linux/mm/memory-failure.c
Matthew Wilcox (Oracle) af7628d6ec fs: convert error_remove_page to error_remove_folio
There were already assertions that we were not passing a tail page to
error_remove_page(), so make the compiler enforce that by converting
everything to pass and use a folio.

Link: https://lkml.kernel.org/r/20231117161447.2461643-7-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-10 16:51:42 -08:00

2794 lines
73 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2008, 2009 Intel Corporation
* Authors: Andi Kleen, Fengguang Wu
*
* High level machine check handler. Handles pages reported by the
* hardware as being corrupted usually due to a multi-bit ECC memory or cache
* failure.
*
* In addition there is a "soft offline" entry point that allows stop using
* not-yet-corrupted-by-suspicious pages without killing anything.
*
* Handles page cache pages in various states. The tricky part
* here is that we can access any page asynchronously in respect to
* other VM users, because memory failures could happen anytime and
* anywhere. This could violate some of their assumptions. This is why
* this code has to be extremely careful. Generally it tries to use
* normal locking rules, as in get the standard locks, even if that means
* the error handling takes potentially a long time.
*
* It can be very tempting to add handling for obscure cases here.
* In general any code for handling new cases should only be added iff:
* - You know how to test it.
* - You have a test that can be added to mce-test
* https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
* - The case actually shows up as a frequent (top 10) page state in
* tools/mm/page-types when running a real workload.
*
* There are several operations here with exponential complexity because
* of unsuitable VM data structures. For example the operation to map back
* from RMAP chains to processes has to walk the complete process list and
* has non linear complexity with the number. But since memory corruptions
* are rare we hope to get away with this. This avoids impacting the core
* VM.
*/
#define pr_fmt(fmt) "Memory failure: " fmt
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/dax.h>
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/export.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
#include <linux/migrate.h>
#include <linux/slab.h>
#include <linux/swapops.h>
#include <linux/hugetlb.h>
#include <linux/memory_hotplug.h>
#include <linux/mm_inline.h>
#include <linux/memremap.h>
#include <linux/kfifo.h>
#include <linux/ratelimit.h>
#include <linux/pagewalk.h>
#include <linux/shmem_fs.h>
#include <linux/sysctl.h>
#include "swap.h"
#include "internal.h"
#include "ras/ras_event.h"
static int sysctl_memory_failure_early_kill __read_mostly;
static int sysctl_memory_failure_recovery __read_mostly = 1;
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
static bool hw_memory_failure __read_mostly = false;
static DEFINE_MUTEX(mf_mutex);
void num_poisoned_pages_inc(unsigned long pfn)
{
atomic_long_inc(&num_poisoned_pages);
memblk_nr_poison_inc(pfn);
}
void num_poisoned_pages_sub(unsigned long pfn, long i)
{
atomic_long_sub(i, &num_poisoned_pages);
if (pfn != -1UL)
memblk_nr_poison_sub(pfn, i);
}
/**
* MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
* @_name: name of the file in the per NUMA sysfs directory.
*/
#define MF_ATTR_RO(_name) \
static ssize_t _name##_show(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
struct memory_failure_stats *mf_stats = \
&NODE_DATA(dev->id)->mf_stats; \
return sprintf(buf, "%lu\n", mf_stats->_name); \
} \
static DEVICE_ATTR_RO(_name)
MF_ATTR_RO(total);
MF_ATTR_RO(ignored);
MF_ATTR_RO(failed);
MF_ATTR_RO(delayed);
MF_ATTR_RO(recovered);
static struct attribute *memory_failure_attr[] = {
&dev_attr_total.attr,
&dev_attr_ignored.attr,
&dev_attr_failed.attr,
&dev_attr_delayed.attr,
&dev_attr_recovered.attr,
NULL,
};
const struct attribute_group memory_failure_attr_group = {
.name = "memory_failure",
.attrs = memory_failure_attr,
};
static struct ctl_table memory_failure_table[] = {
{
.procname = "memory_failure_early_kill",
.data = &sysctl_memory_failure_early_kill,
.maxlen = sizeof(sysctl_memory_failure_early_kill),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{
.procname = "memory_failure_recovery",
.data = &sysctl_memory_failure_recovery,
.maxlen = sizeof(sysctl_memory_failure_recovery),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{ }
};
/*
* Return values:
* 1: the page is dissolved (if needed) and taken off from buddy,
* 0: the page is dissolved (if needed) and not taken off from buddy,
* < 0: failed to dissolve.
*/
static int __page_handle_poison(struct page *page)
{
int ret;
zone_pcp_disable(page_zone(page));
ret = dissolve_free_huge_page(page);
if (!ret)
ret = take_page_off_buddy(page);
zone_pcp_enable(page_zone(page));
return ret;
}
static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
{
if (hugepage_or_freepage) {
/*
* Doing this check for free pages is also fine since dissolve_free_huge_page
* returns 0 for non-hugetlb pages as well.
*/
if (__page_handle_poison(page) <= 0)
/*
* We could fail to take off the target page from buddy
* for example due to racy page allocation, but that's
* acceptable because soft-offlined page is not broken
* and if someone really want to use it, they should
* take it.
*/
return false;
}
SetPageHWPoison(page);
if (release)
put_page(page);
page_ref_inc(page);
num_poisoned_pages_inc(page_to_pfn(page));
return true;
}
#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
u32 hwpoison_filter_enable = 0;
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
static int hwpoison_filter_dev(struct page *p)
{
struct address_space *mapping;
dev_t dev;
if (hwpoison_filter_dev_major == ~0U &&
hwpoison_filter_dev_minor == ~0U)
return 0;
mapping = page_mapping(p);
if (mapping == NULL || mapping->host == NULL)
return -EINVAL;
dev = mapping->host->i_sb->s_dev;
if (hwpoison_filter_dev_major != ~0U &&
hwpoison_filter_dev_major != MAJOR(dev))
return -EINVAL;
if (hwpoison_filter_dev_minor != ~0U &&
hwpoison_filter_dev_minor != MINOR(dev))
return -EINVAL;
return 0;
}
static int hwpoison_filter_flags(struct page *p)
{
if (!hwpoison_filter_flags_mask)
return 0;
if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
hwpoison_filter_flags_value)
return 0;
else
return -EINVAL;
}
/*
* This allows stress tests to limit test scope to a collection of tasks
* by putting them under some memcg. This prevents killing unrelated/important
* processes such as /sbin/init. Note that the target task may share clean
* pages with init (eg. libc text), which is harmless. If the target task
* share _dirty_ pages with another task B, the test scheme must make sure B
* is also included in the memcg. At last, due to race conditions this filter
* can only guarantee that the page either belongs to the memcg tasks, or is
* a freed page.
*/
#ifdef CONFIG_MEMCG
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
if (!hwpoison_filter_memcg)
return 0;
if (page_cgroup_ino(p) != hwpoison_filter_memcg)
return -EINVAL;
return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif
int hwpoison_filter(struct page *p)
{
if (!hwpoison_filter_enable)
return 0;
if (hwpoison_filter_dev(p))
return -EINVAL;
if (hwpoison_filter_flags(p))
return -EINVAL;
if (hwpoison_filter_task(p))
return -EINVAL;
return 0;
}
#else
int hwpoison_filter(struct page *p)
{
return 0;
}
#endif
EXPORT_SYMBOL_GPL(hwpoison_filter);
/*
* Kill all processes that have a poisoned page mapped and then isolate
* the page.
*
* General strategy:
* Find all processes having the page mapped and kill them.
* But we keep a page reference around so that the page is not
* actually freed yet.
* Then stash the page away
*
* There's no convenient way to get back to mapped processes
* from the VMAs. So do a brute-force search over all
* running processes.
*
* Remember that machine checks are not common (or rather
* if they are common you have other problems), so this shouldn't
* be a performance issue.
*
* Also there are some races possible while we get from the
* error detection to actually handle it.
*/
struct to_kill {
struct list_head nd;
struct task_struct *tsk;
unsigned long addr;
short size_shift;
};
/*
* Send all the processes who have the page mapped a signal.
* ``action optional'' if they are not immediately affected by the error
* ``action required'' if error happened in current execution context
*/
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
{
struct task_struct *t = tk->tsk;
short addr_lsb = tk->size_shift;
int ret = 0;
pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
pfn, t->comm, t->pid);
if ((flags & MF_ACTION_REQUIRED) && (t == current))
ret = force_sig_mceerr(BUS_MCEERR_AR,
(void __user *)tk->addr, addr_lsb);
else
/*
* Signal other processes sharing the page if they have
* PF_MCE_EARLY set.
