linux/drivers/ptp/ptp_clockmatrix.c
Min Li 7ea5fda2b1 ptp: ptp_clockmatrix: update to support 4.8.7 firmware
With 4.8.7 firmware, adjtime can change delta instead of absolute time,
which greately increases snap accuracy. PPS alignment doesn't have to
be set for every single TOD change. Other minor changes includes:
adding more debug logs, increasing snap accuracy for pre 4.8.7 firmware
and supporting new tcs2bin format.

Signed-off-by: Min Li <min.li.xe@renesas.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-30 16:46:59 -07:00

2218 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* PTP hardware clock driver for the IDT ClockMatrix(TM) family of timing and
* synchronization devices.
*
* Copyright (C) 2019 Integrated Device Technology, Inc., a Renesas Company.
*/
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/timekeeping.h>
#include <linux/string.h>
#include "ptp_private.h"
#include "ptp_clockmatrix.h"
MODULE_DESCRIPTION("Driver for IDT ClockMatrix(TM) family");
MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
MODULE_AUTHOR("IDT support-1588 <IDT-support-1588@lm.renesas.com>");
MODULE_VERSION("1.0");
MODULE_LICENSE("GPL");
/*
* The name of the firmware file to be loaded
* over-rides any automatic selection
*/
static char *firmware;
module_param(firmware, charp, 0);
#define SETTIME_CORRECTION (0)
static long set_write_phase_ready(struct ptp_clock_info *ptp)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
channel->write_phase_ready = 1;
return 0;
}
static int char_array_to_timespec(u8 *buf,
u8 count,
struct timespec64 *ts)
{
u8 i;
u64 nsec;
time64_t sec;
if (count < TOD_BYTE_COUNT)
return 1;
/* Sub-nanoseconds are in buf[0]. */
nsec = buf[4];
for (i = 0; i < 3; i++) {
nsec <<= 8;
nsec |= buf[3 - i];
}
sec = buf[10];
for (i = 0; i < 5; i++) {
sec <<= 8;
sec |= buf[9 - i];
}
ts->tv_sec = sec;
ts->tv_nsec = nsec;
return 0;
}
static int timespec_to_char_array(struct timespec64 const *ts,
u8 *buf,
u8 count)
{
u8 i;
s32 nsec;
time64_t sec;
if (count < TOD_BYTE_COUNT)
return 1;
nsec = ts->tv_nsec;
sec = ts->tv_sec;
/* Sub-nanoseconds are in buf[0]. */
buf[0] = 0;
for (i = 1; i < 5; i++) {
buf[i] = nsec & 0xff;
nsec >>= 8;
}
for (i = 5; i < TOD_BYTE_COUNT; i++) {
buf[i] = sec & 0xff;
sec >>= 8;
}
return 0;
}
static int idtcm_strverscmp(const char *ver1, const char *ver2)
{
u8 num1;
u8 num2;
int result = 0;
/* loop through each level of the version string */
while (result == 0) {
/* extract leading version numbers */
if (kstrtou8(ver1, 10, &num1) < 0)
return -1;
if (kstrtou8(ver2, 10, &num2) < 0)
return -1;
/* if numbers differ, then set the result */
if (num1 < num2)
result = -1;
else if (num1 > num2)
result = 1;
else {
/* if numbers are the same, go to next level */
ver1 = strchr(ver1, '.');
ver2 = strchr(ver2, '.');
if (!ver1 && !ver2)
break;
else if (!ver1)
result = -1;
else if (!ver2)
result = 1;
else {
ver1++;
ver2++;
}
}
}
return result;
}
static int idtcm_xfer(struct idtcm *idtcm,
u8 regaddr,
u8 *buf,
u16 count,
bool write)
{
struct i2c_client *client = idtcm->client;
struct i2c_msg msg[2];
int cnt;
char *fmt = "i2c_transfer failed at %d in %s for %s, at addr: %04X!\n";
msg[0].addr = client->addr;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = &regaddr;
msg[1].addr = client->addr;
msg[1].flags = write ? 0 : I2C_M_RD;
msg[1].len = count;
msg[1].buf = buf;
cnt = i2c_transfer(client->adapter, msg, 2);
if (cnt < 0) {
dev_err(&client->dev,
fmt,
__LINE__,
__func__,
write ? "write" : "read",
regaddr);
return cnt;
} else if (cnt != 2) {
dev_err(&client->dev,
"i2c_transfer sent only %d of %d messages\n", cnt, 2);
return -EIO;
}
return 0;
}
static int idtcm_page_offset(struct idtcm *idtcm, u8 val)
{
u8 buf[4];
int err;
if (idtcm->page_offset == val)
return 0;
buf[0] = 0x0;
buf[1] = val;
buf[2] = 0x10;
buf[3] = 0x20;
err = idtcm_xfer(idtcm, PAGE_ADDR, buf, sizeof(buf), 1);
if (err) {
idtcm->page_offset = 0xff;
dev_err(&idtcm->client->dev, "failed to set page offset\n");
} else {
idtcm->page_offset = val;
}
return err;
}
static int _idtcm_rdwr(struct idtcm *idtcm,
u16 regaddr,
u8 *buf,
u16 count,
bool write)
{
u8 hi;
u8 lo;
int err;
hi = (regaddr >> 8) & 0xff;
lo = regaddr & 0xff;
err = idtcm_page_offset(idtcm, hi);
if (err)
goto out;
err = idtcm_xfer(idtcm, lo, buf, count, write);
out:
return err;
}
static int idtcm_read(struct idtcm *idtcm,
u16 module,
u16 regaddr,
u8 *buf,
u16 count)
{
return _idtcm_rdwr(idtcm, module + regaddr, buf, count, false);
}
static int idtcm_write(struct idtcm *idtcm,
u16 module,
u16 regaddr,
u8 *buf,
u16 count)
{
return _idtcm_rdwr(idtcm, module + regaddr, buf, count, true);
}
static int _idtcm_gettime(struct idtcm_channel *channel,
struct timespec64 *ts)
{
struct idtcm *idtcm = channel->idtcm;
u8 buf[TOD_BYTE_COUNT];
u8 timeout = 10;
u8 trigger;
int err;
err = idtcm_read(idtcm, channel->tod_read_primary,
TOD_READ_PRIMARY_CMD, &trigger, sizeof(trigger));
if (err)
return err;
trigger &= ~(TOD_READ_TRIGGER_MASK << TOD_READ_TRIGGER_SHIFT);
trigger |= (1 << TOD_READ_TRIGGER_SHIFT);
trigger &= ~TOD_READ_TRIGGER_MODE; /* single shot */
err = idtcm_write(idtcm, channel->tod_read_primary,
TOD_READ_PRIMARY_CMD, &trigger, sizeof(trigger));
if (err)
return err;
/* wait trigger to be 0 */
while (trigger & TOD_READ_TRIGGER_MASK) {
if (idtcm->calculate_overhead_flag)
idtcm->start_time = ktime_get_raw();
err = idtcm_read(idtcm, channel->tod_read_primary,
