mirror of
https://github.com/torvalds/linux.git
synced 2024-11-13 23:51:39 +00:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
1272 lines
33 KiB
C
1272 lines
33 KiB
C
/*
|
|
* Device probing and sysfs code.
|
|
*
|
|
* Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include <linux/bug.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/firewire.h>
|
|
#include <linux/firewire-constants.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/string.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
#include <asm/atomic.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/system.h>
|
|
|
|
#include "core.h"
|
|
|
|
void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
|
|
{
|
|
ci->p = p + 1;
|
|
ci->end = ci->p + (p[0] >> 16);
|
|
}
|
|
EXPORT_SYMBOL(fw_csr_iterator_init);
|
|
|
|
int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
|
|
{
|
|
*key = *ci->p >> 24;
|
|
*value = *ci->p & 0xffffff;
|
|
|
|
return ci->p++ < ci->end;
|
|
}
|
|
EXPORT_SYMBOL(fw_csr_iterator_next);
|
|
|
|
static const u32 *search_leaf(const u32 *directory, int search_key)
|
|
{
|
|
struct fw_csr_iterator ci;
|
|
int last_key = 0, key, value;
|
|
|
|
fw_csr_iterator_init(&ci, directory);
|
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
|
if (last_key == search_key &&
|
|
key == (CSR_DESCRIPTOR | CSR_LEAF))
|
|
return ci.p - 1 + value;
|
|
|
|
last_key = key;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
|
|
{
|
|
unsigned int quadlets, i;
|
|
char c;
|
|
|
|
if (!size || !buf)
|
|
return -EINVAL;
|
|
|
|
quadlets = min(block[0] >> 16, 256U);
|
|
if (quadlets < 2)
|
|
return -ENODATA;
|
|
|
|
if (block[1] != 0 || block[2] != 0)
|
|
/* unknown language/character set */
|
|
return -ENODATA;
|
|
|
|
block += 3;
|
|
quadlets -= 2;
|
|
for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
|
|
c = block[i / 4] >> (24 - 8 * (i % 4));
|
|
if (c == '\0')
|
|
break;
|
|
buf[i] = c;
|
|
}
|
|
buf[i] = '\0';
|
|
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* fw_csr_string - reads a string from the configuration ROM
|
|
* @directory: e.g. root directory or unit directory
|
|
* @key: the key of the preceding directory entry
|
|
* @buf: where to put the string
|
|
* @size: size of @buf, in bytes
|
|
*
|
|
* The string is taken from a minimal ASCII text descriptor leaf after
|
|
* the immediate entry with @key. The string is zero-terminated.
|
|
* Returns strlen(buf) or a negative error code.
|
|
*/
|
|
int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
|
|
{
|
|
const u32 *leaf = search_leaf(directory, key);
|
|
if (!leaf)
|
|
return -ENOENT;
|
|
|
|
return textual_leaf_to_string(leaf, buf, size);
|
|
}
|
|
EXPORT_SYMBOL(fw_csr_string);
|
|
|
|
static void get_ids(const u32 *directory, int *id)
|
|
{
|
|
struct fw_csr_iterator ci;
|
|
int key, value;
|
|
|
|
fw_csr_iterator_init(&ci, directory);
|
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
|
switch (key) {
|
|
case CSR_VENDOR: id[0] = value; break;
|
|
case CSR_MODEL: id[1] = value; break;
|
|
case CSR_SPECIFIER_ID: id[2] = value; break;
|
|
case CSR_VERSION: id[3] = value; break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void get_modalias_ids(struct fw_unit *unit, int *id)
|
|
{
|
|
get_ids(&fw_parent_device(unit)->config_rom[5], id);
|
|
get_ids(unit->directory, id);
|
|
}
|
|
|
|
static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
|
|
{
|
|
int match = 0;
|
|
|
|
if (id[0] == id_table->vendor_id)
|
|
match |= IEEE1394_MATCH_VENDOR_ID;
|
|
if (id[1] == id_table->model_id)
|
|
match |= IEEE1394_MATCH_MODEL_ID;
|
|
if (id[2] == id_table->specifier_id)
|
|
match |= IEEE1394_MATCH_SPECIFIER_ID;
|
|
if (id[3] == id_table->version)
|
|
match |= IEEE1394_MATCH_VERSION;
|
|
|
|
return (match & id_table->match_flags) == id_table->match_flags;
|
|
}
|
|
|
|
static bool is_fw_unit(struct device *dev);
|
|
|
|
static int fw_unit_match(struct device *dev, struct device_driver *drv)
|
|
{
|
|
const struct ieee1394_device_id *id_table =
|
|
container_of(drv, struct fw_driver, driver)->id_table;
|
|
int id[] = {0, 0, 0, 0};
|
|
|
|
/* We only allow binding to fw_units. */
|
|
if (!is_fw_unit(dev))
|
|
return 0;
|
|
|
|
get_modalias_ids(fw_unit(dev), id);
|
|
|
|
for (; id_table->match_flags != 0; id_table++)
|
|
if (match_ids(id_table, id))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
|
|
{
|
|
int id[] = {0, 0, 0, 0};