* Don't use force here, it's convenient if the signal
* can be temporarily blocked.
* This could cause a loop when the user sets SIGBUS
* to SIG_IGN, but hopefully no one will do that?
*/
ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
addr_lsb, t);
if (ret < 0)
pr_info("Error sending signal to %s:%d: %d\n",
t->comm, t->pid, ret);
return ret;
}
/*
* Unknown page type encountered. Try to check whether it can turn PageLRU by
* lru_add_drain_all.
*/
void shake_page(struct page *p)
{
if (PageHuge(p))
return;
/*
* TODO: Could shrink slab caches here if a lightweight range-based
* shrinker will be available.
*/
if (PageSlab(p))
return;
lru_add_drain_all();
}
EXPORT_SYMBOL_GPL(shake_page);
static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
unsigned long address)
{
unsigned long ret = 0;
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pte_t ptent;
VM_BUG_ON_VMA(address == -EFAULT, vma);
pgd = pgd_offset(vma->vm_mm, address);
if (!pgd_present(*pgd))
return 0;
p4d = p4d_offset(pgd, address);
if (!p4d_present(*p4d))
return 0;
pud = pud_offset(p4d, address);
if (!pud_present(*pud))
return 0;
if (pud_devmap(*pud))
return PUD_SHIFT;
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
return 0;
if (pmd_devmap(*pmd))
return PMD_SHIFT;
pte = pte_offset_map(pmd, address);
if (!pte)
return 0;
ptent = ptep_get(pte);
if (pte_present(ptent) && pte_devmap(ptent))
ret = PAGE_SHIFT;
pte_unmap(pte);
return ret;
}
/*
* Failure handling: if we can't find or can't kill a process there's
* not much we can do. We just print a message and ignore otherwise.
*/
#define FSDAX_INVALID_PGOFF ULONG_MAX
/*
* Schedule a process for later kill.
* Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
*
* Note: @fsdax_pgoff is used only when @p is a fsdax page and a
* filesystem with a memory failure handler has claimed the
* memory_failure event. In all other cases, page->index and
* page->mapping are sufficient for mapping the page back to its
* corresponding user virtual address.
*/
static void __add_to_kill(struct task_struct *tsk, struct page *p,
struct vm_area_struct *vma, struct list_head *to_kill,
unsigned long ksm_addr, pgoff_t fsdax_pgoff)
{
struct to_kill *tk;
tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
if (!tk) {
pr_err("Out of memory while machine check handling\n");
return;
}
tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
if (is_zone_device_page(p)) {
if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
} else
tk->size_shift = page_shift(compound_head(p));
/*
* Send SIGKILL if "tk->addr == -EFAULT". Also, as
* "tk->size_shift" is always non-zero for !is_zone_device_page(),
* so "tk->size_shift == 0" effectively checks no mapping on
* ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
* to a process' address space, it's possible not all N VMAs
* contain mappings for the page, but at least one VMA does.
* Only deliver SIGBUS with payload derived from the VMA that
* has a mapping for the page.
*/
if (tk->addr == -EFAULT) {
pr_info("Unable to find user space address %lx in %s\n",
page_to_pfn(p), tsk->comm);
} else if (tk->size_shift == 0) {
kfree(tk);
return;
}
get_task_struct(tsk);
tk->tsk = tsk;
list_add_tail(&tk->nd, to_kill);
}
static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
struct vm_area_struct *vma,
struct list_head *to_kill)
{
__add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
}
#ifdef CONFIG_KSM
static bool task_in_to_kill_list(struct list_head *to_kill,
struct task_struct *tsk)
{
struct to_kill *tk, *next;
list_for_each_entry_safe(tk, next, to_kill, nd) {
if (tk->tsk == tsk)
return true;
}
return false;
}
void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
struct vm_area_struct *vma, struct list_head *to_kill,
unsigned long ksm_addr)
{
if (!task_in_to_kill_list(to_kill, tsk))
__add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
}
#endif
/*
* Kill the processes that have been collected earlier.
*
* Only do anything when FORCEKILL is set, otherwise just free the
* list (this is used for clean pages which do not need killing)
* Also when FAIL is set do a force kill because something went
* wrong earlier.
*/
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
unsigned long pfn, int flags)
{
struct to_kill *tk, *next;
list_for_each_entry_safe(tk, next, to_kill, nd) {
if (forcekill) {
/*
* In case something went wrong with munmapping
* make sure the process doesn't catch the
* signal and then access the memory. Just kill it.
*/
if (fail || tk->addr == -EFAULT) {
pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
pfn, tk->tsk->comm, tk->tsk->pid);
do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
tk->tsk, PIDTYPE_PID);
}
/*
* In theory the process could have mapped
* something else on the address in-between. We could
* check for that, but we need to tell the
* process anyways.
*/
else if (kill_proc(tk, pfn, flags) < 0)
pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
pfn, tk->tsk->comm, tk->tsk->pid);
}
list_del(&tk->nd);
put_task_struct(tk->tsk);
kfree(tk);
}
}
/*
* Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
* on behalf of the thread group. Return task_struct of the (first found)
* dedicated thread if found, and return NULL otherwise.
*
* We already hold rcu lock in the caller, so we don't have to call
* rcu_read_lock/unlock() in this function.
*/
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
{
struct task_struct *t;
for_each_thread(tsk, t) {
if (t->flags & PF_MCE_PROCESS) {
if (t->flags & PF_MCE_EARLY)
return t;
} else {
if (sysctl_memory_failure_early_kill)
return t;
}
}
return NULL;
}
/*
* Determine whether a given process is "early kill" process which expects
* to be signaled when some page under the process is hwpoisoned.
* Return task_struct of the dedicated thread (main thread unless explicitly
* specified) if the process is "early kill" and otherwise returns NULL.
*
* Note that the above is true for Action Optional case. For Action Required
* case, it's only meaningful to the current thread which need to be signaled
* with SIGBUS, this error is Action Optional for other non current
* processes sharing the same error page,if the process is "early kill", the
* task_struct of the dedicated thread will also be returned.
*/
struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
{
if (!tsk->mm)
return NULL;
/*
* Comparing ->mm here because current task might represent
* a subthread, while tsk always points to the main thread.
*/
if (force_early && tsk->mm == current->mm)
return current;
return find_early_kill_thread(tsk);
}
/*
* Collect processes when the error hit an anonymous page.
*/
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
int force_early)
{
struct folio *folio = page_folio(page);
struct vm_area_struct *vma;
struct task_struct *tsk;
struct anon_vma *av;
pgoff_t pgoff;
av = folio_lock_anon_vma_read(folio, NULL);
if (av == NULL) /* Not actually mapped anymore */
return;
pgoff = page_to_pgoff(page);
rcu_read_lock();
for_each_process(tsk) {
struct anon_vma_chain *vmac;
struct task_struct *t = task_early_kill(tsk, force_early);
if (!t)
continue;
anon_vma_interval_tree_foreach(vmac, &av->rb_root,
pgoff, pgoff) {
vma = vmac->vma;
if (vma->vm_mm != t->mm)
continue;
if (!page_mapped_in_vma(page, vma))
continue;
add_to_kill_anon_file(t, page, vma, to_kill);
}
}
rcu_read_unlock();
anon_vma_unlock_read(av);
}
/*
* Collect processes when the error hit a file mapped page.
*/
static void collect_procs_file(struct page *page, struct list_head *to_kill,
int force_early)
{
struct vm_area_struct *vma;
struct task_struct *tsk;
struct address_space *mapping = page->mapping;
pgoff_t pgoff;
i_mmap_lock_read(mapping);
rcu_read_lock();
pgoff = page_to_pgoff(page);
for_each_process(tsk) {
struct task_struct *t = task_early_kill(tsk, force_early);
if (!t)
continue;
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
pgoff) {
/*
* Send early kill signal to tasks where a vma covers
* the page but the corrupted page is not necessarily
* mapped in its pte.
* Assume applications who requested early kill want
* to be informed of all such data corruptions.
*/
if (vma->vm_mm == t->mm)
add_to_kill_anon_file(t, page, vma, to_kill);
}
}
rcu_read_unlock();
i_mmap_unlock_read(mapping);
}
#ifdef CONFIG_FS_DAX
static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
struct vm_area_struct *vma,
struct list_head *to_kill, pgoff_t pgoff)
{
__add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
}
/*
* Collect processes when the error hit a fsdax page.