TOD_READ_PRIMARY_CMD, &trigger,
sizeof(trigger));
if (err)
return err;
if (--timeout == 0)
return -EIO;
}
err = idtcm_read(idtcm, channel->tod_read_primary,
TOD_READ_PRIMARY, buf, sizeof(buf));
if (err)
return err;
err = char_array_to_timespec(buf, sizeof(buf), ts);
return err;
}
static int _sync_pll_output(struct idtcm *idtcm,
u8 pll,
u8 sync_src,
u8 qn,
u8 qn_plus_1)
{
int err;
u8 val;
u16 sync_ctrl0;
u16 sync_ctrl1;
u8 temp;
if ((qn == 0) && (qn_plus_1 == 0))
return 0;
switch (pll) {
case 0:
sync_ctrl0 = HW_Q0_Q1_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q0_Q1_CH_SYNC_CTRL_1;
break;
case 1:
sync_ctrl0 = HW_Q2_Q3_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q2_Q3_CH_SYNC_CTRL_1;
break;
case 2:
sync_ctrl0 = HW_Q4_Q5_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q4_Q5_CH_SYNC_CTRL_1;
break;
case 3:
sync_ctrl0 = HW_Q6_Q7_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q6_Q7_CH_SYNC_CTRL_1;
break;
case 4:
sync_ctrl0 = HW_Q8_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q8_CH_SYNC_CTRL_1;
break;
case 5:
sync_ctrl0 = HW_Q9_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q9_CH_SYNC_CTRL_1;
break;
case 6:
sync_ctrl0 = HW_Q10_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q10_CH_SYNC_CTRL_1;
break;
case 7:
sync_ctrl0 = HW_Q11_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q11_CH_SYNC_CTRL_1;
break;
default:
return -EINVAL;
}
val = SYNCTRL1_MASTER_SYNC_RST;
/* Place master sync in reset */
err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val));
if (err)
return err;
err = idtcm_write(idtcm, 0, sync_ctrl0, &sync_src, sizeof(sync_src));
if (err)
return err;
/* Set sync trigger mask */
val |= SYNCTRL1_FBDIV_FRAME_SYNC_TRIG | SYNCTRL1_FBDIV_SYNC_TRIG;
if (qn)
val |= SYNCTRL1_Q0_DIV_SYNC_TRIG;
if (qn_plus_1)
val |= SYNCTRL1_Q1_DIV_SYNC_TRIG;
err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val));
if (err)
return err;
/* PLL5 can have OUT8 as second additional output. */
if ((pll == 5) && (qn_plus_1 != 0)) {
err = idtcm_read(idtcm, 0, HW_Q8_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
temp &= ~(Q9_TO_Q8_SYNC_TRIG);
err = idtcm_write(idtcm, 0, HW_Q8_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
temp |= Q9_TO_Q8_SYNC_TRIG;
err = idtcm_write(idtcm, 0, HW_Q8_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
}
/* PLL6 can have OUT11 as second additional output. */
if ((pll == 6) && (qn_plus_1 != 0)) {
err = idtcm_read(idtcm, 0, HW_Q11_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
temp &= ~(Q10_TO_Q11_SYNC_TRIG);
err = idtcm_write(idtcm, 0, HW_Q11_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
temp |= Q10_TO_Q11_SYNC_TRIG;
err = idtcm_write(idtcm, 0, HW_Q11_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
}
/* Place master sync out of reset */
val &= ~(SYNCTRL1_MASTER_SYNC_RST);
err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val));
return err;
}
static int sync_source_dpll_tod_pps(u16 tod_addr, u8 *sync_src)
{
int err = 0;
switch (tod_addr) {
case TOD_0:
*sync_src = SYNC_SOURCE_DPLL0_TOD_PPS;
break;
case TOD_1:
*sync_src = SYNC_SOURCE_DPLL1_TOD_PPS;
break;
case TOD_2:
*sync_src = SYNC_SOURCE_DPLL2_TOD_PPS;
break;
case TOD_3:
*sync_src = SYNC_SOURCE_DPLL3_TOD_PPS;
break;
default:
err = -EINVAL;
}
return err;
}
static int idtcm_sync_pps_output(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
u8 pll;
u8 sync_src;
u8 qn;
u8 qn_plus_1;
int err = 0;
u8 out8_mux = 0;
u8 out11_mux = 0;
u8 temp;
u16 output_mask = channel->output_mask;
err = sync_source_dpll_tod_pps(channel->tod_n, &sync_src);
if (err)
return err;
err = idtcm_read(idtcm, 0, HW_Q8_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
if ((temp & Q9_TO_Q8_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK) ==
Q9_TO_Q8_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK)
out8_mux = 1;
err = idtcm_read(idtcm, 0, HW_Q11_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
if ((temp & Q10_TO_Q11_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK) ==
Q10_TO_Q11_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK)
out11_mux = 1;
for (pll = 0; pll < 8; pll++) {
qn = 0;
qn_plus_1 = 0;
if (pll < 4) {
/* First 4 pll has 2 outputs */
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
qn_plus_1 = output_mask & 0x1;
output_mask = output_mask >> 1;
} else if (pll == 4) {
if (out8_mux == 0) {
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
}
} else if (pll == 5) {
if (out8_mux) {
qn_plus_1 = output_mask & 0x1;
output_mask = output_mask >> 1;
}
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
} else if (pll == 6) {
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
if (out11_mux) {
qn_plus_1 = output_mask & 0x1;
output_mask = output_mask >> 1;
}
} else if (pll == 7) {
if (out11_mux == 0) {
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
}
}
if ((qn != 0) || (qn_plus_1 != 0))
err = _sync_pll_output(idtcm, pll, sync_src, qn,
qn_plus_1);
if (err)
return err;
}
return err;
}
static int _idtcm_set_dpll_hw_tod(struct idtcm_channel *channel,
struct timespec64 const *ts,
enum hw_tod_write_trig_sel wr_trig)
{
struct idtcm *idtcm = channel->idtcm;
u8 buf[TOD_BYTE_COUNT];
u8 cmd;
int err;
struct timespec64 local_ts = *ts;
s64 total_overhead_ns;
/* Configure HW TOD write trigger. */
err = idtcm_read(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1,
&cmd, sizeof(cmd));
if (err)
return err;
cmd &= ~(0x0f);