|
|
|
|
get_modalias_ids(unit, id);
|
|
|
|
return snprintf(buffer, buffer_size,
|
|
"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
|
|
id[0], id[1], id[2], id[3]);
|
|
}
|
|
|
|
static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
|
|
{
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
char modalias[64];
|
|
|
|
get_modalias(unit, modalias, sizeof(modalias));
|
|
|
|
if (add_uevent_var(env, "MODALIAS=%s", modalias))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct bus_type fw_bus_type = {
|
|
.name = "firewire",
|
|
.match = fw_unit_match,
|
|
};
|
|
EXPORT_SYMBOL(fw_bus_type);
|
|
|
|
int fw_device_enable_phys_dma(struct fw_device *device)
|
|
{
|
|
int generation = device->generation;
|
|
|
|
/* device->node_id, accessed below, must not be older than generation */
|
|
smp_rmb();
|
|
|
|
return device->card->driver->enable_phys_dma(device->card,
|
|
device->node_id,
|
|
generation);
|
|
}
|
|
EXPORT_SYMBOL(fw_device_enable_phys_dma);
|
|
|
|
struct config_rom_attribute {
|
|
struct device_attribute attr;
|
|
u32 key;
|
|
};
|
|
|
|
static ssize_t show_immediate(struct device *dev,
|
|
struct device_attribute *dattr, char *buf)
|
|
{
|
|
struct config_rom_attribute *attr =
|
|
container_of(dattr, struct config_rom_attribute, attr);
|
|
struct fw_csr_iterator ci;
|
|
const u32 *dir;
|
|
int key, value, ret = -ENOENT;
|
|
|
|
down_read(&fw_device_rwsem);
|
|
|
|
if (is_fw_unit(dev))
|
|
dir = fw_unit(dev)->directory;
|
|
else
|
|
dir = fw_device(dev)->config_rom + 5;
|
|
|
|
fw_csr_iterator_init(&ci, dir);
|
|
while (fw_csr_iterator_next(&ci, &key, &value))
|
|
if (attr->key == key) {
|
|
ret = snprintf(buf, buf ? PAGE_SIZE : 0,
|
|
"0x%06x\n", value);
|
|
break;
|
|
}
|
|
|
|
up_read(&fw_device_rwsem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define IMMEDIATE_ATTR(name, key) \
|
|
{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
|
|
|
|
static ssize_t show_text_leaf(struct device *dev,
|
|
struct device_attribute *dattr, char *buf)
|
|
{
|
|
struct config_rom_attribute *attr =
|
|
container_of(dattr, struct config_rom_attribute, attr);
|
|
const u32 *dir;
|
|
size_t bufsize;
|
|
char dummy_buf[2];
|
|
int ret;
|
|
|
|
down_read(&fw_device_rwsem);
|
|
|
|
if (is_fw_unit(dev))
|
|
dir = fw_unit(dev)->directory;
|
|
else
|
|
dir = fw_device(dev)->config_rom + 5;
|
|
|
|
if (buf) {
|
|
bufsize = PAGE_SIZE - 1;
|
|
} else {
|
|
buf = dummy_buf;
|
|
bufsize = 1;
|
|
}
|
|
|
|
ret = fw_csr_string(dir, attr->key, buf, bufsize);
|
|
|
|
if (ret >= 0) {
|
|
/* Strip trailing whitespace and add newline. */
|
|
while (ret > 0 && isspace(buf[ret - 1]))
|
|
ret--;
|
|
strcpy(buf + ret, "\n");
|
|
ret++;
|
|
}
|
|
|
|
up_read(&fw_device_rwsem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define TEXT_LEAF_ATTR(name, key) \
|
|
{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
|
|
|
|
static struct config_rom_attribute config_rom_attributes[] = {
|
|
IMMEDIATE_ATTR(vendor, CSR_VENDOR),
|
|
IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
|
|
IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
|
|
IMMEDIATE_ATTR(version, CSR_VERSION),
|
|
IMMEDIATE_ATTR(model, CSR_MODEL),
|
|
TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
|
|
TEXT_LEAF_ATTR(model_name, CSR_MODEL),
|
|
TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
|
|
};
|
|
|
|
static void init_fw_attribute_group(struct device *dev,
|
|
struct device_attribute *attrs,
|
|
struct fw_attribute_group *group)
|
|
{
|
|
struct device_attribute *attr;
|
|
int i, j;
|
|
|
|
for (j = 0; attrs[j].attr.name != NULL; j++)
|
|
group->attrs[j] = &attrs[j].attr;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
|
|
attr = &config_rom_attributes[i].attr;
|
|
if (attr->show(dev, attr, NULL) < 0)
|
|
continue;
|
|
group->attrs[j++] = &attr->attr;
|
|
}
|
|
|
|
group->attrs[j] = NULL;
|
|
group->groups[0] = &group->group;
|
|
group->groups[1] = NULL;
|
|
group->group.attrs = group->attrs;
|
|
dev->groups = (const struct attribute_group **) group->groups;
|
|
}
|
|
|
|
static ssize_t modalias_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
int length;
|
|
|
|
length = get_modalias(unit, buf, PAGE_SIZE);
|
|
strcpy(buf + length, "\n");
|
|
|
|
return length + 1;
|
|
}
|
|
|
|
static ssize_t rom_index_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fw_device *device = fw_device(dev->parent);
