mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 22:21:40 +00:00
9c06002682
For the sake of integrity, include headers we are direct user of. Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Link: https://lore.kernel.org/r/20220713172235.22611-4-andriy.shevchenko@linux.intel.com Signed-off-by: Vinod Koul <vkoul@kernel.org>
513 lines
13 KiB
C
513 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Core driver for the High Speed UART DMA
|
|
*
|
|
* Copyright (C) 2015 Intel Corporation
|
|
* Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
|
|
*
|
|
* Partially based on the bits found in drivers/tty/serial/mfd.c.
|
|
*/
|
|
|
|
/*
|
|
* DMA channel allocation:
|
|
* 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA
|
|
* Write (UART RX).
|
|
* 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to
|
|
* port 3, and so on.
|
|
*/
|
|
|
|
#include <linux/bits.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/percpu-defs.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#include "hsu.h"
|
|
|
|
#define HSU_DMA_BUSWIDTHS \
|
|
BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_16_BYTES)
|
|
|
|
static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc)
|
|
{
|
|
hsu_chan_writel(hsuc, HSU_CH_CR, 0);
|
|
}
|
|
|
|
static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc)
|
|
{
|
|
u32 cr = HSU_CH_CR_CHA;
|
|
|
|
if (hsuc->direction == DMA_MEM_TO_DEV)
|
|
cr &= ~HSU_CH_CR_CHD;
|
|
else if (hsuc->direction == DMA_DEV_TO_MEM)
|
|
cr |= HSU_CH_CR_CHD;
|
|
|
|
hsu_chan_writel(hsuc, HSU_CH_CR, cr);
|
|
}
|
|
|
|
static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc)
|
|
{
|
|
struct dma_slave_config *config = &hsuc->config;
|
|
struct hsu_dma_desc *desc = hsuc->desc;
|
|
u32 bsr = 0, mtsr = 0; /* to shut the compiler up */
|
|
u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI;
|
|
unsigned int i, count;
|
|
|
|
if (hsuc->direction == DMA_MEM_TO_DEV) {
|
|
bsr = config->dst_maxburst;
|
|
mtsr = config->dst_addr_width;
|
|
} else if (hsuc->direction == DMA_DEV_TO_MEM) {
|
|
bsr = config->src_maxburst;
|
|
mtsr = config->src_addr_width;
|
|
}
|
|
|
|
hsu_chan_disable(hsuc);
|
|
|
|
hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
|
|
hsu_chan_writel(hsuc, HSU_CH_BSR, bsr);
|
|
hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr);
|
|
|
|
/* Set descriptors */
|
|
count = desc->nents - desc->active;
|
|
for (i = 0; i < count && i < HSU_DMA_CHAN_NR_DESC; i++) {
|
|
hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr);
|
|
hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len);
|
|
|
|
/* Prepare value for DCR */
|
|
dcr |= HSU_CH_DCR_DESCA(i);
|
|
dcr |= HSU_CH_DCR_CHTOI(i); /* timeout bit, see HSU Errata 1 */
|
|
|
|
desc->active++;
|
|
}
|
|
/* Only for the last descriptor in the chain */
|
|
dcr |= HSU_CH_DCR_CHSOD(count - 1);
|
|
dcr |= HSU_CH_DCR_CHDI(count - 1);
|
|
|
|
hsu_chan_writel(hsuc, HSU_CH_DCR, dcr);
|
|
|
|
hsu_chan_enable(hsuc);
|
|
}
|
|
|
|
static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc)
|
|
{
|
|
hsu_chan_disable(hsuc);
|
|
hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
|
|
}
|
|
|
|
static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc)
|
|
{
|
|
hsu_dma_chan_start(hsuc);
|
|
}
|
|
|
|
static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc)
|
|
{
|
|
struct virt_dma_desc *vdesc;
|
|
|
|
/* Get the next descriptor */
|
|
vdesc = vchan_next_desc(&hsuc->vchan);
|
|
if (!vdesc) {
|
|
hsuc->desc = NULL;
|
|
return;
|
|
}
|
|
|
|
list_del(&vdesc->node);
|
|
hsuc->desc = to_hsu_dma_desc(vdesc);
|
|
|
|
/* Start the channel with a new descriptor */
|
|
hsu_dma_start_channel(hsuc);
|
|
}
|
|
|
|
/*
|
|
* hsu_dma_get_status() - get DMA channel status
|
|
* @chip: HSUART DMA chip
|
|
* @nr: DMA channel number
|
|
* @status: pointer for DMA Channel Status Register value
|
|
*
|
|
* Description:
|
|
* The function reads and clears the DMA Channel Status Register, checks
|
|
* if it was a timeout interrupt and returns a corresponding value.