*/
static void collect_procs_fsdax(struct page *page,
struct address_space *mapping, pgoff_t pgoff,
struct list_head *to_kill)
{
struct vm_area_struct *vma;
struct task_struct *tsk;
i_mmap_lock_read(mapping);
rcu_read_lock();
for_each_process(tsk) {
struct task_struct *t = task_early_kill(tsk, true);
if (!t)
continue;
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
if (vma->vm_mm == t->mm)
add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
}
}
rcu_read_unlock();
i_mmap_unlock_read(mapping);
}
#endif /* CONFIG_FS_DAX */
/*
* Collect the processes who have the corrupted page mapped to kill.
*/
static void collect_procs(struct page *page, struct list_head *tokill,
int force_early)
{
if (!page->mapping)
return;
if (unlikely(PageKsm(page)))
collect_procs_ksm(page, tokill, force_early);
else if (PageAnon(page))
collect_procs_anon(page, tokill, force_early);
else
collect_procs_file(page, tokill, force_early);
}
struct hwpoison_walk {
struct to_kill tk;
unsigned long pfn;
int flags;
};
static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
{
tk->addr = addr;
tk->size_shift = shift;
}
static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
unsigned long poisoned_pfn, struct to_kill *tk)
{
unsigned long pfn = 0;
if (pte_present(pte)) {
pfn = pte_pfn(pte);
} else {
swp_entry_t swp = pte_to_swp_entry(pte);
if (is_hwpoison_entry(swp))
pfn = swp_offset_pfn(swp);
}
if (!pfn || pfn != poisoned_pfn)
return 0;
set_to_kill(tk, addr, shift);
return 1;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
struct hwpoison_walk *hwp)
{
pmd_t pmd = *pmdp;
unsigned long pfn;
unsigned long hwpoison_vaddr;
if (!pmd_present(pmd))
return 0;
pfn = pmd_pfn(pmd);
if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
return 1;
}
return 0;
}
#else
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
struct hwpoison_walk *hwp)
{
return 0;
}
#endif
static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct hwpoison_walk *hwp = walk->private;
int ret = 0;
pte_t *ptep, *mapped_pte;
spinlock_t *ptl;
ptl = pmd_trans_huge_lock(pmdp, walk->vma);
if (ptl) {
ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
spin_unlock(ptl);
goto out;
}
mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
addr, &ptl);
if (!ptep)
goto out;
for (; addr != end; ptep++, addr += PAGE_SIZE) {
ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
hwp->pfn, &hwp->tk);
if (ret == 1)
break;
}
pte_unmap_unlock(mapped_pte, ptl);
out:
cond_resched();
return ret;
}
#ifdef CONFIG_HUGETLB_PAGE
static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct hwpoison_walk *hwp = walk->private;
pte_t pte = huge_ptep_get(ptep);
struct hstate *h = hstate_vma(walk->vma);
return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
hwp->pfn, &hwp->tk);
}
#else
#define hwpoison_hugetlb_range NULL
#endif
static const struct mm_walk_ops hwpoison_walk_ops = {
.pmd_entry = hwpoison_pte_range,
.hugetlb_entry = hwpoison_hugetlb_range,
.walk_lock = PGWALK_RDLOCK,
};
/*
* Sends SIGBUS to the current process with error info.
*
* This function is intended to handle "Action Required" MCEs on already
* hardware poisoned pages. They could happen, for example, when
* memory_failure() failed to unmap the error page at the first call, or
* when multiple local machine checks happened on different CPUs.
*
* MCE handler currently has no easy access to the error virtual address,
* so this function walks page table to find it. The returned virtual address
* is proper in most cases, but it could be wrong when the application
* process has multiple entries mapping the error page.
*/
static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
int flags)
{
int ret;
struct hwpoison_walk priv = {
.pfn = pfn,
};
priv.tk.tsk = p;
if (!p->mm)
return -EFAULT;
mmap_read_lock(p->mm);
ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
(void *)&priv);
if (ret == 1 && priv.tk.addr)
kill_proc(&priv.tk, pfn, flags);
else
ret = 0;
mmap_read_unlock(p->mm);
return ret > 0 ? -EHWPOISON : -EFAULT;
}
static const char *action_name[] = {
[MF_IGNORED] = "Ignored",
[MF_FAILED] = "Failed",
[MF_DELAYED] = "Delayed",
[MF_RECOVERED] = "Recovered",
};
static const char * const action_page_types[] = {
[MF_MSG_KERNEL] = "reserved kernel page",
[MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
[MF_MSG_SLAB] = "kernel slab page",
[MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
[MF_MSG_HUGE] = "huge page",
[MF_MSG_FREE_HUGE] = "free huge page",
[MF_MSG_UNMAP_FAILED] = "unmapping failed page",
[MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
[MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
[MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
[MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
[MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
[MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
[MF_MSG_DIRTY_LRU] = "dirty LRU page",
[MF_MSG_CLEAN_LRU] = "clean LRU page",
[MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
[MF_MSG_BUDDY] = "free buddy page",
[MF_MSG_DAX] = "dax page",
[MF_MSG_UNSPLIT_THP] = "unsplit thp",
[MF_MSG_UNKNOWN] = "unknown page",
};
/*
* XXX: It is possible that a page is isolated from LRU cache,
* and then kept in swap cache or failed to remove from page cache.
* The page count will stop it from being freed by unpoison.
* Stress tests should be aware of this memory leak problem.
*/
static int delete_from_lru_cache(struct folio *folio)
{
if (folio_isolate_lru(folio)) {
/*
* Clear sensible page flags, so that the buddy system won't
* complain when the folio is unpoison-and-freed.
*/
folio_clear_active(folio);
folio_clear_unevictable(folio);
/*
* Poisoned page might never drop its ref count to 0 so we have
* to uncharge it manually from its memcg.
*/
mem_cgroup_uncharge(folio);
/*
* drop the refcount elevated by folio_isolate_lru()
*/
folio_put(folio);
return 0;
}
return -EIO;
}
static int truncate_error_folio(struct folio *folio, unsigned long pfn,
struct address_space *mapping)
{
int ret = MF_FAILED;
if (mapping->a_ops->error_remove_folio) {
int err = mapping->a_ops->error_remove_folio(mapping, folio);
if (err != 0)
pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
else if (!filemap_release_folio(folio, GFP_NOIO))
pr_info("%#lx: failed to release buffers\n", pfn);
else
ret = MF_RECOVERED;
} else {
/*
* If the file system doesn't support it just invalidate
* This fails on dirty or anything with private pages
*/
if (mapping_evict_folio(mapping, folio))
ret = MF_RECOVERED;
else
pr_info("%#lx: Failed to invalidate\n", pfn);
}
return ret;
}
struct page_state {
unsigned long mask;
unsigned long res;
enum mf_action_page_type type;
/* Callback ->action() has to unlock the relevant page inside it. */
int (*action)(struct page_state *ps, struct page *p);
};
/*
* Return true if page is still referenced by others, otherwise return
* false.
*
* The extra_pins is true when one extra refcount is expected.
*/
static bool has_extra_refcount(struct page_state *ps, struct page *p,
bool extra_pins)
{
int count = page_count(p) - 1;
if (extra_pins)
count -= 1;
if (count > 0) {
pr_err("%#lx: %s still referenced by %d users\n",
page_to_pfn(p), action_page_types[ps->type], count);
return true;
}
return false;
}
/*
* Error hit kernel page.
* Do nothing, try to be lucky and not touch this instead. For a few cases we
* could be more sophisticated.
*/
static int me_kernel(struct page_state *ps, struct page *p)
{
unlock_page(p);
return MF_IGNORED;
}
/*
* Page in unknown state. Do nothing.
*/
static int me_unknown(struct page_state *ps, struct page *p)
{
pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
unlock_page(p);
return MF_FAILED;
}
/*
* Clean (or cleaned) page cache page.
*/
static int me_pagecache_clean(struct page_state *ps, struct page *p)
{
struct folio *folio = page_folio(p);
int ret;
struct address_space *mapping;
bool extra_pins;
delete_from_lru_cache(folio);
/*
* For anonymous folios the only reference left
* should be the one m_f() holds.
*/
if (folio_test_anon(folio)) {
ret = MF_RECOVERED;
goto out;
}
/*
* Now truncate the page in the page cache. This is really
* more like a "temporary hole punch"
* Don't do this for block devices when someone else
* has a reference, because it could be file system metadata
* and that's not safe to truncate.
*/
mapping = folio_mapping(folio);
if (!mapping) {
/* Folio has been torn down in the meantime */
ret = MF_FAILED;
goto out;
}
/*
* The shmem page is kept in page cache instead of truncating
* so is expected to have an extra refcount after error-handling.
*/
extra_pins = shmem_mapping(mapping);
/*
* Truncation is a bit tricky. Enable it per file system for now.