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
|
|
return snprintf(buf, PAGE_SIZE, "%d\n",
|
|
(int)(unit->directory - device->config_rom));
|
|
}
|
|
|
|
static struct device_attribute fw_unit_attributes[] = {
|
|
__ATTR_RO(modalias),
|
|
__ATTR_RO(rom_index),
|
|
__ATTR_NULL,
|
|
};
|
|
|
|
static ssize_t config_rom_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fw_device *device = fw_device(dev);
|
|
size_t length;
|
|
|
|
down_read(&fw_device_rwsem);
|
|
length = device->config_rom_length * 4;
|
|
memcpy(buf, device->config_rom, length);
|
|
up_read(&fw_device_rwsem);
|
|
|
|
return length;
|
|
}
|
|
|
|
static ssize_t guid_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fw_device *device = fw_device(dev);
|
|
int ret;
|
|
|
|
down_read(&fw_device_rwsem);
|
|
ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
|
|
device->config_rom[3], device->config_rom[4]);
|
|
up_read(&fw_device_rwsem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int units_sprintf(char *buf, const u32 *directory)
|
|
{
|
|
struct fw_csr_iterator ci;
|
|
int key, value;
|
|
int specifier_id = 0;
|
|
int version = 0;
|
|
|
|
fw_csr_iterator_init(&ci, directory);
|
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
|
switch (key) {
|
|
case CSR_SPECIFIER_ID:
|
|
specifier_id = value;
|
|
break;
|
|
case CSR_VERSION:
|
|
version = value;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
|
|
}
|
|
|
|
static ssize_t units_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fw_device *device = fw_device(dev);
|
|
struct fw_csr_iterator ci;
|
|
int key, value, i = 0;
|
|
|
|
down_read(&fw_device_rwsem);
|
|
fw_csr_iterator_init(&ci, &device->config_rom[5]);
|
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
|
if (key != (CSR_UNIT | CSR_DIRECTORY))
|
|
continue;
|
|
i += units_sprintf(&buf[i], ci.p + value - 1);
|
|
if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
|
|
break;
|
|
}
|
|
up_read(&fw_device_rwsem);
|
|
|
|
if (i)
|
|
buf[i - 1] = '\n';
|
|
|
|
return i;
|
|
}
|
|
|
|
static struct device_attribute fw_device_attributes[] = {
|
|
__ATTR_RO(config_rom),
|
|
__ATTR_RO(guid),
|
|
__ATTR_RO(units),
|
|
__ATTR_NULL,
|
|
};
|
|
|
|
static int read_rom(struct fw_device *device,
|
|
int generation, int index, u32 *data)
|
|
{
|
|
int rcode;
|
|
|
|
/* device->node_id, accessed below, must not be older than generation */
|
|
smp_rmb();
|
|
|
|
rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST,
|
|
device->node_id, generation, device->max_speed,
|
|
(CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4,
|
|
data, 4);
|
|
be32_to_cpus(data);
|
|
|
|
return rcode;
|
|
}
|
|
|
|
#define MAX_CONFIG_ROM_SIZE 256
|
|
|
|
/*
|
|
* Read the bus info block, perform a speed probe, and read all of the rest of
|
|
* the config ROM. We do all this with a cached bus generation. If the bus
|
|
* generation changes under us, read_config_rom will fail and get retried.
|
|
* It's better to start all over in this case because the node from which we
|
|
* are reading the ROM may have changed the ROM during the reset.
|
|
*/
|
|
static int read_config_rom(struct fw_device *device, int generation)
|
|
{
|
|
const u32 *old_rom, *new_rom;
|
|
u32 *rom, *stack;
|
|
u32 sp, key;
|
|
int i, end, length, ret = -1;
|
|
|
|
rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
|
|
sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
|
|
if (rom == NULL)
|
|
return -ENOMEM;
|
|
|
|
stack = &rom[MAX_CONFIG_ROM_SIZE];
|
|
memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
|
|
|
|
device->max_speed = SCODE_100;
|
|
|
|
/* First read the bus info block. */
|
|
for (i = 0; i < 5; i++) {
|
|
if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
|
|
goto out;
|
|
/*
|
|
* As per IEEE1212 7.2, during power-up, devices can
|
|
* reply with a 0 for the first quadlet of the config
|
|
* rom to indicate that they are booting (for example,
|
|
* if the firmware is on the disk of a external
|
|
* harddisk). In that case we just fail, and the
|
|
* retry mechanism will try again later.
|
|
*/
|
|
if (i == 0 && rom[i] == 0)
|
|
goto out;
|
|
}
|
|
|
|
device->max_speed = device->node->max_speed;
|
|
|
|
/*
|
|
* Determine the speed of
|
|
* - devices with link speed less than PHY speed,
|
|
* - devices with 1394b PHY (unless only connected to 1394a PHYs),
|
|
* - all devices if there are 1394b repeaters.