|
|
*
|
|
* Caller should provide a valid pointer for the DMA Channel Status
|
|
* Register value that will be returned in @status.
|
|
*
|
|
* Return:
|
|
* 1 for DMA timeout status, 0 for other DMA status, or error code for
|
|
* invalid parameters or no interrupt pending.
|
|
*/
|
|
int hsu_dma_get_status(struct hsu_dma_chip *chip, unsigned short nr,
|
|
u32 *status)
|
|
{
|
|
struct hsu_dma_chan *hsuc;
|
|
unsigned long flags;
|
|
u32 sr;
|
|
|
|
/* Sanity check */
|
|
if (nr >= chip->hsu->nr_channels)
|
|
return -EINVAL;
|
|
|
|
hsuc = &chip->hsu->chan[nr];
|
|
|
|
/*
|
|
* No matter what situation, need read clear the IRQ status
|
|
* There is a bug, see Errata 5, HSD 2900918
|
|
*/
|
|
spin_lock_irqsave(&hsuc->vchan.lock, flags);
|
|
sr = hsu_chan_readl(hsuc, HSU_CH_SR);
|
|
spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
|
|
|
|
/* Check if any interrupt is pending */
|
|
sr &= ~(HSU_CH_SR_DESCE_ANY | HSU_CH_SR_CDESC_ANY);
|
|
if (!sr)
|
|
return -EIO;
|
|
|
|
/* Timeout IRQ, need wait some time, see Errata 2 */
|
|
if (sr & HSU_CH_SR_DESCTO_ANY)
|
|
udelay(2);
|
|
|
|
/*
|
|
* At this point, at least one of Descriptor Time Out, Channel Error
|
|
* or Descriptor Done bits must be set. Clear the Descriptor Time Out
|
|
* bits and if sr is still non-zero, it must be channel error or
|
|
* descriptor done which are higher priority than timeout and handled
|
|
* in hsu_dma_do_irq(). Else, it must be a timeout.
|
|
*/
|
|
sr &= ~HSU_CH_SR_DESCTO_ANY;
|
|
|
|
*status = sr;
|
|
|
|
return sr ? 0 : 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hsu_dma_get_status);
|
|
|
|
/*
|
|
* hsu_dma_do_irq() - DMA interrupt handler
|
|
* @chip: HSUART DMA chip
|
|
* @nr: DMA channel number
|
|
* @status: Channel Status Register value
|
|
*
|
|
* Description:
|
|
* This function handles Channel Error and Descriptor Done interrupts.
|
|
* This function should be called after determining that the DMA interrupt
|
|
* is not a normal timeout interrupt, ie. hsu_dma_get_status() returned 0.
|
|
*
|
|
* Return:
|
|
* 0 for invalid channel number, 1 otherwise.
