linux/block/genhd.c
Damien Le Moal dd291d77cc block: Introduce zone write plugging
Zone write plugging implements a per-zone "plug" for write operations
to control the submission and execution order of write operations to
sequential write required zones of a zoned block device. Per-zone
plugging guarantees that at any time there is at most only one write
request per zone being executed. This mechanism is intended to replace
zone write locking which implements a similar per-zone write throttling
at the scheduler level, but is implemented only by mq-deadline.

Unlike zone write locking which operates on requests, zone write
plugging operates on BIOs. A zone write plug is simply a BIO list that
is atomically manipulated using a spinlock and a kblockd submission
work. A write BIO to a zone is "plugged" to delay its execution if a
write BIO for the same zone was already issued, that is, if a write
request for the same zone is being executed. The next plugged BIO is
unplugged and issued once the write request completes.

This mechanism allows to:
 - Untangle zone write ordering from block IO schedulers. This allows
   removing the restriction on using mq-deadline for writing to zoned
   block devices. Any block IO scheduler, including "none" can be used.
 - Zone write plugging operates on BIOs instead of requests. Plugged
   BIOs waiting for execution thus do not hold scheduling tags and thus
   are not preventing other BIOs from executing (reads or writes to
   other zones). Depending on the workload, this can significantly
   improve the device use (higher queue depth operation) and
   performance.
 - Both blk-mq (request based) zoned devices and BIO-based zoned devices
   (e.g.  device mapper) can use zone write plugging. It is mandatory
   for the former but optional for the latter. BIO-based drivers can
   use zone write plugging to implement write ordering guarantees, or
   the drivers can implement their own if needed.
 - The code is less invasive in the block layer and is mostly limited to
   blk-zoned.c with some small changes in blk-mq.c, blk-merge.c and
   bio.c.

Zone write plugging is implemented using struct blk_zone_wplug. This
structure includes a spinlock, a BIO list and a work structure to
handle the submission of plugged BIOs. Zone write plugs structures are
managed using a per-disk hash table.

Plugging of zone write BIOs is done using the function
blk_zone_write_plug_bio() which returns false if a BIO execution does
not need to be delayed and true otherwise. This function is called
from blk_mq_submit_bio() after a BIO is split to avoid large BIOs
spanning multiple zones which would cause mishandling of zone write
plugs. This ichange enables by default zone write plugging for any mq
request-based block device. BIO-based device drivers can also use zone
write plugging by expliclty calling blk_zone_write_plug_bio() in their
->submit_bio method. For such devices, the driver must ensure that a
BIO passed to blk_zone_write_plug_bio() is already split and not
straddling zone boundaries.

Only write and write zeroes BIOs are plugged. Zone write plugging does
not introduce any significant overhead for other operations. A BIO that
is being handled through zone write plugging is flagged using the new
BIO flag BIO_ZONE_WRITE_PLUGGING. A request handling a BIO flagged with
this new flag is flagged with the new RQF_ZONE_WRITE_PLUGGING flag.
The completion of BIOs and requests flagged trigger respectively calls
to the functions blk_zone_write_bio_endio() and
blk_zone_write_complete_request(). The latter function is used to
trigger submission of the next plugged BIO using the zone plug work.
blk_zone_write_bio_endio() does the same for BIO-based devices.
This ensures that at any time, at most one request (blk-mq devices) or
one BIO (BIO-based devices) is being executed for any zone. The
handling of zone write plugs using a per-zone plug spinlock maximizes
parallelism and device usage by allowing multiple zones to be writen
simultaneously without lock contention.

Zone write plugging ignores flush BIOs without data. Hovever, any flush
BIO that has data is always plugged so that the write part of the flush
sequence is serialized with other regular writes.

Given that any BIO handled through zone write plugging will be the only
BIO in flight for the target zone when it is executed, the unplugging
and submission of a BIO will have no chance of successfully merging with
plugged requests or requests in the scheduler. To overcome this
potential performance degradation, blk_mq_submit_bio() calls the
function blk_zone_write_plug_attempt_merge() to try to merge other
plugged BIOs with the one just unplugged and submitted. Successful
merging is signaled using blk_zone_write_plug_bio_merged(), called from
bio_attempt_back_merge(). Furthermore, to avoid recalculating the number
of segments of plugged BIOs to attempt merging, the number of segments
of a plugged BIO is saved using the new struct bio field
__bi_nr_segments. To avoid growing the size of struct bio, this field is
added as a union with the bio_cookie field. This is safe to do as
polling is always disabled for plugged BIOs.

When BIOs are plugged in a zone write plug, the device request queue
usage counter is always incremented. This reference is kept and reused
for blk-mq devices when the plugged BIO is unplugged and submitted
again using submit_bio_noacct_nocheck(). For this case, the unplugged
BIO is already flagged with BIO_ZONE_WRITE_PLUGGING and
blk_mq_submit_bio() proceeds directly to allocating a new request for
the BIO, re-using the usage reference count taken when the BIO was
plugged. This extra reference count is dropped in
blk_zone_write_plug_attempt_merge() for any plugged BIO that is
successfully merged. Given that BIO-based devices will not take this
path, the extra reference is dropped after a plugged BIO is unplugged
and submitted.

Zone write plugs are dynamically allocated and managed using a hash
table (an array of struct hlist_head) with RCU protection.
A zone write plug is allocated when a write BIO is received for the
zone and not freed until the zone is fully written, reset or finished.
To detect when a zone write plug can be freed, the write state of each
zone is tracked using a write pointer offset which corresponds to the
offset of a zone write pointer relative to the zone start. Write
operations always increment this write pointer offset. Zone reset
operations set it to 0 and zone finish operations set it to the zone
size.