|
|
* Note, we cannot use the bus info block's link_spd as starting point
|
|
* because some buggy firmwares set it lower than necessary and because
|
|
* 1394-1995 nodes do not have the field.
|
|
*/
|
|
if ((rom[2] & 0x7) < device->max_speed ||
|
|
device->max_speed == SCODE_BETA ||
|
|
device->card->beta_repeaters_present) {
|
|
u32 dummy;
|
|
|
|
/* for S1600 and S3200 */
|
|
if (device->max_speed == SCODE_BETA)
|
|
device->max_speed = device->card->link_speed;
|
|
|
|
while (device->max_speed > SCODE_100) {
|
|
if (read_rom(device, generation, 0, &dummy) ==
|
|
RCODE_COMPLETE)
|
|
break;
|
|
device->max_speed--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now parse the config rom. The config rom is a recursive
|
|
* directory structure so we parse it using a stack of
|
|
* references to the blocks that make up the structure. We
|
|
* push a reference to the root directory on the stack to
|
|
* start things off.
|
|
*/
|
|
length = i;
|
|
sp = 0;
|
|
stack[sp++] = 0xc0000005;
|
|
while (sp > 0) {
|
|
/*
|
|
* Pop the next block reference of the stack. The
|
|
* lower 24 bits is the offset into the config rom,
|
|
* the upper 8 bits are the type of the reference the
|
|
* block.
|
|
*/
|
|
key = stack[--sp];
|
|
i = key & 0xffffff;
|
|
if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
|
|
goto out;
|
|
|
|
/* Read header quadlet for the block to get the length. */
|
|
if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
|
|
goto out;
|
|
end = i + (rom[i] >> 16) + 1;
|
|
if (end > MAX_CONFIG_ROM_SIZE) {
|
|
/*
|
|
* This block extends outside the config ROM which is
|
|
* a firmware bug. Ignore this whole block, i.e.
|
|
* simply set a fake block length of 0.
|
|
*/
|
|
fw_error("skipped invalid ROM block %x at %llx\n",
|
|
rom[i],
|
|
i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
|
|
rom[i] = 0;
|
|
end = i;
|
|
}
|
|
i++;
|
|
|
|
/*
|
|
* Now read in the block. If this is a directory
|
|
* block, check the entries as we read them to see if
|
|
* it references another block, and push it in that case.
|
|
*/
|
|
for (; i < end; i++) {
|
|
if (read_rom(device, generation, i, &rom[i]) !=
|
|
RCODE_COMPLETE)
|
|
goto out;
|
|
|
|
if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
|
|
continue;
|
|
/*
|
|
* Offset points outside the ROM. May be a firmware
|
|
* bug or an Extended ROM entry (IEEE 1212-2001 clause
|
|
* 7.7.18). Simply overwrite this pointer here by a
|
|
* fake immediate entry so that later iterators over
|
|
* the ROM don't have to check offsets all the time.
|
|
*/
|
|
if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
|
|
fw_error("skipped unsupported ROM entry %x at %llx\n",
|
|
rom[i],
|
|
i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
|
|
rom[i] = 0;
|
|
continue;
|
|
}
|
|
stack[sp++] = i + rom[i];
|
|
}
|
|
if (length < i)
|
|
length = i;
|
|
}
|
|
|
|
old_rom = device->config_rom;
|
|
new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
|
|
if (new_rom == NULL)
|
|
goto out;
|
|
|
|
down_write(&fw_device_rwsem);
|
|
device->config_rom = new_rom;
|
|
device->config_rom_length = length;
|
|
up_write(&fw_device_rwsem);
|
|
|
|
kfree(old_rom);
|
|
ret = 0;
|
|
device->max_rec = rom[2] >> 12 & 0xf;
|
|
device->cmc = rom[2] >> 30 & 1;
|
|
device->irmc = rom[2] >> 31 & 1;
|
|
out:
|
|
kfree(rom);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void fw_unit_release(struct device *dev)
|
|
{
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
|
|
kfree(unit);
|
|
}
|
|
|
|
static struct device_type fw_unit_type = {
|
|
.uevent = fw_unit_uevent,
|
|
.release = fw_unit_release,
|
|
};
|
|
|
|
static bool is_fw_unit(struct device *dev)
|
|
{
|
|
return dev->type == &fw_unit_type;
|
|
}
|
|
|
|
static void create_units(struct fw_device *device)
|
|
{
|
|
struct fw_csr_iterator ci;
|
|
struct fw_unit *unit;
|
|
int key, value, i;
|
|
|
|
i = 0;
|
|
fw_csr_iterator_init(&ci, &device->config_rom[5]);
|
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
|
if (key != (CSR_UNIT | CSR_DIRECTORY))
|
|
continue;
|
|
|
|
/*
|
|
* Get the address of the unit directory and try to
|
|
* match the drivers id_tables against it.
