i;
|
|
|
|
val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
|
|
for (i = 0; i < CSSELR_MAX; i++) {
|
|
if (put_user(val | i, uindices))
|
|
return -EFAULT;
|
|
uindices++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
|
|
{
|
|
return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
|
|
KVM_REG_ARM64_SYSREG |
|
|
(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
|
|
(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
|
|
(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
|
|
(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
|
|
(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
|
|
}
|
|
|
|
static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
|
|
{
|
|
if (!*uind)
|
|
return true;
|
|
|
|
if (put_user(sys_reg_to_index(reg), *uind))
|
|
return false;
|
|
|
|
(*uind)++;
|
|
return true;
|
|
}
|
|
|
|
static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
|
|
const struct sys_reg_desc *rd,
|
|
u64 __user **uind,
|
|
unsigned int *total)
|
|
{
|
|
/*
|
|
* Ignore registers we trap but don't save,
|
|
* and for which no custom user accessor is provided.
|
|
*/
|
|
if (!(rd->reg || rd->get_user))
|
|
return 0;
|
|
|
|
if (sysreg_hidden_user(vcpu, rd))
|
|
return 0;
|
|
|
|
if (!copy_reg_to_user(rd, uind))
|
|
return -EFAULT;
|
|
|
|
(*total)++;
|
|
return 0;
|
|
}
|
|
|
|
/* Assumed ordered tables, see kvm_sys_reg_table_init. */
|
|
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
|
|
{
|
|
const struct sys_reg_desc *i2, *end2;
|
|
unsigned int total = 0;
|
|
int err;
|
|
|
|
i2 = sys_reg_descs;
|
|
end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
|
|
|
|
while (i2 != end2) {
|
|
err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return total;
|
|
}
|
|
|
|
unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
|
|
{
|
|
return ARRAY_SIZE(invariant_sys_regs)
|
|
+ num_demux_regs()
|
|
+ walk_sys_regs(vcpu, (u64 __user *)NULL);
|
|
}
|
|
|
|
int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
|
|
{
|
|
unsigned int i;
|
|
int err;
|
|
|
|
/* Then give them all the invariant registers' indices. */
|
|
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
|
|
if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
|
|
return -EFAULT;
|
|
uindices++;
|
|
}
|
|
|
|
err = walk_sys_regs(vcpu, uindices);
|
|
if (err < 0)
|
|
return err;
|
|
uindices += err;
|
|
|
|
return write_demux_regids(uindices);
|
|
}
|
|
|
|
int __init kvm_sys_reg_table_init(void)
|
|
{
|
|
struct sys_reg_params params;
|
|
bool valid = true;
|
|
unsigned int i;
|
|
|
|
/* Make sure tables are unique and in order. */
|
|
valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
|
|
valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
|
|
valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
|
|
valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
|
|
valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
|
|
valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
|
|
|
|
if (!valid)
|
|
return -EINVAL;
|
|
|
|
/* We abuse the reset function to overwrite the table itself. */
|
|
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
|
|
invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
|
|
|
|
/* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
|
|
params = encoding_to_params(SYS_ID_PFR0_EL1);
|
|
first_idreg = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
|
|
if (!first_idreg)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|