If a write error happens, the wp_offset value of a zone write plug may
become incorrect and out of sync with the device managed write pointer.
This is handled using the zone write plug flag BLK_ZONE_WPLUG_ERROR.
The function blk_zone_wplug_handle_error() is called from the new disk
zone write plug work when this flag is set. This function executes a
report zone to update the zone write pointer offset to the current
value as indicated by the device. The disk zone write plug work is
scheduled whenever a BIO flagged with BIO_ZONE_WRITE_PLUGGING completes
with an error or when bio_zone_wplug_prepare_bio() detects an unaligned
write. Once scheduled, the disk zone write plugs work keeps running
until all zone errors are handled.

To match the new data structures used for zoned disks, the function
disk_free_zone_bitmaps() is renamed to the more generic
disk_free_zone_resources(). The function disk_init_zone_resources() is
also introduced to initialize zone write plugs resources when a gendisk
is allocated.

In order to guarantee that the user can simultaneously write up to a
number of zones equal to a device max active zone limit or max open zone
limit, zone write plugs are allocated using a mempool sized to the
maximum of these 2 device limits. For a device that does not have
active and open zone limits, 128 is used as the default mempool size.

If a change to the device active and open zone limits is detected, the
disk mempool is resized when blk_revalidate_disk_zones() is executed.

This commit contains contributions from Christoph Hellwig <hch@lst.de>.

Signed-off-by: Damien Le Moal <dlemoal@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Tested-by: Hans Holmberg <hans.holmberg@wdc.com>
Tested-by: Dennis Maisenbacher <dennis.maisenbacher@wdc.com>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20240408014128.205141-8-dlemoal@kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-17 08:44:03 -06:00