|
|
*/
|
|
unit = kzalloc(sizeof(*unit), GFP_KERNEL);
|
|
if (unit == NULL) {
|
|
fw_error("failed to allocate memory for unit\n");
|
|
continue;
|
|
}
|
|
|
|
unit->directory = ci.p + value - 1;
|
|
unit->device.bus = &fw_bus_type;
|
|
unit->device.type = &fw_unit_type;
|
|
unit->device.parent = &device->device;
|
|
dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
|
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
|
|
ARRAY_SIZE(fw_unit_attributes) +
|
|
ARRAY_SIZE(config_rom_attributes));
|
|
init_fw_attribute_group(&unit->device,
|
|
fw_unit_attributes,
|
|
&unit->attribute_group);
|
|
|
|
if (device_register(&unit->device) < 0)
|
|
goto skip_unit;
|
|
|
|
continue;
|
|
|
|
skip_unit:
|
|
kfree(unit);
|
|
}
|
|
}
|
|
|
|
static int shutdown_unit(struct device *device, void *data)
|
|
{
|
|
device_unregister(device);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* fw_device_rwsem acts as dual purpose mutex:
|
|
* - serializes accesses to fw_device_idr,
|
|
* - serializes accesses to fw_device.config_rom/.config_rom_length and
|
|
* fw_unit.directory, unless those accesses happen at safe occasions
|
|
*/
|
|
DECLARE_RWSEM(fw_device_rwsem);
|
|
|
|
DEFINE_IDR(fw_device_idr);
|
|
int fw_cdev_major;
|
|
|
|
struct fw_device *fw_device_get_by_devt(dev_t devt)
|
|
{
|
|
struct fw_device *device;
|
|
|
|
down_read(&fw_device_rwsem);
|
|
device = idr_find(&fw_device_idr, MINOR(devt));
|
|
if (device)
|
|
fw_device_get(device);
|
|
up_read(&fw_device_rwsem);
|
|
|
|
return device;
|
|
}
|
|
|
|
/*
|
|
* These defines control the retry behavior for reading the config
|
|
* rom. It shouldn't be necessary to tweak these; if the device
|
|
* doesn't respond to a config rom read within 10 seconds, it's not
|
|
* going to respond at all. As for the initial delay, a lot of
|
|
* devices will be able to respond within half a second after bus
|
|
* reset. On the other hand, it's not really worth being more
|
|
* aggressive than that, since it scales pretty well; if 10 devices
|
|
* are plugged in, they're all getting read within one second.
|
|
*/
|
|
|
|
#define MAX_RETRIES 10
|
|
#define RETRY_DELAY (3 * HZ)
|
|
#define INITIAL_DELAY (HZ / 2)
|
|
#define SHUTDOWN_DELAY (2 * HZ)
|
|
|
|
static void fw_device_shutdown(struct work_struct *work)
|
|
{
|
|
struct fw_device *device =
|
|
container_of(work, struct fw_device, work.work);
|
|
int minor = MINOR(device->device.devt);
|
|
|
|
if (time_is_after_jiffies(device->card->reset_jiffies + SHUTDOWN_DELAY)
|
|
&& !list_empty(&device->card->link)) {
|
|
schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
|
|
return;
|
|
}
|
|
|
|
if (atomic_cmpxchg(&device->state,
|
|
FW_DEVICE_GONE,
|
|
FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
|
|
return;
|
|
|
|
fw_device_cdev_remove(device);
|
|
device_for_each_child(&device->device, NULL, shutdown_unit);
|
|
device_unregister(&device->device);
|
|
|
|
down_write(&fw_device_rwsem);
|
|
idr_remove(&fw_device_idr, minor);
|
|
up_write(&fw_device_rwsem);
|
|
|
|
fw_device_put(device);
|
|
}
|
|
|
|
static void fw_device_release(struct device *dev)
|
|
{
|
|
struct fw_device *device = fw_device(dev);
|
|
struct fw_card *card = device->card;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Take the card lock so we don't set this to NULL while a
|
|
* FW_NODE_UPDATED callback is being handled or while the
|
|
* bus manager work looks at this node.
|
|
*/
|
|
spin_lock_irqsave(&card->lock, flags);
|
|
device->node->data = NULL;
|
|
spin_unlock_irqrestore(&card->lock, flags);
|
|
|
|
fw_node_put(device->node);
|
|
kfree(device->config_rom);
|
|
kfree(device);
|
|
fw_card_put(card);
|
|
}
|
|
|
|
static struct device_type fw_device_type = {
|
|
.release = fw_device_release,
|
|
};
|
|
|
|
static bool is_fw_device(struct device *dev)
|
|
{
|
|
return dev->type == &fw_device_type;
|
|
}
|
|
|
|
static int update_unit(struct device *dev, void *data)
|
|
{
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
struct fw_driver *driver = (struct fw_driver *)dev->driver;
|
|
|
|
if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
|
|
device_lock(dev);
|
|
driver->update(unit);
|
|
device_unlock(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fw_device_update(struct work_struct *work)
|
|
{
|
|
struct fw_device *device =
|
|
container_of(work, struct fw_device, work.work);
|
|
|
|
fw_device_cdev_update(device);
|
|
device_for_each_child(&device->device, NULL, update_unit);
|
|
}
|
|
|
|
/*
|
|
* If a device was pending for deletion because its node went away but its
|
|
* bus info block and root directory header matches that of a newly discovered
|
|
* device, revive the existing fw_device.