cmd |= wr_trig | 0x08;
err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1,
&cmd, sizeof(cmd));
if (err)
return err;
if (wr_trig != HW_TOD_WR_TRIG_SEL_MSB) {
err = timespec_to_char_array(&local_ts, buf, sizeof(buf));
if (err)
return err;
err = idtcm_write(idtcm, channel->hw_dpll_n,
HW_DPLL_TOD_OVR__0, buf, sizeof(buf));
if (err)
return err;
}
/* ARM HW TOD write trigger. */
cmd &= ~(0x08);
err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1,
&cmd, sizeof(cmd));
if (wr_trig == HW_TOD_WR_TRIG_SEL_MSB) {
if (idtcm->calculate_overhead_flag) {
/* Assumption: I2C @ 400KHz */
total_overhead_ns = ktime_to_ns(ktime_get_raw()
- idtcm->start_time)
+ idtcm->tod_write_overhead_ns
+ SETTIME_CORRECTION;
timespec64_add_ns(&local_ts, total_overhead_ns);
idtcm->calculate_overhead_flag = 0;
}
err = timespec_to_char_array(&local_ts, buf, sizeof(buf));
if (err)
return err;
err = idtcm_write(idtcm, channel->hw_dpll_n,
HW_DPLL_TOD_OVR__0, buf, sizeof(buf));
}
return err;
}
static int _idtcm_set_dpll_scsr_tod(struct idtcm_channel *channel,
struct timespec64 const *ts,
enum scsr_tod_write_trig_sel wr_trig,
enum scsr_tod_write_type_sel wr_type)
{
struct idtcm *idtcm = channel->idtcm;
unsigned char buf[TOD_BYTE_COUNT], cmd;
struct timespec64 local_ts = *ts;
int err, count = 0;
timespec64_add_ns(&local_ts, SETTIME_CORRECTION);
err = timespec_to_char_array(&local_ts, buf, sizeof(buf));
if (err)
return err;
err = idtcm_write(idtcm, channel->tod_write, TOD_WRITE,
buf, sizeof(buf));
if (err)
return err;
/* Trigger the write operation. */
err = idtcm_read(idtcm, channel->tod_write, TOD_WRITE_CMD,
&cmd, sizeof(cmd));
if (err)
return err;
cmd &= ~(TOD_WRITE_SELECTION_MASK << TOD_WRITE_SELECTION_SHIFT);
cmd &= ~(TOD_WRITE_TYPE_MASK << TOD_WRITE_TYPE_SHIFT);
cmd |= (wr_trig << TOD_WRITE_SELECTION_SHIFT);
cmd |= (wr_type << TOD_WRITE_TYPE_SHIFT);
err = idtcm_write(idtcm, channel->tod_write, TOD_WRITE_CMD,
&cmd, sizeof(cmd));
if (err)
return err;
/* Wait for the operation to complete. */
while (1) {
/* pps trigger takes up to 1 sec to complete */
if (wr_trig == SCSR_TOD_WR_TRIG_SEL_TODPPS)
msleep(50);
err = idtcm_read(idtcm, channel->tod_write, TOD_WRITE_CMD,
&cmd, sizeof(cmd));
if (err)
return err;
if (cmd == 0)
break;
if (++count > 20) {
dev_err(&idtcm->client->dev,
"Timed out waiting for the write counter\n");
return -EIO;
}
}
return 0;
}
static int _idtcm_settime(struct idtcm_channel *channel,
struct timespec64 const *ts,
enum hw_tod_write_trig_sel wr_trig)
{
struct idtcm *idtcm = channel->idtcm;
int err;
int i;
u8 trig_sel;
err = _idtcm_set_dpll_hw_tod(channel, ts, wr_trig);
if (err)
return err;
/* Wait for the operation to complete. */
for (i = 0; i < 10000; i++) {
err = idtcm_read(idtcm, channel->hw_dpll_n,
HW_DPLL_TOD_CTRL_1, &trig_sel,
sizeof(trig_sel));
if (err)
return err;
if (trig_sel == 0x4a)
break;
err = 1;
}
if (err) {
dev_err(&idtcm->client->dev,
"Failed at line %d in func %s!\n",
__LINE__,
__func__);
return err;
}
return idtcm_sync_pps_output(channel);
}
static int _idtcm_settime_v487(struct idtcm_channel *channel,
struct timespec64 const *ts,
enum scsr_tod_write_type_sel wr_type)
{
return _idtcm_set_dpll_scsr_tod(channel, ts,
SCSR_TOD_WR_TRIG_SEL_IMMEDIATE,
wr_type);
}
static int idtcm_set_phase_pull_in_offset(struct idtcm_channel *channel,
s32 offset_ns)
{
int err;
int i;
struct idtcm *idtcm = channel->idtcm;
u8 buf[4];
for (i = 0; i < 4; i++) {
buf[i] = 0xff & (offset_ns);
offset_ns >>= 8;
}
err = idtcm_write(idtcm, channel->dpll_phase_pull_in, PULL_IN_OFFSET,
buf, sizeof(buf));
return err;
}
static int idtcm_set_phase_pull_in_slope_limit(struct idtcm_channel *channel,
u32 max_ffo_ppb)
{
int err;
u8 i;
struct idtcm *idtcm = channel->idtcm;
u8 buf[3];
if (max_ffo_ppb & 0xff000000)
max_ffo_ppb = 0;
for (i = 0; i < 3; i++) {
buf[i] = 0xff & (max_ffo_ppb);
max_ffo_ppb >>= 8;
}
err = idtcm_write(idtcm, channel->dpll_phase_pull_in,
PULL_IN_SLOPE_LIMIT, buf, sizeof(buf));
return err;
}
static int idtcm_start_phase_pull_in(struct idtcm_channel *channel)
{
int err;
struct idtcm *idtcm = channel->idtcm;
u8 buf;
err = idtcm_read(idtcm, channel->dpll_phase_pull_in, PULL_IN_CTRL,
&buf, sizeof(buf));
if (err)
return err;
if (buf == 0) {
buf = 0x01;
err = idtcm_write(idtcm, channel->dpll_phase_pull_in,
PULL_IN_CTRL, &buf, sizeof(buf));
} else {
err = -EBUSY;
}
return err;
}
static int idtcm_do_phase_pull_in(struct idtcm_channel *channel,
s32 offset_ns,
u32 max_ffo_ppb)
{
int err;
err = idtcm_set_phase_pull_in_offset(channel, -offset_ns);
if (err)
return err;
err = idtcm_set_phase_pull_in_slope_limit(channel, max_ffo_ppb);
if (err)
return err;
err = idtcm_start_phase_pull_in(channel);
return err;
}
static int set_tod_write_overhead(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
s64 current_ns = 0;
s64 lowest_ns = 0;
int err;
u8 i;
ktime_t start;
ktime_t stop;
char buf[TOD_BYTE_COUNT] = {0};
/* Set page offset */
idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0,
buf, sizeof(buf));
for (i = 0; i < TOD_WRITE_OVERHEAD_COUNT_MAX; i++) {
start = ktime_get_raw();
err = idtcm_write(idtcm, channel->hw_dpll_n,
HW_DPLL_TOD_OVR__0, buf, sizeof(buf));
if (err)
return err;
stop = ktime_get_raw();
current_ns = ktime_to_ns(stop - start);
if (i == 0) {
lowest_ns = current_ns;
} else {
if (current_ns < lowest_ns)
lowest_ns = current_ns;
}
}
idtcm->tod_write_overhead_ns = lowest_ns;
return err;
}