*
* Open: to take i_rwsem or not for this? Right now we don't.
*/
ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
if (has_extra_refcount(ps, p, extra_pins))
ret = MF_FAILED;
out:
folio_unlock(folio);
return ret;
}
/*
* Dirty pagecache page
* Issues: when the error hit a hole page the error is not properly
* propagated.
*/
static int me_pagecache_dirty(struct page_state *ps, struct page *p)
{
struct address_space *mapping = page_mapping(p);
SetPageError(p);
/* TBD: print more information about the file. */
if (mapping) {
/*
* IO error will be reported by write(), fsync(), etc.
* who check the mapping.
* This way the application knows that something went
* wrong with its dirty file data.
*
* There's one open issue:
*
* The EIO will be only reported on the next IO
* operation and then cleared through the IO map.
* Normally Linux has two mechanisms to pass IO error
* first through the AS_EIO flag in the address space
* and then through the PageError flag in the page.
* Since we drop pages on memory failure handling the
* only mechanism open to use is through AS_AIO.
*
* This has the disadvantage that it gets cleared on
* the first operation that returns an error, while
* the PageError bit is more sticky and only cleared
* when the page is reread or dropped. If an
* application assumes it will always get error on
* fsync, but does other operations on the fd before
* and the page is dropped between then the error
* will not be properly reported.
*
* This can already happen even without hwpoisoned
* pages: first on metadata IO errors (which only
* report through AS_EIO) or when the page is dropped
* at the wrong time.
*
* So right now we assume that the application DTRT on
* the first EIO, but we're not worse than other parts
* of the kernel.
*/
mapping_set_error(mapping, -EIO);
}
return me_pagecache_clean(ps, p);
}
/*
* Clean and dirty swap cache.
*
* Dirty swap cache page is tricky to handle. The page could live both in page
* cache and swap cache(ie. page is freshly swapped in). So it could be
* referenced concurrently by 2 types of PTEs:
* normal PTEs and swap PTEs. We try to handle them consistently by calling
* try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
* and then
* - clear dirty bit to prevent IO
* - remove from LRU
* - but keep in the swap cache, so that when we return to it on
* a later page fault, we know the application is accessing
* corrupted data and shall be killed (we installed simple
* interception code in do_swap_page to catch it).
*
* Clean swap cache pages can be directly isolated. A later page fault will
* bring in the known good data from disk.
*/
static int me_swapcache_dirty(struct page_state *ps, struct page *p)
{
struct folio *folio = page_folio(p);
int ret;
bool extra_pins = false;
folio_clear_dirty(folio);
/* Trigger EIO in shmem: */
folio_clear_uptodate(folio);
ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
folio_unlock(folio);
if (ret == MF_DELAYED)
extra_pins = true;
if (has_extra_refcount(ps, p, extra_pins))
ret = MF_FAILED;
return ret;
}
static int me_swapcache_clean(struct page_state *ps, struct page *p)
{
struct folio *folio = page_folio(p);
int ret;
delete_from_swap_cache(folio);
ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
folio_unlock(folio);
if (has_extra_refcount(ps, p, false))
ret = MF_FAILED;
return ret;
}
/*
* Huge pages. Needs work.
* Issues:
* - Error on hugepage is contained in hugepage unit (not in raw page unit.)
* To narrow down kill region to one page, we need to break up pmd.
*/
static int me_huge_page(struct page_state *ps, struct page *p)
{
struct folio *folio = page_folio(p);
int res;
struct address_space *mapping;
bool extra_pins = false;
mapping = folio_mapping(folio);
if (mapping) {
res = truncate_error_folio(folio, page_to_pfn(p), mapping);
/* The page is kept in page cache. */
extra_pins = true;
folio_unlock(folio);
} else {
folio_unlock(folio);
/*
* migration entry prevents later access on error hugepage,
* so we can free and dissolve it into buddy to save healthy
* subpages.
*/
folio_put(folio);
if (__page_handle_poison(p) >= 0) {
page_ref_inc(p);
res = MF_RECOVERED;
} else {
res = MF_FAILED;
}
}
if (has_extra_refcount(ps, p, extra_pins))
res = MF_FAILED;
return res;
}
/*
* Various page states we can handle.
*
* A page state is defined by its current page->flags bits.
* The table matches them in order and calls the right handler.
*
* This is quite tricky because we can access page at any time
* in its live cycle, so all accesses have to be extremely careful.
*
* This is not complete. More states could be added.
* For any missing state don't attempt recovery.
*/
#define dirty (1UL << PG_dirty)
#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
#define unevict (1UL << PG_unevictable)
#define mlock (1UL << PG_mlocked)
#define lru (1UL << PG_lru)
#define head (1UL << PG_head)
#define slab (1UL << PG_slab)
#define reserved (1UL << PG_reserved)
static struct page_state error_states[] = {
{ reserved, reserved, MF_MSG_KERNEL, me_kernel },
/*
* free pages are specially detected outside this table:
* PG_buddy pages only make a small fraction of all free pages.
*/
/*
* Could in theory check if slab page is free or if we can drop
* currently unused objects without touching them. But just
* treat it as standard kernel for now.
*/
{ slab, slab, MF_MSG_SLAB, me_kernel },
{ head, head, MF_MSG_HUGE, me_huge_page },
{ sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
{ sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
{ mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
{ mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
{ unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
{ unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
{ lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
{ lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
/*
* Catchall entry: must be at end.
*/
{ 0, 0, MF_MSG_UNKNOWN, me_unknown },
};
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef lru
#undef head
#undef slab
#undef reserved
static void update_per_node_mf_stats(unsigned long pfn,
enum mf_result result)
{
int nid = MAX_NUMNODES;
struct memory_failure_stats *mf_stats = NULL;
nid = pfn_to_nid(pfn);
if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
return;
}
mf_stats = &NODE_DATA(nid)->mf_stats;
switch (result) {
case MF_IGNORED:
++mf_stats->ignored;
break;
case MF_FAILED:
++mf_stats->failed;
break;
case MF_DELAYED:
++mf_stats->delayed;
break;
case MF_RECOVERED:
++mf_stats->recovered;
break;
default:
WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
break;
}
++mf_stats->total;
}
/*
* "Dirty/Clean" indication is not 100% accurate due to the possibility of
* setting PG_dirty outside page lock. See also comment above set_page_dirty().
*/
static int action_result(unsigned long pfn, enum mf_action_page_type type,
enum mf_result result)
{
trace_memory_failure_event(pfn, type, result);
num_poisoned_pages_inc(pfn);
update_per_node_mf_stats(pfn, result);
pr_err("%#lx: recovery action for %s: %s\n",
pfn, action_page_types[type], action_name[result]);
return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
}
static int page_action(struct page_state *ps, struct page *p,
unsigned long pfn)
{
int result;
/* page p should be unlocked after returning from ps->action(). */
result = ps->action(ps, p);
/* Could do more checks here if page looks ok */
/*
* Could adjust zone counters here to correct for the missing page.
*/
return action_result(pfn, ps->type, result);
}
static inline bool PageHWPoisonTakenOff(struct page *page)
{
return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
}
void SetPageHWPoisonTakenOff(struct page *page)
{
set_page_private(page, MAGIC_HWPOISON);
}
void ClearPageHWPoisonTakenOff(struct page *page)
{
if (PageHWPoison(page))
set_page_private(page, 0);
}
/*
* Return true if a page type of a given page is supported by hwpoison
* mechanism (while handling could fail), otherwise false. This function
* does not return true for hugetlb or device memory pages, so it's assumed
* to be called only in the context where we never have such pages.
*/
static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
{
/* Soft offline could migrate non-LRU movable pages */
if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
return true;
return PageLRU(page) || is_free_buddy_page(page);
}
static int __get_hwpoison_page(struct page *page, unsigned long flags)
{
struct folio *folio = page_folio(page);
int ret = 0;
bool hugetlb = false;
ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
if (hugetlb) {
/* Make sure hugetlb demotion did not happen from under us. */
if (folio == page_folio(page))
return ret;
if (ret > 0) {
folio_put(folio);
folio = page_folio(page);
}
}
/*
* This check prevents from calling folio_try_get() for any
* unsupported type of folio in order to reduce the risk of unexpected
* races caused by taking a folio refcount.