|
|
* The newly allocated fw_device becomes obsolete instead.
|
|
*/
|
|
static int lookup_existing_device(struct device *dev, void *data)
|
|
{
|
|
struct fw_device *old = fw_device(dev);
|
|
struct fw_device *new = data;
|
|
struct fw_card *card = new->card;
|
|
int match = 0;
|
|
|
|
if (!is_fw_device(dev))
|
|
return 0;
|
|
|
|
down_read(&fw_device_rwsem); /* serialize config_rom access */
|
|
spin_lock_irq(&card->lock); /* serialize node access */
|
|
|
|
if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
|
|
atomic_cmpxchg(&old->state,
|
|
FW_DEVICE_GONE,
|
|
FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
|
|
struct fw_node *current_node = new->node;
|
|
struct fw_node *obsolete_node = old->node;
|
|
|
|
new->node = obsolete_node;
|
|
new->node->data = new;
|
|
old->node = current_node;
|
|
old->node->data = old;
|
|
|
|
old->max_speed = new->max_speed;
|
|
old->node_id = current_node->node_id;
|
|
smp_wmb(); /* update node_id before generation */
|
|
old->generation = card->generation;
|
|
old->config_rom_retries = 0;
|
|
fw_notify("rediscovered device %s\n", dev_name(dev));
|
|
|
|
PREPARE_DELAYED_WORK(&old->work, fw_device_update);
|
|
schedule_delayed_work(&old->work, 0);
|
|
|
|
if (current_node == card->root_node)
|
|
fw_schedule_bm_work(card, 0);
|
|
|
|
match = 1;
|
|
}
|
|
|
|
spin_unlock_irq(&card->lock);
|
|
up_read(&fw_device_rwsem);
|
|
|
|
return match;
|
|
}
|
|
|
|
enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
|
|
|
|
static void set_broadcast_channel(struct fw_device *device, int generation)
|
|
{
|
|
struct fw_card *card = device->card;
|
|
__be32 data;
|
|
int rcode;
|
|
|
|
if (!card->broadcast_channel_allocated)
|
|
return;
|
|
|
|
/*
|
|
* The Broadcast_Channel Valid bit is required by nodes which want to
|
|
* transmit on this channel. Such transmissions are practically
|
|
* exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
|
|
* to be IRM capable and have a max_rec of 8 or more. We use this fact
|
|
* to narrow down to which nodes we send Broadcast_Channel updates.
|
|
*/
|
|
if (!device->irmc || device->max_rec < 8)
|
|
return;
|
|
|
|
/*
|
|
* Some 1394-1995 nodes crash if this 1394a-2000 register is written.
|
|
* Perform a read test first.
|
|
*/
|
|
if (device->bc_implemented == BC_UNKNOWN) {
|
|
rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
|
|
device->node_id, generation, device->max_speed,
|
|
CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
|
|
&data, 4);
|
|
switch (rcode) {
|
|
case RCODE_COMPLETE:
|
|
if (data & cpu_to_be32(1 << 31)) {
|
|
device->bc_implemented = BC_IMPLEMENTED;
|
|
break;
|
|
}
|
|
/* else fall through to case address error */
|
|
case RCODE_ADDRESS_ERROR:
|
|
device->bc_implemented = BC_UNIMPLEMENTED;
|
|
}
|
|
}
|
|
|
|
if (device->bc_implemented == BC_IMPLEMENTED) {
|
|
data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
|
|
BROADCAST_CHANNEL_VALID);
|
|
fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
|
|
device->node_id, generation, device->max_speed,
|
|
CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
|
|
&data, 4);
|
|
}
|
|
}
|
|
|
|
int fw_device_set_broadcast_channel(struct device *dev, void *gen)
|
|
{
|
|
if (is_fw_device(dev))
|
|
set_broadcast_channel(fw_device(dev), (long)gen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fw_device_init(struct work_struct *work)
|
|
{
|
|
struct fw_device *device =
|
|
container_of(work, struct fw_device, work.work);
|
|
struct device *revived_dev;
|
|
int minor, ret;
|
|
|
|
/*
|
|
* All failure paths here set node->data to NULL, so that we
|
|
* don't try to do device_for_each_child() on a kfree()'d
|
|
* device.