|
|
*/
|
|
int hsu_dma_do_irq(struct hsu_dma_chip *chip, unsigned short nr, u32 status)
|
|
{
|
|
struct dma_chan_percpu *stat;
|
|
struct hsu_dma_chan *hsuc;
|
|
struct hsu_dma_desc *desc;
|
|
unsigned long flags;
|
|
|
|
/* Sanity check */
|
|
if (nr >= chip->hsu->nr_channels)
|
|
return 0;
|
|
|
|
hsuc = &chip->hsu->chan[nr];
|
|
stat = this_cpu_ptr(hsuc->vchan.chan.local);
|
|
|
|
spin_lock_irqsave(&hsuc->vchan.lock, flags);
|
|
desc = hsuc->desc;
|
|
if (desc) {
|
|
if (status & HSU_CH_SR_CHE) {
|
|
desc->status = DMA_ERROR;
|
|
} else if (desc->active < desc->nents) {
|
|
hsu_dma_start_channel(hsuc);
|
|
} else {
|
|
vchan_cookie_complete(&desc->vdesc);
|
|
desc->status = DMA_COMPLETE;
|
|
stat->bytes_transferred += desc->length;
|
|
hsu_dma_start_transfer(hsuc);
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hsu_dma_do_irq);
|
|
|
|
static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents)
|
|
{
|
|
struct hsu_dma_desc *desc;
|
|
|
|
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT);
|
|
if (!desc->sg) {
|
|
kfree(desc);
|
|
return NULL;
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
|
|
static void hsu_dma_desc_free(struct virt_dma_desc *vdesc)
|
|
{
|
|
struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc);
|
|
|
|
kfree(desc->sg);
|
|
kfree(desc);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg(
|
|
struct dma_chan *chan, struct scatterlist *sgl,
|
|
unsigned int sg_len, enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
|
|
struct hsu_dma_desc *desc;
|
|
struct scatterlist *sg;
|
|
unsigned int i;
|
|
|
|
desc = hsu_dma_alloc_desc(sg_len);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
desc->sg[i].addr = sg_dma_address(sg);
|
|
desc->sg[i].len = sg_dma_len(sg);
|
|
|
|
desc->length += sg_dma_len(sg);
|
|
}
|
|
|
|
desc->nents = sg_len;
|
|
desc->direction = direction;
|
|
/* desc->active = 0 by kzalloc */
|
|
desc->status = DMA_IN_PROGRESS;
|
|
|
|
return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags);
|
|
}
|
|
|
|
static void hsu_dma_issue_pending(struct dma_chan *chan)
|
|
{
|
|
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&hsuc->vchan.lock, flags);
|
|
if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc)
|
|
hsu_dma_start_transfer(hsuc);
|
|
spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
|
|
}
|
|
|
|
static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc)
|
|
{
|
|
struct hsu_dma_desc *desc = hsuc->desc;
|
|
size_t bytes = 0;
|
|
int i;
|
|
|
|
for (i = desc->active; i < desc->nents; i++)
|
|
bytes += desc->sg[i].len;
|
|
|
|
i = HSU_DMA_CHAN_NR_DESC - 1;
|
|
do {
|
|
bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i));
|
|
} while (--i >= 0);
|
|
|
|
return bytes;
|
|
}
|
|
|
|
static enum dma_status hsu_dma_tx_status(struct dma_chan *chan,
|
|
dma_cookie_t cookie, struct dma_tx_state *state)
|
|
{
|
|
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
|
|
struct virt_dma_desc *vdesc;
|
|
enum dma_status status;
|
|
size_t bytes;
|
|
unsigned long flags;
|
|
|
|
status = dma_cookie_status(chan, cookie, state);
|
|
if (status == DMA_COMPLETE)
|
|
return status;
|
|
|
|
spin_lock_irqsave(&hsuc->vchan.lock, flags);
|
|
vdesc = vchan_find_desc(&hsuc->vchan, cookie);
|
|
if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) {
|
|
bytes = hsu_dma_active_desc_size(hsuc);
|
|
dma_set_residue(state, bytes);
|
|
status = hsuc->desc->status;
|
|
} else if (vdesc) {
|
|
bytes = to_hsu_dma_desc(vdesc)->length;
|
|
dma_set_residue(state, bytes);
|
|
}
|
|
spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int hsu_dma_slave_config(struct dma_chan *chan,
|
|
struct dma_slave_config *config)
|
|
{
|
|
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
|
|
|
|
memcpy(&hsuc->config, config, sizeof(hsuc->config));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hsu_dma_pause(struct dma_chan *chan)
|
|
{
|
|
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&hsuc->vchan.lock, flags);