*/
if (!HWPoisonHandlable(&folio->page, flags))
return -EBUSY;
if (folio_try_get(folio)) {
if (folio == page_folio(page))
return 1;
pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
folio_put(folio);
}
return 0;
}
static int get_any_page(struct page *p, unsigned long flags)
{
int ret = 0, pass = 0;
bool count_increased = false;
if (flags & MF_COUNT_INCREASED)
count_increased = true;
try_again:
if (!count_increased) {
ret = __get_hwpoison_page(p, flags);
if (!ret) {
if (page_count(p)) {
/* We raced with an allocation, retry. */
if (pass++ < 3)
goto try_again;
ret = -EBUSY;
} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
/* We raced with put_page, retry. */
if (pass++ < 3)
goto try_again;
ret = -EIO;
}
goto out;
} else if (ret == -EBUSY) {
/*
* We raced with (possibly temporary) unhandlable
* page, retry.
*/
if (pass++ < 3) {
shake_page(p);
goto try_again;
}
ret = -EIO;
goto out;
}
}
if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
ret = 1;
} else {
/*
* A page we cannot handle. Check whether we can turn
* it into something we can handle.
*/
if (pass++ < 3) {
put_page(p);
shake_page(p);
count_increased = false;
goto try_again;
}
put_page(p);
ret = -EIO;
}
out:
if (ret == -EIO)
pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
return ret;
}
static int __get_unpoison_page(struct page *page)
{
struct folio *folio = page_folio(page);
int ret = 0;
bool hugetlb = false;
ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
if (hugetlb) {
/* Make sure hugetlb demotion did not happen from under us. */
if (folio == page_folio(page))
return ret;
if (ret > 0)
folio_put(folio);
}
/*
* PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
* but also isolated from buddy freelist, so need to identify the
* state and have to cancel both operations to unpoison.
*/
if (PageHWPoisonTakenOff(page))
return -EHWPOISON;
return get_page_unless_zero(page) ? 1 : 0;
}
/**
* get_hwpoison_page() - Get refcount for memory error handling
* @p: Raw error page (hit by memory error)
* @flags: Flags controlling behavior of error handling
*
* get_hwpoison_page() takes a page refcount of an error page to handle memory
* error on it, after checking that the error page is in a well-defined state
* (defined as a page-type we can successfully handle the memory error on it,
* such as LRU page and hugetlb page).
*
* Memory error handling could be triggered at any time on any type of page,
* so it's prone to race with typical memory management lifecycle (like
* allocation and free). So to avoid such races, get_hwpoison_page() takes
* extra care for the error page's state (as done in __get_hwpoison_page()),
* and has some retry logic in get_any_page().
*
* When called from unpoison_memory(), the caller should already ensure that
* the given page has PG_hwpoison. So it's never reused for other page
* allocations, and __get_unpoison_page() never races with them.
*
* Return: 0 on failure,
* 1 on success for in-use pages in a well-defined state,
* -EIO for pages on which we can not handle memory errors,
* -EBUSY when get_hwpoison_page() has raced with page lifecycle
* operations like allocation and free,
* -EHWPOISON when the page is hwpoisoned and taken off from buddy.
*/
static int get_hwpoison_page(struct page *p, unsigned long flags)
{
int ret;
zone_pcp_disable(page_zone(p));
if (flags & MF_UNPOISON)
ret = __get_unpoison_page(p);
else
ret = get_any_page(p, flags);
zone_pcp_enable(page_zone(p));
return ret;
}
/*
* Do all that is necessary to remove user space mappings. Unmap
* the pages and send SIGBUS to the processes if the data was dirty.
*/
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
int flags, struct page *hpage)
{
struct folio *folio = page_folio(hpage);
enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
struct address_space *mapping;
LIST_HEAD(tokill);
bool unmap_success;
int forcekill;
bool mlocked = PageMlocked(hpage);
/*
* Here we are interested only in user-mapped pages, so skip any
* other types of pages.
*/
if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p))
return true;
if (!(PageLRU(hpage) || PageHuge(p)))
return true;
/*
* This check implies we don't kill processes if their pages
* are in the swap cache early. Those are always late kills.
*/
if (!page_mapped(hpage))
return true;
if (PageSwapCache(p)) {
pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
ttu &= ~TTU_HWPOISON;
}
/*
* Propagate the dirty bit from PTEs to struct page first, because we
* need this to decide if we should kill or just drop the page.
* XXX: the dirty test could be racy: set_page_dirty() may not always
* be called inside page lock (it's recommended but not enforced).
*/
mapping = page_mapping(hpage);
if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
mapping_can_writeback(mapping)) {
if (page_mkclean(hpage)) {
SetPageDirty(hpage);
} else {
ttu &= ~TTU_HWPOISON;
pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
pfn);
}
}
/*
* First collect all the processes that have the page
* mapped in dirty form. This has to be done before try_to_unmap,
* because ttu takes the rmap data structures down.
*/
collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
if (PageHuge(hpage) && !PageAnon(hpage)) {
/*
* For hugetlb pages in shared mappings, try_to_unmap
* could potentially call huge_pmd_unshare. Because of
* this, take semaphore in write mode here and set
* TTU_RMAP_LOCKED to indicate we have taken the lock
* at this higher level.
*/
mapping = hugetlb_page_mapping_lock_write(hpage);
if (mapping) {
try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
i_mmap_unlock_write(mapping);
} else
pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
} else {
try_to_unmap(folio, ttu);
}
unmap_success = !page_mapped(hpage);
if (!unmap_success)
pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
pfn, page_mapcount(hpage));
/*
* try_to_unmap() might put mlocked page in lru cache, so call
* shake_page() again to ensure that it's flushed.
*/
if (mlocked)
shake_page(hpage);
/*
* Now that the dirty bit has been propagated to the
* struct page and all unmaps done we can decide if
* killing is needed or not. Only kill when the page
* was dirty or the process is not restartable,
* otherwise the tokill list is merely
* freed. When there was a problem unmapping earlier
* use a more force-full uncatchable kill to prevent
* any accesses to the poisoned memory.
*/
forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
!unmap_success;
kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
return unmap_success;
}
static int identify_page_state(unsigned long pfn, struct page *p,
unsigned long page_flags)
{
struct page_state *ps;
/*
* The first check uses the current page flags which may not have any
* relevant information. The second check with the saved page flags is
* carried out only if the first check can't determine the page status.
*/
for (ps = error_states;; ps++)
if ((p->flags & ps->mask) == ps->res)
break;
page_flags |= (p->flags & (1UL << PG_dirty));
if (!ps->mask)
for (ps = error_states;; ps++)
if ((page_flags & ps->mask) == ps->res)
break;
return page_action(ps, p, pfn);
}
static int try_to_split_thp_page(struct page *page)
{
int ret;
lock_page(page);
ret = split_huge_page(page);
unlock_page(page);
if (unlikely(ret))
put_page(page);
return ret;
}
static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
struct address_space *mapping, pgoff_t index, int flags)
{
struct to_kill *tk;
unsigned long size = 0;
list_for_each_entry(tk, to_kill, nd)
if (tk->size_shift)
size = max(size, 1UL << tk->size_shift);
if (size) {
/*
* Unmap the largest mapping to avoid breaking up device-dax
* mappings which are constant size. The actual size of the
* mapping being torn down is communicated in siginfo, see
* kill_proc()
*/
loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
unmap_mapping_range(mapping, start, size, 0);
}
kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
}
/*
* Only dev_pagemap pages get here, such as fsdax when the filesystem
* either do not claim or fails to claim a hwpoison event, or devdax.
* The fsdax pages are initialized per base page, and the devdax pages
* could be initialized either as base pages, or as compound pages with
* vmemmap optimization enabled. Devdax is simplistic in its dealing with
* hwpoison, such that, if a subpage of a compound page is poisoned,
* simply mark the compound head page is by far sufficient.
*/
static int mf_generic_kill_procs(unsigned long long pfn, int flags,
struct dev_pagemap *pgmap)
{
struct folio *folio = pfn_folio(pfn);
LIST_HEAD(to_kill);
dax_entry_t cookie;
int rc = 0;
/*
* Prevent the inode from being freed while we are interrogating
* the address_space, typically this would be handled by
* lock_page(), but dax pages do not use the page lock. This
* also prevents changes to the mapping of this pfn until
* poison signaling is complete.
*/
cookie = dax_lock_folio(folio);
if (!cookie)
return -EBUSY;
if (hwpoison_filter(&folio->page)) {
rc = -EOPNOTSUPP;
goto unlock;
}
switch (pgmap->type) {
case MEMORY_DEVICE_PRIVATE:
case MEMORY_DEVICE_COHERENT:
/*
* TODO: Handle device pages which may need coordination
* with device-side memory.
*/
rc = -ENXIO;
goto unlock;
default:
break;
}
/*
* Use this flag as an indication that the dax page has been
* remapped UC to prevent speculative consumption of poison.
