mirror of
https://github.com/torvalds/linux.git
synced 2024-11-11 06:31:49 +00:00
8c655c9b49
remove cast for kzalloc return value. Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: linux-arm-kernel@lists.infradead.org Signed-off-by: Jiri Kosina <jkosina@suse.cz>
314 lines
8.4 KiB
C
314 lines
8.4 KiB
C
/*
|
|
* arch/arm/kernel/topology.c
|
|
*
|
|
* Copyright (C) 2011 Linaro Limited.
|
|
* Written by: Vincent Guittot
|
|
*
|
|
* based on arch/sh/kernel/topology.c
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/init.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/node.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/of.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/cputype.h>
|
|
#include <asm/topology.h>
|
|
|
|
/*
|
|
* cpu power scale management
|
|
*/
|
|
|
|
/*
|
|
* cpu power table
|
|
* This per cpu data structure describes the relative capacity of each core.
|
|
* On a heteregenous system, cores don't have the same computation capacity
|
|
* and we reflect that difference in the cpu_power field so the scheduler can
|
|
* take this difference into account during load balance. A per cpu structure
|
|
* is preferred because each CPU updates its own cpu_power field during the
|
|
* load balance except for idle cores. One idle core is selected to run the
|
|
* rebalance_domains for all idle cores and the cpu_power can be updated
|
|
* during this sequence.
|
|
*/
|
|
static DEFINE_PER_CPU(unsigned long, cpu_scale);
|
|
|
|
unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu)
|
|
{
|
|
return per_cpu(cpu_scale, cpu);
|
|
}
|
|
|
|
static void set_power_scale(unsigned int cpu, unsigned long power)
|
|
{
|
|
per_cpu(cpu_scale, cpu) = power;
|
|
}
|
|
|
|
#ifdef CONFIG_OF
|
|
struct cpu_efficiency {
|
|
const char *compatible;
|
|
unsigned long efficiency;
|
|
};
|
|
|
|
/*
|
|
* Table of relative efficiency of each processors
|
|
* The efficiency value must fit in 20bit and the final
|
|
* cpu_scale value must be in the range
|
|
* 0 < cpu_scale < 3*SCHED_POWER_SCALE/2
|
|
* in order to return at most 1 when DIV_ROUND_CLOSEST
|
|
* is used to compute the capacity of a CPU.
|
|
* Processors that are not defined in the table,
|
|
* use the default SCHED_POWER_SCALE value for cpu_scale.
|
|
*/
|
|
struct cpu_efficiency table_efficiency[] = {
|
|
{"arm,cortex-a15", 3891},
|
|
{"arm,cortex-a7", 2048},
|
|
{NULL, },
|
|
};
|
|
|
|
struct cpu_capacity {
|
|
unsigned long hwid;
|
|
unsigned long capacity;
|
|
};
|
|
|
|
struct cpu_capacity *cpu_capacity;
|
|
|
|
unsigned long middle_capacity = 1;
|
|
|
|
/*
|
|
* Iterate all CPUs' descriptor in DT and compute the efficiency
|
|
* (as per table_efficiency). Also calculate a middle efficiency
|
|
* as close as possible to (max{eff_i} - min{eff_i}) / 2
|
|
* This is later used to scale the cpu_power field such that an
|
|
* 'average' CPU is of middle power. Also see the comments near
|
|
* table_efficiency[] and update_cpu_power().
|
|
*/
|
|
static void __init parse_dt_topology(void)
|
|
{
|
|
struct cpu_efficiency *cpu_eff;
|
|
struct device_node *cn = NULL;
|
|
unsigned long min_capacity = (unsigned long)(-1);
|
|
unsigned long max_capacity = 0;
|
|
unsigned long capacity = 0;
|
|
int alloc_size, cpu = 0;
|
|
|
|
alloc_size = nr_cpu_ids * sizeof(struct cpu_capacity);
|
|
cpu_capacity = kzalloc(alloc_size, GFP_NOWAIT);
|
|
|
|
while ((cn = of_find_node_by_type(cn, "cpu"))) {
|
|
const u32 *rate, *reg;
|
|
int len;
|
|
|
|
if (cpu >= num_possible_cpus())
|
|
break;
|
|
|
|
for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
|
|
if (of_device_is_compatible(cn, cpu_eff->compatible))
|
|
break;
|
|
|
|
if (cpu_eff->compatible == NULL)
|
|
continue;
|
|
|
|
rate = of_get_property(cn, "clock-frequency", &len);
|
|
if (!rate || len != 4) {
|
|
pr_err("%s missing clock-frequency property\n",
|
|
cn->full_name);
|
|
continue;
|
|
}
|
|
|
|
reg = of_get_property(cn, "reg", &len);
|
|
if (!reg || len != 4) {
|
|
pr_err("%s missing reg property\n", cn->full_name);
|
|
continue;
|
|
}
|
|
|
|
capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
|
|
|
|
/* Save min capacity of the system */
|
|
if (capacity < min_capacity)
|
|
min_capacity = capacity;
|
|
|
|
/* Save max capacity of the system */
|
|
if (capacity > max_capacity)
|
|
max_capacity = capacity;
|
|
|
|
cpu_capacity[cpu].capacity = capacity;
|
|
cpu_capacity[cpu++].hwid = be32_to_cpup(reg);
|
|
}
|
|
|
|
if (cpu < num_possible_cpus())
|
|
cpu_capacity[cpu].hwid = (unsigned long)(-1);
|
|
|
|
/* If min and max capacities are equals, we bypass the update of the
|
|
* cpu_scale because all CPUs have the same capacity. Otherwise, we
|
|
* compute a middle_capacity factor that will ensure that the capacity
|
|
* of an 'average' CPU of the system will be as close as possible to
|
|
* SCHED_POWER_SCALE, which is the default value, but with the
|
|
* constraint explained near table_efficiency[].