|
|
*/
|
|
|
|
if (read_config_rom(device, device->generation) < 0) {
|
|
if (device->config_rom_retries < MAX_RETRIES &&
|
|
atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
|
|
device->config_rom_retries++;
|
|
schedule_delayed_work(&device->work, RETRY_DELAY);
|
|
} else {
|
|
fw_notify("giving up on config rom for node id %x\n",
|
|
device->node_id);
|
|
if (device->node == device->card->root_node)
|
|
fw_schedule_bm_work(device->card, 0);
|
|
fw_device_release(&device->device);
|
|
}
|
|
return;
|
|
}
|
|
|
|
revived_dev = device_find_child(device->card->device,
|
|
device, lookup_existing_device);
|
|
if (revived_dev) {
|
|
put_device(revived_dev);
|
|
fw_device_release(&device->device);
|
|
|
|
return;
|
|
}
|
|
|
|
device_initialize(&device->device);
|
|
|
|
fw_device_get(device);
|
|
down_write(&fw_device_rwsem);
|
|
ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
|
|
idr_get_new(&fw_device_idr, device, &minor) :
|
|
-ENOMEM;
|
|
up_write(&fw_device_rwsem);
|
|
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
device->device.bus = &fw_bus_type;
|
|
device->device.type = &fw_device_type;
|
|
device->device.parent = device->card->device;
|
|
device->device.devt = MKDEV(fw_cdev_major, minor);
|
|
dev_set_name(&device->device, "fw%d", minor);
|
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
|
|
ARRAY_SIZE(fw_device_attributes) +
|
|
ARRAY_SIZE(config_rom_attributes));
|
|
init_fw_attribute_group(&device->device,
|
|
fw_device_attributes,
|
|
&device->attribute_group);
|
|
|
|
if (device_add(&device->device)) {
|
|
fw_error("Failed to add device.\n");
|
|
goto error_with_cdev;
|
|
}
|
|
|
|
create_units(device);
|
|
|
|
/*
|
|
* Transition the device to running state. If it got pulled
|
|
* out from under us while we did the intialization work, we
|
|
* have to shut down the device again here. Normally, though,
|
|
* fw_node_event will be responsible for shutting it down when
|
|
* necessary. We have to use the atomic cmpxchg here to avoid
|
|
* racing with the FW_NODE_DESTROYED case in
|
|
* fw_node_event().
|
|
*/
|
|
if (atomic_cmpxchg(&device->state,
|
|
FW_DEVICE_INITIALIZING,
|
|
FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
|
|
PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
|
|
schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
|
|
} else {
|
|
if (device->config_rom_retries)
|
|
fw_notify("created device %s: GUID %08x%08x, S%d00, "
|
|
"%d config ROM retries\n",
|
|
dev_name(&device->device),
|
|
device->config_rom[3], device->config_rom[4],
|
|
1 << device->max_speed,
|
|
device->config_rom_retries);
|
|
else
|
|
fw_notify("created device %s: GUID %08x%08x, S%d00\n",
|
|
dev_name(&device->device),
|
|
device->config_rom[3], device->config_rom[4],
|
|
1 << device->max_speed);
|
|
device->config_rom_retries = 0;
|
|
|
|
set_broadcast_channel(device, device->generation);
|
|
}
|
|
|
|
/*
|
|
* Reschedule the IRM work if we just finished reading the
|
|
* root node config rom. If this races with a bus reset we
|
|
* just end up running the IRM work a couple of extra times -
|
|
* pretty harmless.
|
|
*/
|
|
if (device->node == device->card->root_node)
|
|
fw_schedule_bm_work(device->card, 0);
|
|
|
|
return;
|
|
|
|
error_with_cdev:
|
|
down_write(&fw_device_rwsem);
|
|
idr_remove(&fw_device_idr, minor);
|
|
up_write(&fw_device_rwsem);
|
|
error:
|
|
fw_device_put(device); /* fw_device_idr's reference */
|
|
|
|
put_device(&device->device); /* our reference */
|
|
}
|
|
|
|
enum {
|
|
REREAD_BIB_ERROR,
|
|
REREAD_BIB_GONE,
|
|
REREAD_BIB_UNCHANGED,
|
|
REREAD_BIB_CHANGED,
|
|
};
|
|
|
|
/* Reread and compare bus info block and header of root directory */
|
|
static int reread_config_rom(struct fw_device *device, int generation)
|
|
{
|
|
u32 q;
|
|
int i;
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
|
|
return REREAD_BIB_ERROR;
|
|
|
|
if (i == 0 && q == 0)
|
|
return REREAD_BIB_GONE;
|
|
|
|
if (q != device->config_rom[i])
|
|
return REREAD_BIB_CHANGED;
|
|
}
|
|
|
|
return REREAD_BIB_UNCHANGED;
|
|
}
|
|
|
|
static void fw_device_refresh(struct work_struct *work)
|
|
{
|
|
struct fw_device *device =
|
|
container_of(work, struct fw_device, work.work);
|
|
struct fw_card *card = device->card;
|
|
int node_id = device->node_id;
|
|
|
|
switch (reread_config_rom(device, device->generation)) {
|
|
case REREAD_BIB_ERROR:
|
|
if (device->config_rom_retries < MAX_RETRIES / 2 &&
|
|
atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
|
|
device->config_rom_retries++;
|
|
schedule_delayed_work(&device->work, RETRY_DELAY / 2);
|
|
|
|
return;
|
|
}
|
|
goto give_up;
|
|
|
|
case REREAD_BIB_GONE:
|
|
goto gone;
|
|
|
|
case REREAD_BIB_UNCHANGED:
|
|
if (atomic_cmpxchg(&device->state,
|
|
FW_DEVICE_INITIALIZING,
|
|
FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
|
|
goto gone;
|
|
|
|
fw_device_update(work);
|
|
device->config_rom_retries = 0;
|
|
goto out;
|
|
|
|
case REREAD_BIB_CHANGED:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Something changed. We keep things simple and don't investigate
|
|
* further. We just destroy all previous units and create new ones.