*/
SetPageHWPoison(&folio->page);
/*
* Unlike System-RAM there is no possibility to swap in a
* different physical page at a given virtual address, so all
* userspace consumption of ZONE_DEVICE memory necessitates
* SIGBUS (i.e. MF_MUST_KILL)
*/
flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
collect_procs(&folio->page, &to_kill, true);
unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
unlock:
dax_unlock_folio(folio, cookie);
return rc;
}
#ifdef CONFIG_FS_DAX
/**
* mf_dax_kill_procs - Collect and kill processes who are using this file range
* @mapping: address_space of the file in use
* @index: start pgoff of the range within the file
* @count: length of the range, in unit of PAGE_SIZE
* @mf_flags: memory failure flags
*/
int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
unsigned long count, int mf_flags)
{
LIST_HEAD(to_kill);
dax_entry_t cookie;
struct page *page;
size_t end = index + count;
mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
for (; index < end; index++) {
page = NULL;
cookie = dax_lock_mapping_entry(mapping, index, &page);
if (!cookie)
return -EBUSY;
if (!page)
goto unlock;
SetPageHWPoison(page);
collect_procs_fsdax(page, mapping, index, &to_kill);
unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
index, mf_flags);
unlock:
dax_unlock_mapping_entry(mapping, index, cookie);
}
return 0;
}
EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
#endif /* CONFIG_FS_DAX */
#ifdef CONFIG_HUGETLB_PAGE
/*
* Struct raw_hwp_page represents information about "raw error page",
* constructing singly linked list from ->_hugetlb_hwpoison field of folio.
*/
struct raw_hwp_page {
struct llist_node node;
struct page *page;
};
static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
{
return (struct llist_head *)&folio->_hugetlb_hwpoison;
}
bool is_raw_hwpoison_page_in_hugepage(struct page *page)
{
struct llist_head *raw_hwp_head;
struct raw_hwp_page *p;
struct folio *folio = page_folio(page);
bool ret = false;
if (!folio_test_hwpoison(folio))
return false;
if (!folio_test_hugetlb(folio))
return PageHWPoison(page);
/*
* When RawHwpUnreliable is set, kernel lost track of which subpages
* are HWPOISON. So return as if ALL subpages are HWPOISONed.
*/
if (folio_test_hugetlb_raw_hwp_unreliable(folio))
return true;
mutex_lock(&mf_mutex);
raw_hwp_head = raw_hwp_list_head(folio);
llist_for_each_entry(p, raw_hwp_head->first, node) {
if (page == p->page) {
ret = true;
break;
}
}
mutex_unlock(&mf_mutex);
return ret;
}
static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
{
struct llist_node *head;
struct raw_hwp_page *p, *next;
unsigned long count = 0;
head = llist_del_all(raw_hwp_list_head(folio));
llist_for_each_entry_safe(p, next, head, node) {
if (move_flag)
SetPageHWPoison(p->page);
else
num_poisoned_pages_sub(page_to_pfn(p->page), 1);
kfree(p);
count++;
}
return count;
}
static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
{
struct llist_head *head;
struct raw_hwp_page *raw_hwp;
struct raw_hwp_page *p, *next;
int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
/*
* Once the hwpoison hugepage has lost reliable raw error info,
* there is little meaning to keep additional error info precisely,
* so skip to add additional raw error info.
*/
if (folio_test_hugetlb_raw_hwp_unreliable(folio))
return -EHWPOISON;
head = raw_hwp_list_head(folio);
llist_for_each_entry_safe(p, next, head->first, node) {
if (p->page == page)
return -EHWPOISON;
}
raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
if (raw_hwp) {
raw_hwp->page = page;
llist_add(&raw_hwp->node, head);
/* the first error event will be counted in action_result(). */
if (ret)
num_poisoned_pages_inc(page_to_pfn(page));
} else {
/*
* Failed to save raw error info. We no longer trace all
* hwpoisoned subpages, and we need refuse to free/dissolve
* this hwpoisoned hugepage.
*/
folio_set_hugetlb_raw_hwp_unreliable(folio);
/*
* Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
* used any more, so free it.
*/
__folio_free_raw_hwp(folio, false);
}
return ret;
}
static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
{
/*
* hugetlb_vmemmap_optimized hugepages can't be freed because struct
* pages for tail pages are required but they don't exist.
*/
if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
return 0;
/*
* hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
* definition.
*/
if (folio_test_hugetlb_raw_hwp_unreliable(folio))
return 0;
return __folio_free_raw_hwp(folio, move_flag);
}
void folio_clear_hugetlb_hwpoison(struct folio *folio)
{
if (folio_test_hugetlb_raw_hwp_unreliable(folio))
return;
if (folio_test_hugetlb_vmemmap_optimized(folio))
return;
folio_clear_hwpoison(folio);
folio_free_raw_hwp(folio, true);
}
/*
* Called from hugetlb code with hugetlb_lock held.
*
* Return values:
* 0 - free hugepage
* 1 - in-use hugepage
* 2 - not a hugepage
* -EBUSY - the hugepage is busy (try to retry)
* -EHWPOISON - the hugepage is already hwpoisoned
*/
int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
bool *migratable_cleared)
{
struct page *page = pfn_to_page(pfn);
struct folio *folio = page_folio(page);
int ret = 2; /* fallback to normal page handling */
bool count_increased = false;
if (!folio_test_hugetlb(folio))
goto out;
if (flags & MF_COUNT_INCREASED) {
ret = 1;
count_increased = true;
} else if (folio_test_hugetlb_freed(folio)) {
ret = 0;
} else if (folio_test_hugetlb_migratable(folio)) {
ret = folio_try_get(folio);
if (ret)
count_increased = true;
} else {
ret = -EBUSY;
if (!(flags & MF_NO_RETRY))
goto out;
}
if (folio_set_hugetlb_hwpoison(folio, page)) {
ret = -EHWPOISON;
goto out;
}
/*
* Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
* from being migrated by memory hotremove.
*/
if (count_increased && folio_test_hugetlb_migratable(folio)) {
folio_clear_hugetlb_migratable(folio);
*migratable_cleared = true;
}
return ret;
out:
if (count_increased)
folio_put(folio);
return ret;
}
/*
* Taking refcount of hugetlb pages needs extra care about race conditions
* with basic operations like hugepage allocation/free/demotion.
* So some of prechecks for hwpoison (pinning, and testing/setting
* PageHWPoison) should be done in single hugetlb_lock range.
*/
static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
{
int res;
struct page *p = pfn_to_page(pfn);
struct folio *folio;
unsigned long page_flags;
bool migratable_cleared = false;
*hugetlb = 1;
retry:
res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
if (res == 2) { /* fallback to normal page handling */
*hugetlb = 0;
return 0;
} else if (res == -EHWPOISON) {
pr_err("%#lx: already hardware poisoned\n", pfn);
if (flags & MF_ACTION_REQUIRED) {
folio = page_folio(p);
res = kill_accessing_process(current, folio_pfn(folio), flags);
}
return res;
} else if (res == -EBUSY) {
if (!(flags & MF_NO_RETRY)) {
flags |= MF_NO_RETRY;
goto retry;
}
return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
}
folio = page_folio(p);
folio_lock(folio);
if (hwpoison_filter(p)) {
folio_clear_hugetlb_hwpoison(folio);
if (migratable_cleared)
folio_set_hugetlb_migratable(folio);
folio_unlock(folio);
if (res == 1)
folio_put(folio);
return -EOPNOTSUPP;
}
/*
* Handling free hugepage. The possible race with hugepage allocation
* or demotion can be prevented by PageHWPoison flag.
*/
if (res == 0) {
folio_unlock(folio);
if (__page_handle_poison(p) >= 0) {
page_ref_inc(p);
res = MF_RECOVERED;
} else {
res = MF_FAILED;
}
return action_result(pfn, MF_MSG_FREE_HUGE, res);
}
page_flags = folio->flags;
if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
folio_unlock(folio);
return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
}
return identify_page_state(pfn, p, page_flags);
}
#else
static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
{
return 0;
}
static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
{
return 0;
}
#endif /* CONFIG_HUGETLB_PAGE */
/* Drop the extra refcount in case we come from madvise() */
static void put_ref_page(unsigned long pfn, int flags)
{
struct page *page;
if (!(flags & MF_COUNT_INCREASED))
return;
page = pfn_to_page(pfn);
if (page)
put_page(page);
}
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
struct dev_pagemap *pgmap)
{
int rc = -ENXIO;
/* device metadata space is not recoverable */
if (!pgmap_pfn_valid(pgmap, pfn))
goto out;
/*
* Call driver's implementation to handle the memory failure, otherwise
* fall back to generic handler.