|
|
*/
|
|
if (min_capacity == max_capacity)
|
|
cpu_capacity[0].hwid = (unsigned long)(-1);
|
|
else if (4*max_capacity < (3*(max_capacity + min_capacity)))
|
|
middle_capacity = (min_capacity + max_capacity)
|
|
>> (SCHED_POWER_SHIFT+1);
|
|
else
|
|
middle_capacity = ((max_capacity / 3)
|
|
>> (SCHED_POWER_SHIFT-1)) + 1;
|
|
|
|
}
|
|
|
|
/*
|
|
* Look for a customed capacity of a CPU in the cpu_capacity table during the
|
|
* boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
|
|
* function returns directly for SMP system.
|
|
*/
|
|
void update_cpu_power(unsigned int cpu, unsigned long hwid)
|
|
{
|
|
unsigned int idx = 0;
|
|
|
|
/* look for the cpu's hwid in the cpu capacity table */
|
|
for (idx = 0; idx < num_possible_cpus(); idx++) {
|
|
if (cpu_capacity[idx].hwid == hwid)
|
|
break;
|
|
|
|
if (cpu_capacity[idx].hwid == -1)
|
|
return;
|
|
}
|
|
|
|
if (idx == num_possible_cpus())
|
|
return;
|
|
|
|
set_power_scale(cpu, cpu_capacity[idx].capacity / middle_capacity);
|
|
|
|
printk(KERN_INFO "CPU%u: update cpu_power %lu\n",
|
|
cpu, arch_scale_freq_power(NULL, cpu));
|
|
}
|
|
|
|
#else
|
|
static inline void parse_dt_topology(void) {}
|
|
static inline void update_cpu_power(unsigned int cpuid, unsigned int mpidr) {}
|
|
#endif
|
|
|
|
/*
|
|
* cpu topology table
|
|
*/
|
|
struct cputopo_arm cpu_topology[NR_CPUS];
|
|
|
|
const struct cpumask *cpu_coregroup_mask(int cpu)
|
|
{
|
|
return &cpu_topology[cpu].core_sibling;
|
|
}
|
|
|
|
void update_siblings_masks(unsigned int cpuid)
|
|
{
|
|
struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
|
|
int cpu;
|
|
|
|
/* update core and thread sibling masks */
|
|
for_each_possible_cpu(cpu) {
|
|
cpu_topo = &cpu_topology[cpu];
|
|
|
|
if (cpuid_topo->socket_id != cpu_topo->socket_id)
|
|
continue;
|
|
|
|
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
|
|
if (cpu != cpuid)
|
|
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
|
|
|
|
if (cpuid_topo->core_id != cpu_topo->core_id)
|
|
continue;
|
|
|
|
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
|
|
if (cpu != cpuid)
|
|
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
|
|
}
|
|
smp_wmb();
|
|
}
|
|
|
|
/*
|
|
* store_cpu_topology is called at boot when only one cpu is running
|
|
* and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
|
|
* which prevents simultaneous write access to cpu_topology array
|
|
*/
|
|
void store_cpu_topology(unsigned int cpuid)
|
|
{
|
|
struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
|
|
unsigned int mpidr;
|
|
|
|
/* If the cpu topology has been already set, just return */
|
|
if (cpuid_topo->core_id != -1)
|
|
return;
|
|
|
|
mpidr = read_cpuid_mpidr();
|
|
|
|
/* create cpu topology mapping */
|
|
if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
|
|
/*
|
|
* This is a multiprocessor system
|
|
* multiprocessor format & multiprocessor mode field are set
|
|
*/
|
|
|
|
if (mpidr & MPIDR_MT_BITMASK) {
|
|
/* core performance interdependency */
|
|
cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
|
|
} else {
|
|
/* largely independent cores */
|
|
cpuid_topo->thread_id = -1;
|
|
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
}
|
|
} else {
|
|
/*
|
|
* This is an uniprocessor system
|
|
* we are in multiprocessor format but uniprocessor system
|
|
* or in the old uniprocessor format
|
|
*/
|
|
cpuid_topo->thread_id = -1;
|
|
cpuid_topo->core_id = 0;
|
|
cpuid_topo->socket_id = -1;
|
|
}
|
|
|
|
update_siblings_masks(cpuid);
|
|
|
|
update_cpu_power(cpuid, mpidr & MPIDR_HWID_BITMASK);
|
|
|
|
printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
|
|
cpuid, cpu_topology[cpuid].thread_id,
|
|
cpu_topology[cpuid].core_id,
|
|
cpu_topology[cpuid].socket_id, mpidr);
|
|
}
|
|
|
|
/*
|
|
* init_cpu_topology is called at boot when only one cpu is running
|
|
* which prevent simultaneous write access to cpu_topology array
|
|
*/
|
|
void __init init_cpu_topology(void)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
/* init core mask and power*/
|
|
for_each_possible_cpu(cpu) {
|
|
struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
|
|
|
|
cpu_topo->thread_id = -1;
|
|
cpu_topo->core_id = -1;
|
|
cpu_topo->socket_id = -1;
|
|
cpumask_clear(&cpu_topo->core_sibling);
|
|
cpumask_clear(&cpu_topo->thread_sibling);
|
|
|
|
set_power_scale(cpu, SCHED_POWER_SCALE);
|
|
}
|
|
smp_wmb();
|
|
|
|
parse_dt_topology();
|
|
}
|