static int _idtcm_adjtime(struct idtcm_channel *channel, s64 delta)
{
int err;
struct idtcm *idtcm = channel->idtcm;
struct timespec64 ts;
s64 now;
if (abs(delta) < PHASE_PULL_IN_THRESHOLD_NS) {
err = idtcm_do_phase_pull_in(channel, delta, 0);
} else {
idtcm->calculate_overhead_flag = 1;
err = set_tod_write_overhead(channel);
if (err)
return err;
err = _idtcm_gettime(channel, &ts);
if (err)
return err;
now = timespec64_to_ns(&ts);
now += delta;
ts = ns_to_timespec64(now);
err = _idtcm_settime(channel, &ts, HW_TOD_WR_TRIG_SEL_MSB);
}
return err;
}
static int idtcm_state_machine_reset(struct idtcm *idtcm)
{
int err;
u8 byte = SM_RESET_CMD;
err = idtcm_write(idtcm, RESET_CTRL, SM_RESET, &byte, sizeof(byte));
if (!err)
msleep_interruptible(POST_SM_RESET_DELAY_MS);
return err;
}
static int idtcm_read_hw_rev_id(struct idtcm *idtcm, u8 *hw_rev_id)
{
return idtcm_read(idtcm, HW_REVISION, REV_ID, hw_rev_id, sizeof(u8));
}
static int idtcm_read_product_id(struct idtcm *idtcm, u16 *product_id)
{
int err;
u8 buf[2] = {0};
err = idtcm_read(idtcm, GENERAL_STATUS, PRODUCT_ID, buf, sizeof(buf));
*product_id = (buf[1] << 8) | buf[0];
return err;
}
static int idtcm_read_major_release(struct idtcm *idtcm, u8 *major)
{
int err;
u8 buf = 0;
err = idtcm_read(idtcm, GENERAL_STATUS, MAJ_REL, &buf, sizeof(buf));
*major = buf >> 1;
return err;
}
static int idtcm_read_minor_release(struct idtcm *idtcm, u8 *minor)
{
return idtcm_read(idtcm, GENERAL_STATUS, MIN_REL, minor, sizeof(u8));
}
static int idtcm_read_hotfix_release(struct idtcm *idtcm, u8 *hotfix)
{
return idtcm_read(idtcm,
GENERAL_STATUS,
HOTFIX_REL,
hotfix,
sizeof(u8));
}
static int idtcm_read_otp_scsr_config_select(struct idtcm *idtcm,
u8 *config_select)
{
return idtcm_read(idtcm, GENERAL_STATUS, OTP_SCSR_CONFIG_SELECT,
config_select, sizeof(u8));
}
static int set_pll_output_mask(struct idtcm *idtcm, u16 addr, u8 val)
{
int err = 0;
switch (addr) {
case TOD0_OUT_ALIGN_MASK_ADDR:
SET_U16_LSB(idtcm->channel[0].output_mask, val);
break;
case TOD0_OUT_ALIGN_MASK_ADDR + 1:
SET_U16_MSB(idtcm->channel[0].output_mask, val);
break;
case TOD1_OUT_ALIGN_MASK_ADDR:
SET_U16_LSB(idtcm->channel[1].output_mask, val);
break;
case TOD1_OUT_ALIGN_MASK_ADDR + 1:
SET_U16_MSB(idtcm->channel[1].output_mask, val);
break;
case TOD2_OUT_ALIGN_MASK_ADDR:
SET_U16_LSB(idtcm->channel[2].output_mask, val);
break;
case TOD2_OUT_ALIGN_MASK_ADDR + 1:
SET_U16_MSB(idtcm->channel[2].output_mask, val);
break;
case TOD3_OUT_ALIGN_MASK_ADDR:
SET_U16_LSB(idtcm->channel[3].output_mask, val);
break;
case TOD3_OUT_ALIGN_MASK_ADDR + 1:
SET_U16_MSB(idtcm->channel[3].output_mask, val);
break;
default:
err = -EFAULT; /* Bad address */;
break;
}
return err;
}
static int set_tod_ptp_pll(struct idtcm *idtcm, u8 index, u8 pll)
{
if (index >= MAX_TOD) {
dev_err(&idtcm->client->dev, "ToD%d not supported\n", index);
return -EINVAL;
}
if (pll >= MAX_PLL) {
dev_err(&idtcm->client->dev, "Pll%d not supported\n", pll);
return -EINVAL;
}
idtcm->channel[index].pll = pll;
return 0;
}
static int check_and_set_masks(struct idtcm *idtcm,
u16 regaddr,
u8 val)
{
int err = 0;
switch (regaddr) {
case TOD_MASK_ADDR:
if ((val & 0xf0) || !(val & 0x0f)) {
dev_err(&idtcm->client->dev,
"Invalid TOD mask 0x%hhx\n", val);
err = -EINVAL;
} else {
idtcm->tod_mask = val;
}
break;
case TOD0_PTP_PLL_ADDR:
err = set_tod_ptp_pll(idtcm, 0, val);
break;
case TOD1_PTP_PLL_ADDR:
err = set_tod_ptp_pll(idtcm, 1, val);
break;
case TOD2_PTP_PLL_ADDR:
err = set_tod_ptp_pll(idtcm, 2, val);
break;
case TOD3_PTP_PLL_ADDR:
err = set_tod_ptp_pll(idtcm, 3, val);
break;
default:
err = set_pll_output_mask(idtcm, regaddr, val);
break;
}
return err;
}
static void display_pll_and_masks(struct idtcm *idtcm)
{
u8 i;
u8 mask;
dev_dbg(&idtcm->client->dev, "tod_mask = 0x%02x\n", idtcm->tod_mask);
for (i = 0; i < MAX_TOD; i++) {
mask = 1 << i;
if (mask & idtcm->tod_mask)
dev_dbg(&idtcm->client->dev,
"TOD%d pll = %d output_mask = 0x%04x\n",
i, idtcm->channel[i].pll,
idtcm->channel[i].output_mask);
}
}
static int idtcm_load_firmware(struct idtcm *idtcm,
struct device *dev)
{
char fname[128] = FW_FILENAME;
const struct firmware *fw;
struct idtcm_fwrc *rec;
u32 regaddr;
int err;
s32 len;
u8 val;
u8 loaddr;
if (firmware) /* module parameter */
snprintf(fname, sizeof(fname), "%s", firmware);
dev_dbg(&idtcm->client->dev, "requesting firmware '%s'\n", fname);
err = request_firmware(&fw, fname, dev);
if (err) {
dev_err(&idtcm->client->dev,
"Failed at line %d in func %s!\n",
__LINE__,
__func__);
return err;
}
dev_dbg(&idtcm->client->dev, "firmware size %zu bytes\n", fw->size);
rec = (struct idtcm_fwrc *) fw->data;
if (fw->size > 0)
idtcm_state_machine_reset(idtcm);
for (len = fw->size; len > 0; len -= sizeof(*rec)) {
if (rec->reserved) {
dev_err(&idtcm->client->dev,
"bad firmware, reserved field non-zero\n");
err = -EINVAL;
} else {
regaddr = rec->hiaddr << 8;
regaddr |= rec->loaddr;
val = rec->value;
loaddr = rec->loaddr;
rec++;
err = check_and_set_masks(idtcm, regaddr, val);
}
if (err != -EINVAL) {
err = 0;
/* Top (status registers) and bottom are read-only */
if ((regaddr < GPIO_USER_CONTROL)
|| (regaddr >= SCRATCH))
continue;
/* Page size 128, last 4 bytes of page skipped */
if (((loaddr > 0x7b) && (loaddr <= 0x7f))
|| loaddr > 0xfb)
continue;
err = idtcm_write(idtcm, regaddr, 0, &val, sizeof(val));
}
if (err)
goto out;
}
display_pll_and_masks(idtcm);
out:
release_firmware(fw);