|
|
*/
|
|
device_for_each_child(&device->device, NULL, shutdown_unit);
|
|
|
|
if (read_config_rom(device, device->generation) < 0) {
|
|
if (device->config_rom_retries < MAX_RETRIES &&
|
|
atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
|
|
device->config_rom_retries++;
|
|
schedule_delayed_work(&device->work, RETRY_DELAY);
|
|
|
|
return;
|
|
}
|
|
goto give_up;
|
|
}
|
|
|
|
create_units(device);
|
|
|
|
/* Userspace may want to re-read attributes. */
|
|
kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
|
|
|
|
if (atomic_cmpxchg(&device->state,
|
|
FW_DEVICE_INITIALIZING,
|
|
FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
|
|
goto gone;
|
|
|
|
fw_notify("refreshed device %s\n", dev_name(&device->device));
|
|
device->config_rom_retries = 0;
|
|
goto out;
|
|
|
|
give_up:
|
|
fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
|
|
gone:
|
|
atomic_set(&device->state, FW_DEVICE_GONE);
|
|
PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
|
|
schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
|
|
out:
|
|
if (node_id == card->root_node->node_id)
|
|
fw_schedule_bm_work(card, 0);
|
|
}
|
|
|
|
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
|
|
{
|
|
struct fw_device *device;
|
|
|
|
switch (event) {
|
|
case FW_NODE_CREATED:
|
|
case FW_NODE_LINK_ON:
|
|
if (!node->link_on)
|
|
break;
|
|
create:
|
|
device = kzalloc(sizeof(*device), GFP_ATOMIC);
|
|
if (device == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Do minimal intialization of the device here, the
|
|
* rest will happen in fw_device_init().
|
|
*
|
|
* Attention: A lot of things, even fw_device_get(),
|
|
* cannot be done before fw_device_init() finished!
|
|
* You can basically just check device->state and
|
|
* schedule work until then, but only while holding
|
|
* card->lock.
|
|
*/
|
|
atomic_set(&device->state, FW_DEVICE_INITIALIZING);
|
|
device->card = fw_card_get(card);
|
|
device->node = fw_node_get(node);
|
|
device->node_id = node->node_id;
|
|
device->generation = card->generation;
|
|
device->is_local = node == card->local_node;
|
|
mutex_init(&device->client_list_mutex);
|
|
INIT_LIST_HEAD(&device->client_list);
|
|
|
|
/*
|
|
* Set the node data to point back to this device so
|
|
* FW_NODE_UPDATED callbacks can update the node_id
|
|
* and generation for the device.
|
|
*/
|
|
node->data = device;
|
|
|
|
/*
|
|
* Many devices are slow to respond after bus resets,
|
|
* especially if they are bus powered and go through
|
|
* power-up after getting plugged in. We schedule the
|
|
* first config rom scan half a second after bus reset.
|
|
*/
|
|
INIT_DELAYED_WORK(&device->work, fw_device_init);
|
|
schedule_delayed_work(&device->work, INITIAL_DELAY);
|
|
break;
|
|
|
|
case FW_NODE_INITIATED_RESET:
|
|
device = node->data;
|
|
if (device == NULL)
|
|
goto create;
|
|
|
|
device->node_id = node->node_id;
|
|
smp_wmb(); /* update node_id before generation */
|
|
device->generation = card->generation;
|
|
if (atomic_cmpxchg(&device->state,
|
|
FW_DEVICE_RUNNING,
|
|
FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
|
|
PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
|
|
schedule_delayed_work(&device->work,
|
|
device->is_local ? 0 : INITIAL_DELAY);
|
|
}
|
|
break;
|
|
|
|
case FW_NODE_UPDATED:
|
|
if (!node->link_on || node->data == NULL)
|
|
break;
|
|
|
|
device = node->data;
|
|
device->node_id = node->node_id;
|
|
smp_wmb(); /* update node_id before generation */
|
|
device->generation = card->generation;
|
|
if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
|
|
PREPARE_DELAYED_WORK(&device->work, fw_device_update);
|
|
schedule_delayed_work(&device->work, 0);
|
|
}
|
|
break;
|
|
|
|
case FW_NODE_DESTROYED:
|
|
case FW_NODE_LINK_OFF:
|
|
if (!node->data)
|
|
break;
|
|
|
|
/*
|
|
* Destroy the device associated with the node. There
|
|
* are two cases here: either the device is fully
|
|
* initialized (FW_DEVICE_RUNNING) or we're in the
|
|
* process of reading its config rom
|
|
* (FW_DEVICE_INITIALIZING). If it is fully
|
|
* initialized we can reuse device->work to schedule a
|
|
* full fw_device_shutdown(). If not, there's work
|
|
* scheduled to read it's config rom, and we just put
|
|
* the device in shutdown state to have that code fail
|
|
* to create the device.
|
|
*/
|
|
device = node->data;
|
|
if (atomic_xchg(&device->state,
|
|
FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
|
|
PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
|
|
schedule_delayed_work(&device->work,
|
|
list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
|
|
}
|
|
break;
|
|
}
|
|
}
|