1472 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* gendisk handling
*
* Portions Copyright (C) 2020 Christoph Hellwig
*/
#include <linux/module.h>
#include <linux/ctype.h>
#include <linux/fs.h>
#include <linux/kdev_t.h>
#include <linux/kernel.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/kmod.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/idr.h>
#include <linux/log2.h>
#include <linux/pm_runtime.h>
#include <linux/badblocks.h>
#include <linux/part_stat.h>
#include <linux/blktrace_api.h>
#include "blk-throttle.h"
#include "blk.h"
#include "blk-mq-sched.h"
#include "blk-rq-qos.h"
#include "blk-cgroup.h"
static struct kobject *block_depr;
/*
* Unique, monotonically increasing sequential number associated with block
* devices instances (i.e. incremented each time a device is attached).
* Associating uevents with block devices in userspace is difficult and racy:
* the uevent netlink socket is lossy, and on slow and overloaded systems has
* a very high latency.
* Block devices do not have exclusive owners in userspace, any process can set
* one up (e.g. loop devices). Moreover, device names can be reused (e.g. loop0
* can be reused again and again).
* A userspace process setting up a block device and watching for its events
* cannot thus reliably tell whether an event relates to the device it just set
* up or another earlier instance with the same name.
* This sequential number allows userspace processes to solve this problem, and
* uniquely associate an uevent to the lifetime to a device.
*/
static atomic64_t diskseq;
/* for extended dynamic devt allocation, currently only one major is used */
#define NR_EXT_DEVT (1 << MINORBITS)
static DEFINE_IDA(ext_devt_ida);
void set_capacity(struct gendisk *disk, sector_t sectors)
{
bdev_set_nr_sectors(disk->part0, sectors);
}
EXPORT_SYMBOL(set_capacity);
/*
* Set disk capacity and notify if the size is not currently zero and will not
* be set to zero. Returns true if a uevent was sent, otherwise false.
*/
bool set_capacity_and_notify(struct gendisk *disk, sector_t size)
{
sector_t capacity = get_capacity(disk);
char *envp[] = { "RESIZE=1", NULL };
set_capacity(disk, size);
/*
* Only print a message and send a uevent if the gendisk is user visible
* and alive. This avoids spamming the log and udev when setting the
* initial capacity during probing.
*/
if (size == capacity ||
!disk_live(disk) ||
(disk->flags & GENHD_FL_HIDDEN))
return false;
pr_info("%s: detected capacity change from %lld to %lld\n",
disk->disk_name, capacity, size);
/*
* Historically we did not send a uevent for changes to/from an empty
* device.
*/
if (!capacity || !size)
return false;
kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
return true;
}
EXPORT_SYMBOL_GPL(set_capacity_and_notify);
static void part_stat_read_all(struct block_device *part,
struct disk_stats *stat)
{
int cpu;
memset(stat, 0, sizeof(struct disk_stats));
for_each_possible_cpu(cpu) {
struct disk_stats *ptr = per_cpu_ptr(part->bd_stats, cpu);
int group;
for (group = 0; group < NR_STAT_GROUPS; group++) {
stat->nsecs[group] += ptr->nsecs[group];
stat->sectors[group] += ptr->sectors[group];
stat->ios[group] += ptr->ios[group];
stat->merges[group] += ptr->merges[group];
}
stat->io_ticks += ptr->io_ticks;
}
}
static unsigned int part_in_flight(struct block_device *part)
{
unsigned int inflight = 0;
int cpu;
for_each_possible_cpu(cpu) {
inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) +
part_stat_local_read_cpu(part, in_flight[1], cpu);
}
if ((int)inflight < 0)
inflight = 0;
return inflight;
}
static void part_in_flight_rw(struct block_device *part,
unsigned int inflight[2])
{
int cpu;
inflight[0] = 0;
inflight[1] = 0;
for_each_possible_cpu(cpu) {
inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu);
inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu);
}
if ((int)inflight[0] < 0)
inflight[0] = 0;
if ((int)inflight[1] < 0)
inflight[1] = 0;
}
/*
* Can be deleted altogether. Later.
*
*/
#define BLKDEV_MAJOR_HASH_SIZE 255
static struct blk_major_name {
struct blk_major_name *next;
int major;
char name[16];
#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
void (*probe)(dev_t devt);
#endif
} *major_names[BLKDEV_MAJOR_HASH_SIZE];
static DEFINE_MUTEX(major_names_lock);
static DEFINE_SPINLOCK(major_names_spinlock);
/* index in the above - for now: assume no multimajor ranges */
static inline int major_to_index(unsigned major)
{
return major % BLKDEV_MAJOR_HASH_SIZE;
}
#ifdef CONFIG_PROC_FS
void blkdev_show(struct seq_file *seqf, off_t offset)
{
struct blk_major_name *dp;
spin_lock(&major_names_spinlock);
for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
if (dp->major == offset)
seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
spin_unlock(&major_names_spinlock);
}
#endif /* CONFIG_PROC_FS */
/**
* __register_blkdev - register a new block device
*
* @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If
* @major = 0, try to allocate any unused major number.
* @name: the name of the new block device as a zero terminated string
* @probe: pre-devtmpfs / pre-udev callback used to create disks when their
* pre-created device node is accessed. When a probe call uses
* add_disk() and it fails the driver must cleanup resources. This
* interface may soon be removed.
*
* The @name must be unique within the system.
*
* The return value depends on the @major input parameter:
*
* - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1]
* then the function returns zero on success, or a negative error code
* - if any unused major number was requested with @major = 0 parameter
* then the return value is the allocated major number in range
* [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise
*
* See Documentation/admin-guide/devices.txt for the list of allocated
* major numbers.