return err;
}
static int idtcm_output_enable(struct idtcm_channel *channel,
bool enable, unsigned int outn)
{
struct idtcm *idtcm = channel->idtcm;
int err;
u8 val;
err = idtcm_read(idtcm, OUTPUT_MODULE_FROM_INDEX(outn),
OUT_CTRL_1, &val, sizeof(val));
if (err)
return err;
if (enable)
val |= SQUELCH_DISABLE;
else
val &= ~SQUELCH_DISABLE;
return idtcm_write(idtcm, OUTPUT_MODULE_FROM_INDEX(outn),
OUT_CTRL_1, &val, sizeof(val));
}
static int idtcm_output_mask_enable(struct idtcm_channel *channel,
bool enable)
{
u16 mask;
int err;
u8 outn;
mask = channel->output_mask;
outn = 0;
while (mask) {
if (mask & 0x1) {
err = idtcm_output_enable(channel, enable, outn);
if (err)
return err;
}
mask >>= 0x1;
outn++;
}
return 0;
}
static int idtcm_perout_enable(struct idtcm_channel *channel,
bool enable,
struct ptp_perout_request *perout)
{
unsigned int flags = perout->flags;
if (flags == PEROUT_ENABLE_OUTPUT_MASK)
return idtcm_output_mask_enable(channel, enable);
/* Enable/disable individual output instead */
return idtcm_output_enable(channel, enable, perout->index);
}
static int idtcm_set_pll_mode(struct idtcm_channel *channel,
enum pll_mode pll_mode)
{
struct idtcm *idtcm = channel->idtcm;
int err;
u8 dpll_mode;
err = idtcm_read(idtcm, channel->dpll_n, DPLL_MODE,
&dpll_mode, sizeof(dpll_mode));
if (err)
return err;
dpll_mode &= ~(PLL_MODE_MASK << PLL_MODE_SHIFT);
dpll_mode |= (pll_mode << PLL_MODE_SHIFT);
channel->pll_mode = pll_mode;
err = idtcm_write(idtcm, channel->dpll_n, DPLL_MODE,
&dpll_mode, sizeof(dpll_mode));
if (err)
return err;
return 0;
}
/* PTP Hardware Clock interface */
/**
* @brief Maximum absolute value for write phase offset in picoseconds
*
* Destination signed register is 32-bit register in resolution of 50ps
*
* 0x7fffffff * 50 = 2147483647 * 50 = 107374182350
*/
static int _idtcm_adjphase(struct idtcm_channel *channel, s32 delta_ns)
{
struct idtcm *idtcm = channel->idtcm;
int err;
u8 i;
u8 buf[4] = {0};
s32 phase_50ps;
s64 offset_ps;
if (channel->pll_mode != PLL_MODE_WRITE_PHASE) {
err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_PHASE);
if (err)
return err;
channel->write_phase_ready = 0;
ptp_schedule_worker(channel->ptp_clock,
msecs_to_jiffies(WR_PHASE_SETUP_MS));
}
if (!channel->write_phase_ready)
delta_ns = 0;
offset_ps = (s64)delta_ns * 1000;
/*
* Check for 32-bit signed max * 50:
*
* 0x7fffffff * 50 = 2147483647 * 50 = 107374182350
*/
if (offset_ps > MAX_ABS_WRITE_PHASE_PICOSECONDS)
offset_ps = MAX_ABS_WRITE_PHASE_PICOSECONDS;
else if (offset_ps < -MAX_ABS_WRITE_PHASE_PICOSECONDS)
offset_ps = -MAX_ABS_WRITE_PHASE_PICOSECONDS;
phase_50ps = DIV_ROUND_CLOSEST(div64_s64(offset_ps, 50), 1);
for (i = 0; i < 4; i++) {
buf[i] = phase_50ps & 0xff;
phase_50ps >>= 8;
}
err = idtcm_write(idtcm, channel->dpll_phase, DPLL_WR_PHASE,
buf, sizeof(buf));
return err;
}
static int _idtcm_adjfine(struct idtcm_channel *channel, long scaled_ppm)
{
struct idtcm *idtcm = channel->idtcm;
u8 i;
bool neg_adj = 0;
int err;
u8 buf[6] = {0};
s64 fcw;
if (channel->pll_mode != PLL_MODE_WRITE_FREQUENCY) {
err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_FREQUENCY);
if (err)
return err;
}
/*
* Frequency Control Word unit is: 1.11 * 10^-10 ppm
*
* adjfreq:
* ppb * 10^9
* FCW = ----------
* 111
*
* adjfine:
* ppm_16 * 5^12
* FCW = -------------
* 111 * 2^4
*/
if (scaled_ppm < 0) {
neg_adj = 1;
scaled_ppm = -scaled_ppm;
}
/* 2 ^ -53 = 1.1102230246251565404236316680908e-16 */
fcw = scaled_ppm * 244140625ULL;
fcw = div_u64(fcw, 1776);
if (neg_adj)
fcw = -fcw;
for (i = 0; i < 6; i++) {
buf[i] = fcw & 0xff;
fcw >>= 8;
}
err = idtcm_write(idtcm, channel->dpll_freq, DPLL_WR_FREQ,
buf, sizeof(buf));
return err;
}
static int idtcm_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(&idtcm->reg_lock);
err = _idtcm_gettime(channel, ts);
if (err)
dev_err(&idtcm->client->dev,
"Failed at line %d in func %s!\n",
__LINE__,
__func__);
mutex_unlock(&idtcm->reg_lock);
return err;
}
static int idtcm_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(&idtcm->reg_lock);
err = _idtcm_settime(channel, ts, HW_TOD_WR_TRIG_SEL_MSB);
if (err)
dev_err(&idtcm->client->dev,
"Failed at line %d in func %s!\n",
__LINE__,
__func__);
mutex_unlock(&idtcm->reg_lock);
return err;
}
static int idtcm_settime_v487(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(&idtcm->reg_lock);
err = _idtcm_settime_v487(channel, ts, SCSR_TOD_WR_TYPE_SEL_ABSOLUTE);
if (err)
dev_err(&idtcm->client->dev,
"Failed at line %d in func %s!\n",
__LINE__,
__func__);
mutex_unlock(&idtcm->reg_lock);
return err;
}
static int idtcm_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(&idtcm->reg_lock);
err = _idtcm_adjtime(channel, delta);
if (err)
dev_err(&idtcm->client->dev,
"Failed at line %d in func %s!\n",
__LINE__,
__func__);
mutex_unlock(&idtcm->reg_lock);
return err;
}
static int idtcm_adjtime_v487(struct ptp_clock_info *ptp, s64 delta)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
struct timespec64 ts;
enum scsr_tod_write_type_sel type;
int err;
if (abs(delta) < PHASE_PULL_IN_THRESHOLD_NS_V487) {
err = idtcm_do_phase_pull_in(channel, delta, 0);
if (err)
dev_err(&idtcm->client->dev,
"Failed at line %d in func %s!\n",
__LINE__,
__func__);
return err;
}
if (delta >= 0) {
ts = ns_to_timespec64(delta);
type = SCSR_TOD_WR_TYPE_SEL_DELTA_PLUS;
} else {
ts = ns_to_timespec64(-delta);
type = SCSR_TOD_WR_TYPE_SEL_DELTA_MINUS;
}