*/
if (pgmap_has_memory_failure(pgmap)) {
rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
/*
* Fall back to generic handler too if operation is not
* supported inside the driver/device/filesystem.
*/
if (rc != -EOPNOTSUPP)
goto out;
}
rc = mf_generic_kill_procs(pfn, flags, pgmap);
out:
/* drop pgmap ref acquired in caller */
put_dev_pagemap(pgmap);
if (rc != -EOPNOTSUPP)
action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
return rc;
}
/**
* memory_failure - Handle memory failure of a page.
* @pfn: Page Number of the corrupted page
* @flags: fine tune action taken
*
* This function is called by the low level machine check code
* of an architecture when it detects hardware memory corruption
* of a page. It tries its best to recover, which includes
* dropping pages, killing processes etc.
*
* The function is primarily of use for corruptions that
* happen outside the current execution context (e.g. when
* detected by a background scrubber)
*
* Must run in process context (e.g. a work queue) with interrupts
* enabled and no spinlocks held.
*
* Return: 0 for successfully handled the memory error,
* -EOPNOTSUPP for hwpoison_filter() filtered the error event,
* < 0(except -EOPNOTSUPP) on failure.
*/
int memory_failure(unsigned long pfn, int flags)
{
struct page *p;
struct page *hpage;
struct dev_pagemap *pgmap;
int res = 0;
unsigned long page_flags;
bool retry = true;
int hugetlb = 0;
if (!sysctl_memory_failure_recovery)
panic("Memory failure on page %lx", pfn);
mutex_lock(&mf_mutex);
if (!(flags & MF_SW_SIMULATED))
hw_memory_failure = true;
p = pfn_to_online_page(pfn);
if (!p) {
res = arch_memory_failure(pfn, flags);
if (res == 0)
goto unlock_mutex;
if (pfn_valid(pfn)) {
pgmap = get_dev_pagemap(pfn, NULL);
put_ref_page(pfn, flags);
if (pgmap) {
res = memory_failure_dev_pagemap(pfn, flags,
pgmap);
goto unlock_mutex;
}
}
pr_err("%#lx: memory outside kernel control\n", pfn);
res = -ENXIO;
goto unlock_mutex;
}
try_again:
res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
if (hugetlb)
goto unlock_mutex;
if (TestSetPageHWPoison(p)) {
pr_err("%#lx: already hardware poisoned\n", pfn);
res = -EHWPOISON;
if (flags & MF_ACTION_REQUIRED)
res = kill_accessing_process(current, pfn, flags);
if (flags & MF_COUNT_INCREASED)
put_page(p);
goto unlock_mutex;
}
/*
* We need/can do nothing about count=0 pages.
* 1) it's a free page, and therefore in safe hand:
* check_new_page() will be the gate keeper.
* 2) it's part of a non-compound high order page.
* Implies some kernel user: cannot stop them from
* R/W the page; let's pray that the page has been
* used and will be freed some time later.
* In fact it's dangerous to directly bump up page count from 0,
* that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
*/
if (!(flags & MF_COUNT_INCREASED)) {
res = get_hwpoison_page(p, flags);
if (!res) {
if (is_free_buddy_page(p)) {
if (take_page_off_buddy(p)) {
page_ref_inc(p);
res = MF_RECOVERED;
} else {
/* We lost the race, try again */
if (retry) {
ClearPageHWPoison(p);
retry = false;
goto try_again;
}
res = MF_FAILED;
}
res = action_result(pfn, MF_MSG_BUDDY, res);
} else {
res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
}
goto unlock_mutex;
} else if (res < 0) {
res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
goto unlock_mutex;
}
}
hpage = compound_head(p);
if (PageTransHuge(hpage)) {
/*
* The flag must be set after the refcount is bumped
* otherwise it may race with THP split.
* And the flag can't be set in get_hwpoison_page() since
* it is called by soft offline too and it is just called
* for !MF_COUNT_INCREASED. So here seems to be the best
* place.
*
* Don't need care about the above error handling paths for
* get_hwpoison_page() since they handle either free page
* or unhandlable page. The refcount is bumped iff the
* page is a valid handlable page.
*/
SetPageHasHWPoisoned(hpage);
if (try_to_split_thp_page(p) < 0) {
res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
goto unlock_mutex;
}
VM_BUG_ON_PAGE(!page_count(p), p);
}
/*
* We ignore non-LRU pages for good reasons.
* - PG_locked is only well defined for LRU pages and a few others
* - to avoid races with __SetPageLocked()
* - to avoid races with __SetPageSlab*() (and more non-atomic ops)
* The check (unnecessarily) ignores LRU pages being isolated and
* walked by the page reclaim code, however that's not a big loss.
*/
shake_page(p);
lock_page(p);
/*
* We're only intended to deal with the non-Compound page here.
* However, the page could have changed compound pages due to
* race window. If this happens, we could try again to hopefully
* handle the page next round.
*/
if (PageCompound(p)) {
if (retry) {
ClearPageHWPoison(p);
unlock_page(p);
put_page(p);
flags &= ~MF_COUNT_INCREASED;
retry = false;
goto try_again;
}
res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
goto unlock_page;
}
/*
* We use page flags to determine what action should be taken, but
* the flags can be modified by the error containment action. One
* example is an mlocked page, where PG_mlocked is cleared by
* page_remove_rmap() in try_to_unmap_one(). So to determine page status
* correctly, we save a copy of the page flags at this time.
*/
page_flags = p->flags;
if (hwpoison_filter(p)) {
ClearPageHWPoison(p);
unlock_page(p);
put_page(p);
res = -EOPNOTSUPP;
goto unlock_mutex;
}
/*
* __munlock_folio() may clear a writeback page's LRU flag without
* page_lock. We need wait writeback completion for this page or it
* may trigger vfs BUG while evict inode.
*/
if (!PageLRU(p) && !PageWriteback(p))
goto identify_page_state;
/*
* It's very difficult to mess with pages currently under IO
* and in many cases impossible, so we just avoid it here.
*/
wait_on_page_writeback(p);
/*
* Now take care of user space mappings.
* Abort on fail: __filemap_remove_folio() assumes unmapped page.
*/
if (!hwpoison_user_mappings(p, pfn, flags, p)) {
res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
goto unlock_page;
}
/*
* Torn down by someone else?
*/
if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
goto unlock_page;
}
identify_page_state:
res = identify_page_state(pfn, p, page_flags);
mutex_unlock(&mf_mutex);
return res;
unlock_page:
unlock_page(p);
unlock_mutex:
mutex_unlock(&mf_mutex);
return res;
}
EXPORT_SYMBOL_GPL(memory_failure);
#define MEMORY_FAILURE_FIFO_ORDER 4
#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
struct memory_failure_entry {
unsigned long pfn;
int flags;
};
struct memory_failure_cpu {
DECLARE_KFIFO(fifo, struct memory_failure_entry,
MEMORY_FAILURE_FIFO_SIZE);
spinlock_t lock;
struct work_struct work;
};
static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
/**
* memory_failure_queue - Schedule handling memory failure of a page.
* @pfn: Page Number of the corrupted page
* @flags: Flags for memory failure handling
*
* This function is called by the low level hardware error handler
* when it detects hardware memory corruption of a page. It schedules
* the recovering of error page, including dropping pages, killing
* processes etc.
*
* The function is primarily of use for corruptions that
* happen outside the current execution context (e.g. when
* detected by a background scrubber)
*
* Can run in IRQ context.
*/
void memory_failure_queue(unsigned long pfn, int flags)
{
struct memory_failure_cpu *mf_cpu;
unsigned long proc_flags;
struct memory_failure_entry entry = {
.pfn = pfn,
.flags = flags,
};
mf_cpu = &get_cpu_var(memory_failure_cpu);
spin_lock_irqsave(&mf_cpu->lock, proc_flags);
if (kfifo_put(&mf_cpu->fifo, entry))
schedule_work_on(smp_processor_id(), &mf_cpu->work);
else
pr_err("buffer overflow when queuing memory failure at %#lx\n",
pfn);
spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);
static void memory_failure_work_func(struct work_struct *work)
{
struct memory_failure_cpu *mf_cpu;
struct memory_failure_entry entry = { 0, };
unsigned long proc_flags;
int gotten;
mf_cpu = container_of(work, struct memory_failure_cpu, work);
for (;;) {
spin_lock_irqsave(&mf_cpu->lock, proc_flags);
gotten = kfifo_get(&mf_cpu->fifo, &entry);
spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
if (!gotten)
break;
if (entry.flags & MF_SOFT_OFFLINE)
soft_offline_page(entry.pfn, entry.flags);
else
memory_failure(entry.pfn, entry.flags);
}
}
/*
* Process memory_failure work queued on the specified CPU.