*
* Use register_blkdev instead for any new code.
*/
int __register_blkdev(unsigned int major, const char *name,
void (*probe)(dev_t devt))
{
struct blk_major_name **n, *p;
int index, ret = 0;
mutex_lock(&major_names_lock);
/* temporary */
if (major == 0) {
for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
if (major_names[index] == NULL)
break;
}
if (index == 0) {
printk("%s: failed to get major for %s\n",
__func__, name);
ret = -EBUSY;
goto out;
}
major = index;
ret = major;
}
if (major >= BLKDEV_MAJOR_MAX) {
pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n",
__func__, major, BLKDEV_MAJOR_MAX-1, name);
ret = -EINVAL;
goto out;
}
p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
if (p == NULL) {
ret = -ENOMEM;
goto out;
}
p->major = major;
#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
p->probe = probe;
#endif
strscpy(p->name, name, sizeof(p->name));
p->next = NULL;
index = major_to_index(major);
spin_lock(&major_names_spinlock);
for (n = &major_names[index]; *n; n = &(*n)->next) {
if ((*n)->major == major)
break;
}
if (!*n)
*n = p;
else
ret = -EBUSY;
spin_unlock(&major_names_spinlock);
if (ret < 0) {
printk("register_blkdev: cannot get major %u for %s\n",
major, name);
kfree(p);
}
out:
mutex_unlock(&major_names_lock);
return ret;
}
EXPORT_SYMBOL(__register_blkdev);
void unregister_blkdev(unsigned int major, const char *name)
{
struct blk_major_name **n;
struct blk_major_name *p = NULL;
int index = major_to_index(major);
mutex_lock(&major_names_lock);
spin_lock(&major_names_spinlock);
for (n = &major_names[index]; *n; n = &(*n)->next)
if ((*n)->major == major)
break;
if (!*n || strcmp((*n)->name, name)) {
WARN_ON(1);
} else {
p = *n;
*n = p->next;
}
spin_unlock(&major_names_spinlock);
mutex_unlock(&major_names_lock);
kfree(p);
}
EXPORT_SYMBOL(unregister_blkdev);
int blk_alloc_ext_minor(void)
{
int idx;
idx = ida_alloc_range(&ext_devt_ida, 0, NR_EXT_DEVT - 1, GFP_KERNEL);
if (idx == -ENOSPC)
return -EBUSY;
return idx;
}
void blk_free_ext_minor(unsigned int minor)
{
ida_free(&ext_devt_ida, minor);
}
void disk_uevent(struct gendisk *disk, enum kobject_action action)
{
struct block_device *part;
unsigned long idx;
rcu_read_lock();
xa_for_each(&disk->part_tbl, idx, part) {
if (bdev_is_partition(part) && !bdev_nr_sectors(part))
continue;
if (!kobject_get_unless_zero(&part->bd_device.kobj))
continue;
rcu_read_unlock();
kobject_uevent(bdev_kobj(part), action);
put_device(&part->bd_device);
rcu_read_lock();
}
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(disk_uevent);
int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode)
{
struct file *file;
int ret = 0;
if (disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN))
return -EINVAL;
if (test_bit(GD_SUPPRESS_PART_SCAN, &disk->state))
return -EINVAL;
if (disk->open_partitions)
return -EBUSY;
/*
* If the device is opened exclusively by current thread already, it's
* safe to scan partitons, otherwise, use bd_prepare_to_claim() to
* synchronize with other exclusive openers and other partition
* scanners.
*/
if (!(mode & BLK_OPEN_EXCL)) {
ret = bd_prepare_to_claim(disk->part0, disk_scan_partitions,
NULL);
if (ret)
return ret;
}
set_bit(GD_NEED_PART_SCAN, &disk->state);
file = bdev_file_open_by_dev(disk_devt(disk), mode & ~BLK_OPEN_EXCL,
NULL, NULL);
if (IS_ERR(file))
ret = PTR_ERR(file);
else
fput(file);
/*
* If blkdev_get_by_dev() failed early, GD_NEED_PART_SCAN is still set,
* and this will cause that re-assemble partitioned raid device will
* creat partition for underlying disk.
*/
clear_bit(GD_NEED_PART_SCAN, &disk->state);
if (!(mode & BLK_OPEN_EXCL))
bd_abort_claiming(disk->part0, disk_scan_partitions);
return ret;
}
/**
* device_add_disk - add disk information to kernel list
* @parent: parent device for the disk
* @disk: per-device partitioning information
* @groups: Additional per-device sysfs groups
*
* This function registers the partitioning information in @disk
* with the kernel.
*/
int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
const struct attribute_group **groups)
{
struct device *ddev = disk_to_dev(disk);
int ret;
/* Only makes sense for bio-based to set ->poll_bio */
if (queue_is_mq(disk->queue) && disk->fops->poll_bio)
return -EINVAL;
/*
* The disk queue should now be all set with enough information about
* the device for the elevator code to pick an adequate default
* elevator if one is needed, that is, for devices requesting queue
* registration.
*/
elevator_init_mq(disk->queue);
/* Mark bdev as having a submit_bio, if needed */
disk->part0->bd_has_submit_bio = disk->fops->submit_bio != NULL;
/*
* If the driver provides an explicit major number it also must provide
* the number of minors numbers supported, and those will be used to
* setup the gendisk.
* Otherwise just allocate the device numbers for both the whole device
* and all partitions from the extended dev_t space.
*/
ret = -EINVAL;
if (disk->major) {
if (WARN_ON(!disk->minors))
goto out_exit_elevator;
if (disk->minors > DISK_MAX_PARTS) {
pr_err("block: can't allocate more than %d partitions\n",
DISK_MAX_PARTS);
disk->minors = DISK_MAX_PARTS;
}
if (disk->first_minor > MINORMASK ||
disk->minors > MINORMASK + 1 ||
disk->first_minor + disk->minors > MINORMASK + 1)
goto out_exit_elevator;
} else {
if (WARN_ON(disk->minors))
goto out_exit_elevator;
ret = blk_alloc_ext_minor();
if (ret < 0)
goto out_exit_elevator;
disk->major = BLOCK_EXT_MAJOR;
disk->first_minor = ret;
}
/* delay uevents, until we scanned partition table */
dev_set_uevent_suppress(ddev, 1);
ddev->parent = parent;
ddev->groups = groups;
dev_set_name(ddev, "%s", disk->disk_name);
if (!(disk->flags & GENHD_FL_HIDDEN))
ddev->devt = MKDEV(disk->major, disk->first_minor);
ret = device_add(ddev);
if (ret)
goto out_free_ext_minor;
ret = disk_alloc_events(disk);
if (ret)