mutex_lock(&idtcm->reg_lock);
err = _idtcm_settime_v487(channel, &ts, type);
if (err)
dev_err(&idtcm->client->dev,
"Failed at line %d in func %s!\n",
__LINE__,
__func__);
mutex_unlock(&idtcm->reg_lock);
return err;
}
static int idtcm_adjphase(struct ptp_clock_info *ptp, s32 delta)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(&idtcm->reg_lock);
err = _idtcm_adjphase(channel, delta);
if (err)
dev_err(&idtcm->client->dev,
"Failed at line %d in func %s!\n",
__LINE__,
__func__);
mutex_unlock(&idtcm->reg_lock);
return err;
}
static int idtcm_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(&idtcm->reg_lock);
err = _idtcm_adjfine(channel, scaled_ppm);
if (err)
dev_err(&idtcm->client->dev,
"Failed at line %d in func %s!\n",
__LINE__,
__func__);
mutex_unlock(&idtcm->reg_lock);
return err;
}
static int idtcm_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
int err;
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
switch (rq->type) {
case PTP_CLK_REQ_PEROUT:
if (!on) {
err = idtcm_perout_enable(channel, false, &rq->perout);
if (err)
dev_err(&channel->idtcm->client->dev,
"Failed at line %d in func %s!\n",
__LINE__,
__func__);
return err;
}
/* Only accept a 1-PPS aligned to the second. */
if (rq->perout.start.nsec || rq->perout.period.sec != 1 ||
rq->perout.period.nsec)
return -ERANGE;
err = idtcm_perout_enable(channel, true, &rq->perout);
if (err)
dev_err(&channel->idtcm->client->dev,
"Failed at line %d in func %s!\n",
__LINE__,
__func__);
return err;
default:
break;
}
return -EOPNOTSUPP;
}
static int _enable_pll_tod_sync(struct idtcm *idtcm,
u8 pll,
u8 sync_src,
u8 qn,
u8 qn_plus_1)
{
int err;
u8 val;
u16 dpll;
u16 out0 = 0, out1 = 0;
if ((qn == 0) && (qn_plus_1 == 0))
return 0;
switch (pll) {
case 0:
dpll = DPLL_0;
if (qn)
out0 = OUTPUT_0;
if (qn_plus_1)
out1 = OUTPUT_1;
break;
case 1:
dpll = DPLL_1;
if (qn)
out0 = OUTPUT_2;
if (qn_plus_1)
out1 = OUTPUT_3;
break;
case 2:
dpll = DPLL_2;
if (qn)
out0 = OUTPUT_4;
if (qn_plus_1)
out1 = OUTPUT_5;
break;
case 3:
dpll = DPLL_3;
if (qn)
out0 = OUTPUT_6;
if (qn_plus_1)
out1 = OUTPUT_7;
break;
case 4:
dpll = DPLL_4;
if (qn)
out0 = OUTPUT_8;
break;
case 5:
dpll = DPLL_5;
if (qn)
out0 = OUTPUT_9;
if (qn_plus_1)
out1 = OUTPUT_8;
break;
case 6:
dpll = DPLL_6;
if (qn)
out0 = OUTPUT_10;
if (qn_plus_1)
out1 = OUTPUT_11;
break;
case 7:
dpll = DPLL_7;
if (qn)
out0 = OUTPUT_11;
break;
default:
return -EINVAL;
}
/*
* Enable OUTPUT OUT_SYNC.
*/
if (out0) {
err = idtcm_read(idtcm, out0, OUT_CTRL_1, &val, sizeof(val));
if (err)
return err;
val &= ~OUT_SYNC_DISABLE;
err = idtcm_write(idtcm, out0, OUT_CTRL_1, &val, sizeof(val));
if (err)
return err;
}
if (out1) {
err = idtcm_read(idtcm, out1, OUT_CTRL_1, &val, sizeof(val));
if (err)
return err;
val &= ~OUT_SYNC_DISABLE;
err = idtcm_write(idtcm, out1, OUT_CTRL_1, &val, sizeof(val));
if (err)
return err;
}
/* enable dpll sync tod pps, must be set before dpll_mode */
err = idtcm_read(idtcm, dpll, DPLL_TOD_SYNC_CFG, &val, sizeof(val));
if (err)
return err;
val &= ~(TOD_SYNC_SOURCE_MASK << TOD_SYNC_SOURCE_SHIFT);
val |= (sync_src << TOD_SYNC_SOURCE_SHIFT);
val |= TOD_SYNC_EN;
return idtcm_write(idtcm, dpll, DPLL_TOD_SYNC_CFG, &val, sizeof(val));
}
static int idtcm_enable_tod_sync(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
u8 pll;
u8 sync_src;
u8 qn;
u8 qn_plus_1;
u8 cfg;
int err = 0;
u16 output_mask = channel->output_mask;
u8 out8_mux = 0;
u8 out11_mux = 0;
u8 temp;
/*
* set tod_out_sync_enable to 0.
*/
err = idtcm_read(idtcm, channel->tod_n, TOD_CFG, &cfg, sizeof(cfg));
if (err)
return err;
cfg &= ~TOD_OUT_SYNC_ENABLE;
err = idtcm_write(idtcm, channel->tod_n, TOD_CFG, &cfg, sizeof(cfg));
if (err)
return err;
switch (channel->tod_n) {
case TOD_0:
sync_src = 0;
break;
case TOD_1:
sync_src = 1;
break;
case TOD_2:
sync_src = 2;
break;
case TOD_3:
sync_src = 3;
break;
default:
return -EINVAL;
}
err = idtcm_read(idtcm, 0, HW_Q8_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
if ((temp & Q9_TO_Q8_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK) ==
Q9_TO_Q8_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK)
out8_mux = 1;
err = idtcm_read(idtcm, 0, HW_Q11_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
if ((temp & Q10_TO_Q11_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK) ==
Q10_TO_Q11_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK)
out11_mux = 1;
for (pll = 0; pll < 8; pll++) {
qn = 0;
qn_plus_1 = 0;
if (pll < 4) {
/* First 4 pll has 2 outputs */
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
qn_plus_1 = output_mask & 0x1;
output_mask = output_mask >> 1;
} else if (pll == 4) {
if (out8_mux == 0) {
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
}
} else if (pll == 5) {
if (out8_mux) {
qn_plus_1 = output_mask & 0x1;
output_mask = output_mask >> 1;
}
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
} else if (pll == 6) {
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
if (out11_mux) {
qn_plus_1 = output_mask & 0x1;
output_mask = output_mask >> 1;
}
} else if (pll == 7) {
if (out11_mux == 0) {
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
}
}
if ((qn != 0) || (qn_plus_1 != 0))
err = _enable_pll_tod_sync(idtcm, pll, sync_src, qn,
qn_plus_1);
if (err)
return err;
}
return err;
}
static int idtcm_enable_tod(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
struct timespec64 ts = {0, 0};
u8 cfg;
int err;
/*
* Start the TOD clock ticking.