* Used to avoid return-to-userspace racing with the memory_failure workqueue.
*/
void memory_failure_queue_kick(int cpu)
{
struct memory_failure_cpu *mf_cpu;
mf_cpu = &per_cpu(memory_failure_cpu, cpu);
cancel_work_sync(&mf_cpu->work);
memory_failure_work_func(&mf_cpu->work);
}
static int __init memory_failure_init(void)
{
struct memory_failure_cpu *mf_cpu;
int cpu;
for_each_possible_cpu(cpu) {
mf_cpu = &per_cpu(memory_failure_cpu, cpu);
spin_lock_init(&mf_cpu->lock);
INIT_KFIFO(mf_cpu->fifo);
INIT_WORK(&mf_cpu->work, memory_failure_work_func);
}
register_sysctl_init("vm", memory_failure_table);
return 0;
}
core_initcall(memory_failure_init);
#undef pr_fmt
#define pr_fmt(fmt) "" fmt
#define unpoison_pr_info(fmt, pfn, rs) \
({ \
if (__ratelimit(rs)) \
pr_info(fmt, pfn); \
})
/**
* unpoison_memory - Unpoison a previously poisoned page
* @pfn: Page number of the to be unpoisoned page
*
* Software-unpoison a page that has been poisoned by
* memory_failure() earlier.
*
* This is only done on the software-level, so it only works
* for linux injected failures, not real hardware failures
*
* Returns 0 for success, otherwise -errno.
*/
int unpoison_memory(unsigned long pfn)
{
struct folio *folio;
struct page *p;
int ret = -EBUSY, ghp;
unsigned long count = 1;
bool huge = false;
static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
if (!pfn_valid(pfn))
return -ENXIO;
p = pfn_to_page(pfn);
folio = page_folio(p);
mutex_lock(&mf_mutex);
if (hw_memory_failure) {
unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
pfn, &unpoison_rs);
ret = -EOPNOTSUPP;
goto unlock_mutex;
}
if (!PageHWPoison(p)) {
unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
pfn, &unpoison_rs);
goto unlock_mutex;
}
if (folio_ref_count(folio) > 1) {
unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
pfn, &unpoison_rs);
goto unlock_mutex;
}
if (folio_test_slab(folio) || PageTable(&folio->page) ||
folio_test_reserved(folio) || PageOffline(&folio->page))
goto unlock_mutex;
/*
* Note that folio->_mapcount is overloaded in SLAB, so the simple test
* in folio_mapped() has to be done after folio_test_slab() is checked.
*/
if (folio_mapped(folio)) {
unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
pfn, &unpoison_rs);
goto unlock_mutex;
}
if (folio_mapping(folio)) {
unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
pfn, &unpoison_rs);
goto unlock_mutex;
}
ghp = get_hwpoison_page(p, MF_UNPOISON);
if (!ghp) {
if (PageHuge(p)) {
huge = true;
count = folio_free_raw_hwp(folio, false);
if (count == 0)
goto unlock_mutex;
}
ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
} else if (ghp < 0) {
if (ghp == -EHWPOISON) {
ret = put_page_back_buddy(p) ? 0 : -EBUSY;
} else {
ret = ghp;
unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
pfn, &unpoison_rs);
}
} else {
if (PageHuge(p)) {
huge = true;
count = folio_free_raw_hwp(folio, false);
if (count == 0) {
folio_put(folio);
goto unlock_mutex;
}
}
folio_put(folio);
if (TestClearPageHWPoison(p)) {
folio_put(folio);
ret = 0;
}
}
unlock_mutex:
mutex_unlock(&mf_mutex);
if (!ret) {
if (!huge)
num_poisoned_pages_sub(pfn, 1);
unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
page_to_pfn(p), &unpoison_rs);
}
return ret;
}
EXPORT_SYMBOL(unpoison_memory);
static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist)
{
bool isolated = false;
if (folio_test_hugetlb(folio)) {
isolated = isolate_hugetlb(folio, pagelist);
} else {
bool lru = !__folio_test_movable(folio);
if (lru)
isolated = folio_isolate_lru(folio);
else
isolated = isolate_movable_page(&folio->page,
ISOLATE_UNEVICTABLE);
if (isolated) {
list_add(&folio->lru, pagelist);
if (lru)
node_stat_add_folio(folio, NR_ISOLATED_ANON +
folio_is_file_lru(folio));
}
}
/*
* If we succeed to isolate the folio, we grabbed another refcount on
* the folio, so we can safely drop the one we got from get_any_page().
* If we failed to isolate the folio, it means that we cannot go further
* and we will return an error, so drop the reference we got from
* get_any_page() as well.
*/
folio_put(folio);
return isolated;
}
/*
* soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
* If the page is a non-dirty unmapped page-cache page, it simply invalidates.
* If the page is mapped, it migrates the contents over.
*/
static int soft_offline_in_use_page(struct page *page)
{
long ret = 0;
unsigned long pfn = page_to_pfn(page);
struct folio *folio = page_folio(page);
char const *msg_page[] = {"page", "hugepage"};
bool huge = folio_test_hugetlb(folio);
LIST_HEAD(pagelist);
struct migration_target_control mtc = {
.nid = NUMA_NO_NODE,
.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
};
if (!huge && folio_test_large(folio)) {
if (try_to_split_thp_page(page)) {
pr_info("soft offline: %#lx: thp split failed\n", pfn);
return -EBUSY;
}
folio = page_folio(page);
}
folio_lock(folio);
if (!huge)
folio_wait_writeback(folio);
if (PageHWPoison(page)) {
folio_unlock(folio);
folio_put(folio);
pr_info("soft offline: %#lx page already poisoned\n", pfn);
return 0;
}
if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
/*
* Try to invalidate first. This should work for
* non dirty unmapped page cache pages.
*/
ret = mapping_evict_folio(folio_mapping(folio), folio);
folio_unlock(folio);
if (ret) {
pr_info("soft_offline: %#lx: invalidated\n", pfn);
page_handle_poison(page, false, true);
return 0;
}
if (mf_isolate_folio(folio, &pagelist)) {
ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
if (!ret) {
bool release = !huge;
if (!page_handle_poison(page, huge, release))
ret = -EBUSY;
} else {
if (!list_empty(&pagelist))
putback_movable_pages(&pagelist);
pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
pfn, msg_page[huge], ret, &page->flags);
if (ret > 0)
ret = -EBUSY;
}
} else {
pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
pfn, msg_page[huge], page_count(page), &page->flags);
ret = -EBUSY;
}
return ret;
}
/**
* soft_offline_page - Soft offline a page.
* @pfn: pfn to soft-offline
* @flags: flags. Same as memory_failure().
*
* Returns 0 on success
* -EOPNOTSUPP for hwpoison_filter() filtered the error event
* < 0 otherwise negated errno.
*
* Soft offline a page, by migration or invalidation,
* without killing anything. This is for the case when
* a page is not corrupted yet (so it's still valid to access),
* but has had a number of corrected errors and is better taken
* out.
*
* The actual policy on when to do that is maintained by
* user space.
*
* This should never impact any application or cause data loss,
* however it might take some time.
*
* This is not a 100% solution for all memory, but tries to be
* ``good enough'' for the majority of memory.
*/
int soft_offline_page(unsigned long pfn, int flags)
{
int ret;
bool try_again = true;
struct page *page;
if (!pfn_valid(pfn)) {
WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
return -ENXIO;
}
/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
page = pfn_to_online_page(pfn);
if (!page) {
put_ref_page(pfn, flags);
return -EIO;
}
mutex_lock(&mf_mutex);
if (PageHWPoison(page)) {
pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
put_ref_page(pfn, flags);
mutex_unlock(&mf_mutex);
return 0;
}
retry:
get_online_mems();
ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
put_online_mems();
if (hwpoison_filter(page)) {
if (ret > 0)
put_page(page);
mutex_unlock(&mf_mutex);
return -EOPNOTSUPP;
}
if (ret > 0) {
ret = soft_offline_in_use_page(page);
} else if (ret == 0) {
if (!page_handle_poison(page, true, false)) {
if (try_again) {
try_again = false;
flags &= ~MF_COUNT_INCREASED;
goto retry;
}
ret = -EBUSY;
}
}
mutex_unlock(&mf_mutex);
return ret;
}