goto out_device_del;
ret = sysfs_create_link(block_depr, &ddev->kobj,
kobject_name(&ddev->kobj));
if (ret)
goto out_device_del;
/*
* avoid probable deadlock caused by allocating memory with
* GFP_KERNEL in runtime_resume callback of its all ancestor
* devices
*/
pm_runtime_set_memalloc_noio(ddev, true);
disk->part0->bd_holder_dir =
kobject_create_and_add("holders", &ddev->kobj);
if (!disk->part0->bd_holder_dir) {
ret = -ENOMEM;
goto out_del_block_link;
}
disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
if (!disk->slave_dir) {
ret = -ENOMEM;
goto out_put_holder_dir;
}
ret = blk_register_queue(disk);
if (ret)
goto out_put_slave_dir;
if (!(disk->flags & GENHD_FL_HIDDEN)) {
ret = bdi_register(disk->bdi, "%u:%u",
disk->major, disk->first_minor);
if (ret)
goto out_unregister_queue;
bdi_set_owner(disk->bdi, ddev);
ret = sysfs_create_link(&ddev->kobj,
&disk->bdi->dev->kobj, "bdi");
if (ret)
goto out_unregister_bdi;
/* Make sure the first partition scan will be proceed */
if (get_capacity(disk) && !(disk->flags & GENHD_FL_NO_PART) &&
!test_bit(GD_SUPPRESS_PART_SCAN, &disk->state))
set_bit(GD_NEED_PART_SCAN, &disk->state);
bdev_add(disk->part0, ddev->devt);
if (get_capacity(disk))
disk_scan_partitions(disk, BLK_OPEN_READ);
/*
* Announce the disk and partitions after all partitions are
* created. (for hidden disks uevents remain suppressed forever)
*/
dev_set_uevent_suppress(ddev, 0);
disk_uevent(disk, KOBJ_ADD);
} else {
/*
* Even if the block_device for a hidden gendisk is not
* registered, it needs to have a valid bd_dev so that the
* freeing of the dynamic major works.
*/
disk->part0->bd_dev = MKDEV(disk->major, disk->first_minor);
}
disk_update_readahead(disk);
disk_add_events(disk);
set_bit(GD_ADDED, &disk->state);
return 0;
out_unregister_bdi:
if (!(disk->flags & GENHD_FL_HIDDEN))
bdi_unregister(disk->bdi);
out_unregister_queue:
blk_unregister_queue(disk);
rq_qos_exit(disk->queue);
out_put_slave_dir:
kobject_put(disk->slave_dir);
disk->slave_dir = NULL;
out_put_holder_dir:
kobject_put(disk->part0->bd_holder_dir);
out_del_block_link:
sysfs_remove_link(block_depr, dev_name(ddev));
pm_runtime_set_memalloc_noio(ddev, false);
out_device_del:
device_del(ddev);
out_free_ext_minor:
if (disk->major == BLOCK_EXT_MAJOR)
blk_free_ext_minor(disk->first_minor);
out_exit_elevator:
if (disk->queue->elevator)
elevator_exit(disk->queue);
return ret;
}
EXPORT_SYMBOL(device_add_disk);
static void blk_report_disk_dead(struct gendisk *disk, bool surprise)
{
struct block_device *bdev;
unsigned long idx;
/*
* On surprise disk removal, bdev_mark_dead() may call into file
* systems below. Make it clear that we're expecting to not hold
* disk->open_mutex.
*/
lockdep_assert_not_held(&disk->open_mutex);
rcu_read_lock();
xa_for_each(&disk->part_tbl, idx, bdev) {
if (!kobject_get_unless_zero(&bdev->bd_device.kobj))
continue;
rcu_read_unlock();
bdev_mark_dead(bdev, surprise);
put_device(&bdev->bd_device);
rcu_read_lock();
}
rcu_read_unlock();
}
static void __blk_mark_disk_dead(struct gendisk *disk)
{
/*
* Fail any new I/O.
*/
if (test_and_set_bit(GD_DEAD, &disk->state))
return;
if (test_bit(GD_OWNS_QUEUE, &disk->state))
blk_queue_flag_set(QUEUE_FLAG_DYING, disk->queue);
/*
* Stop buffered writers from dirtying pages that can't be written out.
*/
set_capacity(disk, 0);
/*
* Prevent new I/O from crossing bio_queue_enter().
*/
blk_queue_start_drain(disk->queue);
}
/**
* blk_mark_disk_dead - mark a disk as dead
* @disk: disk to mark as dead
*
* Mark as disk as dead (e.g. surprise removed) and don't accept any new I/O
* to this disk.
*/
void blk_mark_disk_dead(struct gendisk *disk)
{
__blk_mark_disk_dead(disk);
blk_report_disk_dead(disk, true);
}
EXPORT_SYMBOL_GPL(blk_mark_disk_dead);
/**
* del_gendisk - remove the gendisk
* @disk: the struct gendisk to remove
*
* Removes the gendisk and all its associated resources. This deletes the
* partitions associated with the gendisk, and unregisters the associated
* request_queue.
*
* This is the counter to the respective __device_add_disk() call.
*
* The final removal of the struct gendisk happens when its refcount reaches 0
* with put_disk(), which should be called after del_gendisk(), if
* __device_add_disk() was used.
*
* Drivers exist which depend on the release of the gendisk to be synchronous,
* it should not be deferred.
*
* Context: can sleep
*/
void del_gendisk(struct gendisk *disk)
{
struct request_queue *q = disk->queue;
struct block_device *part;
unsigned long idx;
might_sleep();
if (WARN_ON_ONCE(!disk_live(disk) && !(disk->flags & GENHD_FL_HIDDEN)))
return;
disk_del_events(disk);
/*
* Prevent new openers by unlinked the bdev inode.
*/
mutex_lock(&disk->open_mutex);
xa_for_each(&disk->part_tbl, idx, part)
remove_inode_hash(part->bd_inode);
mutex_unlock(&disk->open_mutex);
/*
* Tell the file system to write back all dirty data and shut down if
* it hasn't been notified earlier.
*/
if (!test_bit(GD_DEAD, &disk->state))
blk_report_disk_dead(disk, false);
__blk_mark_disk_dead(disk);
/*
* Drop all partitions now that the disk is marked dead.
*/
mutex_lock(&disk->open_mutex);
xa_for_each_start(&disk->part_tbl, idx, part, 1)
drop_partition(part);
mutex_unlock(&disk->open_mutex);
if (!(disk->flags & GENHD_FL_HIDDEN)) {
sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
/*
* Unregister bdi before releasing device numbers (as they can
* get reused and we'd get clashes in sysfs).
*/
bdi_unregister(disk->bdi);
}
blk_unregister_queue(disk);
kobject_put(disk->part0->bd_holder_dir);
kobject_put(disk->slave_dir);
disk->slave_dir = NULL;
part_stat_set_all(disk->part0, 0);
disk->part0->bd_stamp = 0;
sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
device_del(disk_to_dev(disk));
blk_mq_freeze_queue_wait(q);
blk_throtl_cancel_bios(disk);
blk_sync_queue(q);
blk_flush_integrity();