*/
err = idtcm_read(idtcm, channel->tod_n, TOD_CFG, &cfg, sizeof(cfg));
if (err)
return err;
cfg |= TOD_ENABLE;
err = idtcm_write(idtcm, channel->tod_n, TOD_CFG, &cfg, sizeof(cfg));
if (err)
return err;
return _idtcm_settime(channel, &ts, HW_TOD_WR_TRIG_SEL_MSB);
}
static void idtcm_display_version_info(struct idtcm *idtcm)
{
u8 major;
u8 minor;
u8 hotfix;
u16 product_id;
u8 hw_rev_id;
u8 config_select;
char *fmt = "%d.%d.%d, Id: 0x%04x HW Rev: %d OTP Config Select: %d\n";
idtcm_read_major_release(idtcm, &major);
idtcm_read_minor_release(idtcm, &minor);
idtcm_read_hotfix_release(idtcm, &hotfix);
idtcm_read_product_id(idtcm, &product_id);
idtcm_read_hw_rev_id(idtcm, &hw_rev_id);
idtcm_read_otp_scsr_config_select(idtcm, &config_select);
snprintf(idtcm->version, sizeof(idtcm->version), "%u.%u.%u",
major, minor, hotfix);
dev_info(&idtcm->client->dev, fmt, major, minor, hotfix,
product_id, hw_rev_id, config_select);
}
static const struct ptp_clock_info idtcm_caps_v487 = {
.owner = THIS_MODULE,
.max_adj = 244000,
.n_per_out = 12,
.adjphase = &idtcm_adjphase,
.adjfine = &idtcm_adjfine,
.adjtime = &idtcm_adjtime_v487,
.gettime64 = &idtcm_gettime,
.settime64 = &idtcm_settime_v487,
.enable = &idtcm_enable,
.do_aux_work = &set_write_phase_ready,
};
static const struct ptp_clock_info idtcm_caps = {
.owner = THIS_MODULE,
.max_adj = 244000,
.n_per_out = 12,
.adjphase = &idtcm_adjphase,
.adjfine = &idtcm_adjfine,
.adjtime = &idtcm_adjtime,
.gettime64 = &idtcm_gettime,
.settime64 = &idtcm_settime,
.enable = &idtcm_enable,
.do_aux_work = &set_write_phase_ready,
};
static int configure_channel_pll(struct idtcm_channel *channel)
{
int err = 0;
switch (channel->pll) {
case 0:
channel->dpll_freq = DPLL_FREQ_0;
channel->dpll_n = DPLL_0;
channel->hw_dpll_n = HW_DPLL_0;
channel->dpll_phase = DPLL_PHASE_0;
channel->dpll_ctrl_n = DPLL_CTRL_0;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_0;
break;
case 1:
channel->dpll_freq = DPLL_FREQ_1;
channel->dpll_n = DPLL_1;
channel->hw_dpll_n = HW_DPLL_1;
channel->dpll_phase = DPLL_PHASE_1;
channel->dpll_ctrl_n = DPLL_CTRL_1;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_1;
break;
case 2:
channel->dpll_freq = DPLL_FREQ_2;
channel->dpll_n = DPLL_2;
channel->hw_dpll_n = HW_DPLL_2;
channel->dpll_phase = DPLL_PHASE_2;
channel->dpll_ctrl_n = DPLL_CTRL_2;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_2;
break;
case 3:
channel->dpll_freq = DPLL_FREQ_3;
channel->dpll_n = DPLL_3;
channel->hw_dpll_n = HW_DPLL_3;
channel->dpll_phase = DPLL_PHASE_3;
channel->dpll_ctrl_n = DPLL_CTRL_3;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_3;
break;
case 4:
channel->dpll_freq = DPLL_FREQ_4;
channel->dpll_n = DPLL_4;
channel->hw_dpll_n = HW_DPLL_4;
channel->dpll_phase = DPLL_PHASE_4;
channel->dpll_ctrl_n = DPLL_CTRL_4;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_4;
break;
case 5:
channel->dpll_freq = DPLL_FREQ_5;
channel->dpll_n = DPLL_5;
channel->hw_dpll_n = HW_DPLL_5;
channel->dpll_phase = DPLL_PHASE_5;
channel->dpll_ctrl_n = DPLL_CTRL_5;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_5;
break;
case 6:
channel->dpll_freq = DPLL_FREQ_6;
channel->dpll_n = DPLL_6;
channel->hw_dpll_n = HW_DPLL_6;
channel->dpll_phase = DPLL_PHASE_6;
channel->dpll_ctrl_n = DPLL_CTRL_6;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_6;
break;
case 7:
channel->dpll_freq = DPLL_FREQ_7;
channel->dpll_n = DPLL_7;
channel->hw_dpll_n = HW_DPLL_7;
channel->dpll_phase = DPLL_PHASE_7;
channel->dpll_ctrl_n = DPLL_CTRL_7;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_7;
break;
default:
err = -EINVAL;
}
return err;
}
static int idtcm_enable_channel(struct idtcm *idtcm, u32 index)
{
struct idtcm_channel *channel;
int err;
if (!(index < MAX_TOD))
return -EINVAL;
channel = &idtcm->channel[index];
/* Set pll addresses */
err = configure_channel_pll(channel);
if (err)
return err;
/* Set tod addresses */
switch (index) {
case 0:
channel->tod_read_primary = TOD_READ_PRIMARY_0;
channel->tod_write = TOD_WRITE_0;
channel->tod_n = TOD_0;
break;
case 1:
channel->tod_read_primary = TOD_READ_PRIMARY_1;
channel->tod_write = TOD_WRITE_1;
channel->tod_n = TOD_1;
break;
case 2:
channel->tod_read_primary = TOD_READ_PRIMARY_2;
channel->tod_write = TOD_WRITE_2;
channel->tod_n = TOD_2;
break;
case 3:
channel->tod_read_primary = TOD_READ_PRIMARY_3;
channel->tod_write = TOD_WRITE_3;
channel->tod_n = TOD_3;
break;
default:
return -EINVAL;
}
channel->idtcm = idtcm;
if (idtcm_strverscmp(idtcm->version, "4.8.7") >= 0)
channel->caps = idtcm_caps_v487;
else
channel->caps = idtcm_caps;
snprintf(channel->caps.name, sizeof(channel->caps.name),
"IDT CM TOD%u", index);
if (idtcm_strverscmp(idtcm->version, "4.8.7") >= 0) {