|
|
if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) {
|
|
hsu_chan_disable(hsuc);
|
|
hsuc->desc->status = DMA_PAUSED;
|
|
}
|
|
spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hsu_dma_resume(struct dma_chan *chan)
|
|
{
|
|
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&hsuc->vchan.lock, flags);
|
|
if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) {
|
|
hsuc->desc->status = DMA_IN_PROGRESS;
|
|
hsu_chan_enable(hsuc);
|
|
}
|
|
spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hsu_dma_terminate_all(struct dma_chan *chan)
|
|
{
|
|
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
|
|
unsigned long flags;
|
|
LIST_HEAD(head);
|
|
|
|
spin_lock_irqsave(&hsuc->vchan.lock, flags);
|
|
|
|
hsu_dma_stop_channel(hsuc);
|
|
if (hsuc->desc) {
|
|
hsu_dma_desc_free(&hsuc->desc->vdesc);
|
|
hsuc->desc = NULL;
|
|
}
|
|
|
|
vchan_get_all_descriptors(&hsuc->vchan, &head);
|
|
spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
|
|
vchan_dma_desc_free_list(&hsuc->vchan, &head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void hsu_dma_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
vchan_free_chan_resources(to_virt_chan(chan));
|
|
}
|
|
|
|
static void hsu_dma_synchronize(struct dma_chan *chan)
|
|
{
|
|
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
|
|
|
|
vchan_synchronize(&hsuc->vchan);
|
|
}
|
|
|
|
int hsu_dma_probe(struct hsu_dma_chip *chip)
|
|
{
|
|
struct hsu_dma *hsu;
|
|
void __iomem *addr = chip->regs + chip->offset;
|
|
unsigned short i;
|
|
int ret;
|
|
|
|
hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL);
|
|
if (!hsu)
|
|
return -ENOMEM;
|
|
|
|
chip->hsu = hsu;
|
|
|
|
/* Calculate nr_channels from the IO space length */
|
|
hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH;
|
|
|
|
hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels,
|
|
sizeof(*hsu->chan), GFP_KERNEL);
|
|
if (!hsu->chan)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&hsu->dma.channels);
|
|
for (i = 0; i < hsu->nr_channels; i++) {
|
|
struct hsu_dma_chan *hsuc = &hsu->chan[i];
|
|
|
|
hsuc->vchan.desc_free = hsu_dma_desc_free;
|
|
vchan_init(&hsuc->vchan, &hsu->dma);
|
|
|
|
hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
|
|
hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH;
|
|
}
|
|
|
|
dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask);
|
|
dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask);
|
|
|
|
hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources;
|
|
|
|
hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg;
|
|
|
|
hsu->dma.device_issue_pending = hsu_dma_issue_pending;
|
|
hsu->dma.device_tx_status = hsu_dma_tx_status;
|
|
|
|
hsu->dma.device_config = hsu_dma_slave_config;
|
|
hsu->dma.device_pause = hsu_dma_pause;
|
|
hsu->dma.device_resume = hsu_dma_resume;
|
|
hsu->dma.device_terminate_all = hsu_dma_terminate_all;
|
|
hsu->dma.device_synchronize = hsu_dma_synchronize;
|
|
|
|
hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS;
|
|
hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS;
|
|
hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
|
|
hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
|
|
|
|
hsu->dma.dev = chip->dev;
|
|
|
|
dma_set_max_seg_size(hsu->dma.dev, HSU_CH_DxTSR_MASK);
|
|
|
|
ret = dma_async_device_register(&hsu->dma);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hsu_dma_probe);
|
|
|
|
int hsu_dma_remove(struct hsu_dma_chip *chip)
|
|
{
|
|
struct hsu_dma *hsu = chip->hsu;
|
|
unsigned short i;
|
|
|
|
dma_async_device_unregister(&hsu->dma);
|
|
|
|
for (i = 0; i < hsu->nr_channels; i++) {
|
|
struct hsu_dma_chan *hsuc = &hsu->chan[i];
|
|
|
|
tasklet_kill(&hsuc->vchan.task);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hsu_dma_remove);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("High Speed UART DMA core driver");
|
|
MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");
|