if (queue_is_mq(q))
blk_mq_cancel_work_sync(q);
blk_mq_quiesce_queue(q);
if (q->elevator) {
mutex_lock(&q->sysfs_lock);
elevator_exit(q);
mutex_unlock(&q->sysfs_lock);
}
rq_qos_exit(q);
blk_mq_unquiesce_queue(q);
/*
* If the disk does not own the queue, allow using passthrough requests
* again. Else leave the queue frozen to fail all I/O.
*/
if (!test_bit(GD_OWNS_QUEUE, &disk->state)) {
blk_queue_flag_clear(QUEUE_FLAG_INIT_DONE, q);
__blk_mq_unfreeze_queue(q, true);
} else {
if (queue_is_mq(q))
blk_mq_exit_queue(q);
}
}
EXPORT_SYMBOL(del_gendisk);
/**
* invalidate_disk - invalidate the disk
* @disk: the struct gendisk to invalidate
*
* A helper to invalidates the disk. It will clean the disk's associated
* buffer/page caches and reset its internal states so that the disk
* can be reused by the drivers.
*
* Context: can sleep
*/
void invalidate_disk(struct gendisk *disk)
{
struct block_device *bdev = disk->part0;
invalidate_bdev(bdev);
bdev->bd_inode->i_mapping->wb_err = 0;
set_capacity(disk, 0);
}
EXPORT_SYMBOL(invalidate_disk);
/* sysfs access to bad-blocks list. */
static ssize_t disk_badblocks_show(struct device *dev,
struct device_attribute *attr,
char *page)
{
struct gendisk *disk = dev_to_disk(dev);
if (!disk->bb)
return sprintf(page, "\n");
return badblocks_show(disk->bb, page, 0);
}
static ssize_t disk_badblocks_store(struct device *dev,
struct device_attribute *attr,
const char *page, size_t len)
{
struct gendisk *disk = dev_to_disk(dev);
if (!disk->bb)
return -ENXIO;
return badblocks_store(disk->bb, page, len, 0);
}
#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
void blk_request_module(dev_t devt)
{
unsigned int major = MAJOR(devt);
struct blk_major_name **n;
mutex_lock(&major_names_lock);
for (n = &major_names[major_to_index(major)]; *n; n = &(*n)->next) {
if ((*n)->major == major && (*n)->probe) {
(*n)->probe(devt);
mutex_unlock(&major_names_lock);
return;
}
}
mutex_unlock(&major_names_lock);
if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
/* Make old-style 2.4 aliases work */
request_module("block-major-%d", MAJOR(devt));
}
#endif /* CONFIG_BLOCK_LEGACY_AUTOLOAD */
#ifdef CONFIG_PROC_FS
/* iterator */
static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
{
loff_t skip = *pos;
struct class_dev_iter *iter;
struct device *dev;
iter = kmalloc(sizeof(*iter), GFP_KERNEL);
if (!iter)
return ERR_PTR(-ENOMEM);
seqf->private = iter;
class_dev_iter_init(iter, &block_class, NULL, &disk_type);
do {
dev = class_dev_iter_next(iter);
if (!dev)
return NULL;
} while (skip--);
return dev_to_disk(dev);
}
static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
{
struct device *dev;
(*pos)++;
dev = class_dev_iter_next(seqf->private);
if (dev)
return dev_to_disk(dev);
return NULL;
}
static void disk_seqf_stop(struct seq_file *seqf, void *v)
{
struct class_dev_iter *iter = seqf->private;
/* stop is called even after start failed :-( */
if (iter) {
class_dev_iter_exit(iter);
kfree(iter);
seqf->private = NULL;
}
}
static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
{
void *p;
p = disk_seqf_start(seqf, pos);
if (!IS_ERR_OR_NULL(p) && !*pos)
seq_puts(seqf, "major minor #blocks name\n\n");
return p;
}
static int show_partition(struct seq_file *seqf, void *v)
{
struct gendisk *sgp = v;
struct block_device *part;
unsigned long idx;
if (!get_capacity(sgp) || (sgp->flags & GENHD_FL_HIDDEN))
return 0;
rcu_read_lock();
xa_for_each(&sgp->part_tbl, idx, part) {
if (!bdev_nr_sectors(part))
continue;
seq_printf(seqf, "%4d %7d %10llu %pg\n",
MAJOR(part->bd_dev), MINOR(part->bd_dev),
bdev_nr_sectors(part) >> 1, part);
}
rcu_read_unlock();
return 0;
}
static const struct seq_operations partitions_op = {
.start = show_partition_start,
.next = disk_seqf_next,
.stop = disk_seqf_stop,
.show = show_partition
};
#endif
static int __init genhd_device_init(void)
{
int error;
error = class_register(&block_class);
if (unlikely(error))
return error;
blk_dev_init();
register_blkdev(BLOCK_EXT_MAJOR, "blkext");
/* create top-level block dir */
block_depr = kobject_create_and_add("block", NULL);
return 0;
}
subsys_initcall(genhd_device_init);
static ssize_t disk_range_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%d\n", disk->minors);
}
static ssize_t disk_ext_range_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%d\n",
(disk->flags & GENHD_FL_NO_PART) ? 1 : DISK_MAX_PARTS);
}
static ssize_t disk_removable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%d\n",
(disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
}
static ssize_t disk_hidden_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%d\n",
(disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
}
static ssize_t disk_ro_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
}
ssize_t part_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%llu\n", bdev_nr_sectors(dev_to_bdev(dev)));
}
ssize_t part_stat_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct block_device *bdev = dev_to_bdev(dev);
struct request_queue *q = bdev_get_queue(bdev);
struct disk_stats stat;
unsigned int inflight;
if (queue_is_mq(q))
inflight = blk_mq_in_flight(q, bdev);
else
inflight = part_in_flight(bdev);
if (inflight) {
part_stat_lock();
update_io_ticks(bdev, jiffies, true);
part_stat_unlock();
}
part_stat_read_all(bdev, &stat);
return sprintf(buf,
"%8lu %8lu %8llu %8u "
"%8lu %8lu %8llu %8u "
"%8u %8u %8u "
"%8lu %8lu %8llu %8u "
"%8lu %8u"
"\n",
stat.ios[STAT_READ],
stat.merges[STAT_READ],
(unsigned long long)stat.sectors[STAT_READ],
(unsigned int)div_u64(stat.nsecs[STAT_READ], NSEC_PER_MSEC),
stat.ios[STAT_WRITE],
stat.merges[STAT_WRITE],
(unsigned long long)stat.sectors[STAT_WRITE],
(unsigned int)div_u64(stat.nsecs[STAT_WRITE], NSEC_PER_MSEC),
inflight,
jiffies_to_msecs(stat.io_ticks),
(unsigned int)div_u64(stat.nsecs[STAT_READ] +