err = idtcm_enable_tod_sync(channel);
if (err) {
dev_err(&idtcm->client->dev,
"Failed at line %d in func %s!\n",
__LINE__,
__func__);
return err;
}
}
err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_FREQUENCY);
if (err) {
dev_err(&idtcm->client->dev,
"Failed at line %d in func %s!\n",
__LINE__,
__func__);
return err;
}
err = idtcm_enable_tod(channel);
if (err) {
dev_err(&idtcm->client->dev,
"Failed at line %d in func %s!\n",
__LINE__,
__func__);
return err;
}
channel->ptp_clock = ptp_clock_register(&channel->caps, NULL);
if (IS_ERR(channel->ptp_clock)) {
err = PTR_ERR(channel->ptp_clock);
channel->ptp_clock = NULL;
return err;
}
if (!channel->ptp_clock)
return -ENOTSUPP;
channel->write_phase_ready = 0;
dev_info(&idtcm->client->dev, "PLL%d registered as ptp%d\n",
index, channel->ptp_clock->index);
return 0;
}
static void ptp_clock_unregister_all(struct idtcm *idtcm)
{
u8 i;
struct idtcm_channel *channel;
for (i = 0; i < MAX_TOD; i++) {
channel = &idtcm->channel[i];
if (channel->ptp_clock)
ptp_clock_unregister(channel->ptp_clock);
}
}
static void set_default_masks(struct idtcm *idtcm)
{
idtcm->tod_mask = DEFAULT_TOD_MASK;
idtcm->channel[0].pll = DEFAULT_TOD0_PTP_PLL;
idtcm->channel[1].pll = DEFAULT_TOD1_PTP_PLL;
idtcm->channel[2].pll = DEFAULT_TOD2_PTP_PLL;
idtcm->channel[3].pll = DEFAULT_TOD3_PTP_PLL;
idtcm->channel[0].output_mask = DEFAULT_OUTPUT_MASK_PLL0;
idtcm->channel[1].output_mask = DEFAULT_OUTPUT_MASK_PLL1;
idtcm->channel[2].output_mask = DEFAULT_OUTPUT_MASK_PLL2;
idtcm->channel[3].output_mask = DEFAULT_OUTPUT_MASK_PLL3;
}
static int idtcm_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct idtcm *idtcm;
int err;
u8 i;
char *fmt = "Failed at %d in line %s with channel output %d!\n";
/* Unused for now */
(void)id;
idtcm = devm_kzalloc(&client->dev, sizeof(struct idtcm), GFP_KERNEL);
if (!idtcm)
return -ENOMEM;
idtcm->client = client;
idtcm->page_offset = 0xff;
idtcm->calculate_overhead_flag = 0;
set_default_masks(idtcm);
mutex_init(&idtcm->reg_lock);
mutex_lock(&idtcm->reg_lock);
idtcm_display_version_info(idtcm);
err = idtcm_load_firmware(idtcm, &client->dev);
if (err)
dev_warn(&idtcm->client->dev,
"loading firmware failed with %d\n", err);
if (idtcm->tod_mask) {
for (i = 0; i < MAX_TOD; i++) {
if (idtcm->tod_mask & (1 << i)) {
err = idtcm_enable_channel(idtcm, i);
if (err) {
dev_err(&idtcm->client->dev,
fmt,
__LINE__,
__func__,
i);
break;
}
}
}
} else {
dev_err(&idtcm->client->dev,
"no PLLs flagged as PHCs, nothing to do\n");
err = -ENODEV;
}
mutex_unlock(&idtcm->reg_lock);
if (err) {
ptp_clock_unregister_all(idtcm);
return err;
}
i2c_set_clientdata(client, idtcm);
return 0;
}
static int idtcm_remove(struct i2c_client *client)
{
struct idtcm *idtcm = i2c_get_clientdata(client);
ptp_clock_unregister_all(idtcm);
mutex_destroy(&idtcm->reg_lock);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id idtcm_dt_id[] = {
{ .compatible = "idt,8a34000" },
{ .compatible = "idt,8a34001" },
{ .compatible = "idt,8a34002" },
{ .compatible = "idt,8a34003" },
{ .compatible = "idt,8a34004" },
{ .compatible = "idt,8a34005" },
{ .compatible = "idt,8a34006" },
{ .compatible = "idt,8a34007" },
{ .compatible = "idt,8a34008" },
{ .compatible = "idt,8a34009" },
{ .compatible = "idt,8a34010" },
{ .compatible = "idt,8a34011" },
{ .compatible = "idt,8a34012" },
{ .compatible = "idt,8a34013" },
{ .compatible = "idt,8a34014" },
{ .compatible = "idt,8a34015" },
{ .compatible = "idt,8a34016" },
{ .compatible = "idt,8a34017" },
{ .compatible = "idt,8a34018" },
{ .compatible = "idt,8a34019" },
{ .compatible = "idt,8a34040" },
{ .compatible = "idt,8a34041" },
{ .compatible = "idt,8a34042" },
{ .compatible = "idt,8a34043" },
{ .compatible = "idt,8a34044" },
{ .compatible = "idt,8a34045" },
{ .compatible = "idt,8a34046" },
{ .compatible = "idt,8a34047" },
{ .compatible = "idt,8a34048" },
{ .compatible = "idt,8a34049" },
{},
};
MODULE_DEVICE_TABLE(of, idtcm_dt_id);
#endif
static const struct i2c_device_id idtcm_i2c_id[] = {
{ "8a34000" },
{ "8a34001" },
{ "8a34002" },
{ "8a34003" },
{ "8a34004" },
{ "8a34005" },
{ "8a34006" },
{ "8a34007" },
{ "8a34008" },
{ "8a34009" },
{ "8a34010" },
{ "8a34011" },
{ "8a34012" },
{ "8a34013" },
{ "8a34014" },
{ "8a34015" },
{ "8a34016" },
{ "8a34017" },
{ "8a34018" },
{ "8a34019" },
{ "8a34040" },
{ "8a34041" },
{ "8a34042" },
{ "8a34043" },
{ "8a34044" },
{ "8a34045" },
{ "8a34046" },
{ "8a34047" },
{ "8a34048" },
{ "8a34049" },
{},
};
MODULE_DEVICE_TABLE(i2c, idtcm_i2c_id);
static struct i2c_driver idtcm_driver = {
.driver = {
.of_match_table = of_match_ptr(idtcm_dt_id),
.name = "idtcm",
},
.probe = idtcm_probe,
.remove = idtcm_remove,
.id_table = idtcm_i2c_id,
};
module_i2c_driver(idtcm_driver);