stat.nsecs[STAT_WRITE] +
stat.nsecs[STAT_DISCARD] +
stat.nsecs[STAT_FLUSH],
NSEC_PER_MSEC),
stat.ios[STAT_DISCARD],
stat.merges[STAT_DISCARD],
(unsigned long long)stat.sectors[STAT_DISCARD],
(unsigned int)div_u64(stat.nsecs[STAT_DISCARD], NSEC_PER_MSEC),
stat.ios[STAT_FLUSH],
(unsigned int)div_u64(stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC));
}
ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct block_device *bdev = dev_to_bdev(dev);
struct request_queue *q = bdev_get_queue(bdev);
unsigned int inflight[2];
if (queue_is_mq(q))
blk_mq_in_flight_rw(q, bdev, inflight);
else
part_in_flight_rw(bdev, inflight);
return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]);
}
static ssize_t disk_capability_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
dev_warn_once(dev, "the capability attribute has been deprecated.\n");
return sprintf(buf, "0\n");
}
static ssize_t disk_alignment_offset_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%d\n", bdev_alignment_offset(disk->part0));
}
static ssize_t disk_discard_alignment_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%d\n", bdev_alignment_offset(disk->part0));
}
static ssize_t diskseq_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%llu\n", disk->diskseq);
}
static DEVICE_ATTR(range, 0444, disk_range_show, NULL);
static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL);
static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL);
static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL);
static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL);
static DEVICE_ATTR(size, 0444, part_size_show, NULL);
static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL);
static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL);
static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL);
static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store);
static DEVICE_ATTR(diskseq, 0444, diskseq_show, NULL);
#ifdef CONFIG_FAIL_MAKE_REQUEST
ssize_t part_fail_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", dev_to_bdev(dev)->bd_make_it_fail);
}
ssize_t part_fail_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int i;
if (count > 0 && sscanf(buf, "%d", &i) > 0)
dev_to_bdev(dev)->bd_make_it_fail = i;
return count;
}
static struct device_attribute dev_attr_fail =
__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
#endif /* CONFIG_FAIL_MAKE_REQUEST */
#ifdef CONFIG_FAIL_IO_TIMEOUT
static struct device_attribute dev_attr_fail_timeout =
__ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store);
#endif
static struct attribute *disk_attrs[] = {
&dev_attr_range.attr,
&dev_attr_ext_range.attr,
&dev_attr_removable.attr,
&dev_attr_hidden.attr,
&dev_attr_ro.attr,
&dev_attr_size.attr,
&dev_attr_alignment_offset.attr,
&dev_attr_discard_alignment.attr,
&dev_attr_capability.attr,
&dev_attr_stat.attr,
&dev_attr_inflight.attr,
&dev_attr_badblocks.attr,
&dev_attr_events.attr,
&dev_attr_events_async.attr,
&dev_attr_events_poll_msecs.attr,
&dev_attr_diskseq.attr,
#ifdef CONFIG_FAIL_MAKE_REQUEST
&dev_attr_fail.attr,
#endif
#ifdef CONFIG_FAIL_IO_TIMEOUT
&dev_attr_fail_timeout.attr,
#endif
NULL
};
static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
{
struct device *dev = container_of(kobj, typeof(*dev), kobj);
struct gendisk *disk = dev_to_disk(dev);
if (a == &dev_attr_badblocks.attr && !disk->bb)
return 0;
return a->mode;
}
static struct attribute_group disk_attr_group = {
.attrs = disk_attrs,
.is_visible = disk_visible,
};
static const struct attribute_group *disk_attr_groups[] = {
&disk_attr_group,
#ifdef CONFIG_BLK_DEV_IO_TRACE
&blk_trace_attr_group,
#endif
#ifdef CONFIG_BLK_DEV_INTEGRITY
&blk_integrity_attr_group,
#endif
NULL
};
/**
* disk_release - releases all allocated resources of the gendisk
* @dev: the device representing this disk
*
* This function releases all allocated resources of the gendisk.
*
* Drivers which used __device_add_disk() have a gendisk with a request_queue
* assigned. Since the request_queue sits on top of the gendisk for these
* drivers we also call blk_put_queue() for them, and we expect the
* request_queue refcount to reach 0 at this point, and so the request_queue
* will also be freed prior to the disk.
*
* Context: can sleep
*/
static void disk_release(struct device *dev)
{
struct gendisk *disk = dev_to_disk(dev);
might_sleep();
WARN_ON_ONCE(disk_live(disk));
blk_trace_remove(disk->queue);
/*
* To undo the all initialization from blk_mq_init_allocated_queue in
* case of a probe failure where add_disk is never called we have to
* call blk_mq_exit_queue here. We can't do this for the more common
* teardown case (yet) as the tagset can be gone by the time the disk
* is released once it was added.
*/
if (queue_is_mq(disk->queue) &&
test_bit(GD_OWNS_QUEUE, &disk->state) &&
!test_bit(GD_ADDED, &disk->state))
blk_mq_exit_queue(disk->queue);
blkcg_exit_disk(disk);
bioset_exit(&disk->bio_split);
disk_release_events(disk);
kfree(disk->random);
disk_free_zone_resources(disk);
xa_destroy(&disk->part_tbl);
disk->queue->disk = NULL;
blk_put_queue(disk->queue);
if (test_bit(GD_ADDED, &disk->state) && disk->fops->free_disk)
disk->fops->free_disk(disk);
iput(disk->part0->bd_inode); /* frees the disk */
}
static int block_uevent(const struct device *dev, struct kobj_uevent_env *env)
{
const struct gendisk *disk = dev_to_disk(dev);
return add_uevent_var(env, "DISKSEQ=%llu", disk->diskseq);
}
const struct class block_class = {
.name = "block",
.dev_uevent = block_uevent,
};
static char *block_devnode(const struct device *dev, umode_t *mode,
kuid_t *uid, kgid_t *gid)
{
struct gendisk *disk = dev_to_disk(dev);
if (disk->fops->devnode)
return disk->fops->devnode(disk, mode);
return NULL;
}
const struct device_type disk_type = {
.name = "disk",
.groups = disk_attr_groups,
.release = disk_release,
.devnode = block_devnode,
};
#ifdef CONFIG_PROC_FS
/*
* aggregate disk stat collector. Uses the same stats that the sysfs
* entries do, above, but makes them available through one seq_file.
*
* The output looks suspiciously like /proc/partitions with a bunch of
* extra fields.
*/
static int diskstats_show(struct seq_file *seqf, void *v)
{
struct gendisk *gp = v;
struct block_device *hd;
unsigned int inflight;
struct disk_stats stat;
unsigned long idx;
/*
if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
seq_puts(seqf, "major minor name"
" rio rmerge rsect ruse wio wmerge "
"wsect wuse running use aveq"
"\n\n");
*/
rcu_read_lock();
xa_for_each(&gp->part_tbl, idx, hd) {
if (bdev_is_partition(hd) && !bdev_nr_sectors(hd))
continue;
if (queue_is_mq(gp->queue))
inflight = blk_mq_in_flight(gp->queue, hd);
else
inflight = part_in_flight(hd);
if (inflight) {
part_stat_lock();
update_io_ticks(hd, jiffies, true);
part_stat_unlock();
}
part_stat_read_all(hd, &stat);
seq_printf(seqf, "%4d %7d %pg "
"%lu %lu %lu %u "
"%lu %lu %lu %u "
"%u %u %u "
"%lu %lu %lu %u "
"%lu %u"
"\n",
MAJOR(hd->bd_dev), MINOR(hd->bd_dev), hd,
stat.ios[STAT_READ],
stat.merges[STAT_READ],
stat.sectors[STAT_READ],
(unsigned int)div_u64(stat.nsecs[STAT_READ],
NSEC_PER_MSEC),
stat.ios[STAT_WRITE],
stat.merges[STAT_WRITE],
stat.sectors[STAT_WRITE],
(unsigned int)div_u64(stat.nsecs[STAT_WRITE],
NSEC_PER_MSEC),
inflight,
jiffies_to_msecs(stat.io_ticks),
(unsigned int)div_u64(stat.nsecs[STAT_READ] +
stat.nsecs[STAT_WRITE] +
stat.nsecs[STAT_DISCARD] +
stat.nsecs[STAT_FLUSH],
NSEC_PER_MSEC),
stat.ios[STAT_DISCARD],
stat.merges[STAT_DISCARD],
stat.sectors[STAT_DISCARD],
(unsigned int)div_u64(stat.nsecs[STAT_DISCARD],
NSEC_PER_MSEC),
stat.ios[STAT_FLUSH],
(unsigned int)div_u64(stat.nsecs[STAT_FLUSH],
NSEC_PER_MSEC)
);
}
rcu_read_unlock();
return 0;
}
static const struct seq_operations diskstats_op = {
.start = disk_seqf_start,
.next = disk_seqf_next,
.stop = disk_seqf_stop,
.show = diskstats_show
};
static int __init proc_genhd_init(void)
{
proc_create_seq("diskstats", 0, NULL, &diskstats_op);
proc_create_seq("partitions", 0, NULL, &partitions_op);
return 0;
}
module_init(proc_genhd_init);
#endif /* CONFIG_PROC_FS */
dev_t part_devt(struct gendisk *disk, u8 partno)
{
struct block_device *part;
dev_t devt = 0;
rcu_read_lock();
part = xa_load(&disk->part_tbl, partno);
if (part)
devt = part->bd_dev;
rcu_read_unlock();
return devt;
}
struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
struct lock_class_key *lkclass)
{
struct gendisk *disk;
disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
if (!disk)
return NULL;
if (bioset_init(&disk->bio_split, BIO_POOL_SIZE, 0, 0))
goto out_free_disk;
disk->bdi = bdi_alloc(node_id);
if (!disk->bdi)
goto out_free_bioset;
/* bdev_alloc() might need the queue, set before the first call */
disk->queue = q;
disk->part0 = bdev_alloc(disk, 0);
if (!disk->part0)
goto out_free_bdi;
disk->node_id = node_id;
mutex_init(&disk->open_mutex);
xa_init(&disk->part_tbl);
if (xa_insert(&disk->part_tbl, 0, disk->part0, GFP_KERNEL))
goto out_destroy_part_tbl;
if (blkcg_init_disk(disk))
goto out_erase_part0;
disk_init_zone_resources(disk);
rand_initialize_disk(disk);
disk_to_dev(disk)->class = &block_class;
disk_to_dev(disk)->type = &disk_type;
device_initialize(disk_to_dev(disk));
inc_diskseq(disk);
q->disk = disk;
lockdep_init_map(&disk->lockdep_map, "(bio completion)", lkclass, 0);
#ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
INIT_LIST_HEAD(&disk->slave_bdevs);
#endif
return disk;
out_erase_part0:
xa_erase(&disk->part_tbl, 0);
out_destroy_part_tbl:
xa_destroy(&disk->part_tbl);
disk->part0->bd_disk = NULL;
iput(disk->part0->bd_inode);
out_free_bdi:
bdi_put(disk->bdi);
out_free_bioset:
bioset_exit(&disk->bio_split);
out_free_disk:
kfree(disk);
return NULL;
}
struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
struct lock_class_key *lkclass)
{
struct queue_limits default_lim = { };
struct request_queue *q;
struct gendisk *disk;
q = blk_alloc_queue(lim ? lim : &default_lim, node);
if (IS_ERR(q))
return ERR_CAST(q);
disk = __alloc_disk_node(q, node, lkclass);
if (!disk) {
blk_put_queue(q);
return ERR_PTR(-ENOMEM);
}
set_bit(GD_OWNS_QUEUE, &disk->state);
return disk;
}
EXPORT_SYMBOL(__blk_alloc_disk);
/**
* put_disk - decrements the gendisk refcount
* @disk: the struct gendisk to decrement the refcount for
*
* This decrements the refcount for the struct gendisk. When this reaches 0
* we'll have disk_release() called.
*
* Note: for blk-mq disk put_disk must be called before freeing the tag_set
* when handling probe errors (that is before add_disk() is called).
*
* Context: Any context, but the last reference must not be dropped from
* atomic context.
*/
void put_disk(struct gendisk *disk)
{
if (disk)
put_device(disk_to_dev(disk));
}
EXPORT_SYMBOL(put_disk);
static void set_disk_ro_uevent(struct gendisk *gd, int ro)
{
char event[] = "DISK_RO=1";
char *envp[] = { event, NULL };
if (!ro)
event[8] = '0';
kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
}
/**
* set_disk_ro - set a gendisk read-only
* @disk: gendisk to operate on
* @read_only: %true to set the disk read-only, %false set the disk read/write
*
* This function is used to indicate whether a given disk device should have its
* read-only flag set. set_disk_ro() is typically used by device drivers to
* indicate whether the underlying physical device is write-protected.
*/
void set_disk_ro(struct gendisk *disk, bool read_only)
{
if (read_only) {
if (test_and_set_bit(GD_READ_ONLY, &disk->state))
return;
} else {
if (!test_and_clear_bit(GD_READ_ONLY, &disk->state))
return;
}
set_disk_ro_uevent(disk, read_only);
}
EXPORT_SYMBOL(set_disk_ro);
void inc_diskseq(struct gendisk *disk)
{
disk->diskseq = atomic64_inc_return(&diskseq);
}