linux/fs/fscache/stats.c
David Howells 7f3283aba3 fscache: Implement cookie registration
Add functions to the fscache API to allow data file cookies to be acquired
and relinquished by the network filesystem.  It is intended that the
filesystem will create such cookies per-inode under a volume.

To request a cookie, the filesystem should call:

	struct fscache_cookie *
	fscache_acquire_cookie(struct fscache_volume *volume,
			       u8 advice,
			       const void *index_key,
			       size_t index_key_len,
			       const void *aux_data,
			       size_t aux_data_len,
			       loff_t object_size)


The filesystem must first have created a volume cookie, which is passed in
here.  If it passes in NULL then the function will just return a NULL
cookie.

A binary key should be passed in index_key and is of size index_key_len.
This is saved in the cookie and is used to locate the associated data in
the cache.

A coherency data buffer of size aux_data_len will be allocated and
initialised from the buffer pointed to by aux_data.  This is used to
validate cache objects when they're opened and is stored on disk with them
when they're committed.  The data is stored in the cookie and will be
updateable by various functions in later patches.

The object_size must also be given.  This is also used to perform a
coherency check and to size the backing storage appropriately.

This function disallows a cookie from being acquired twice in parallel,
though it will cause the second user to wait if the first is busy
relinquishing its cookie.


When a network filesystem has finished with a cookie, it should call:

	void
	fscache_relinquish_cookie(struct fscache_volume *volume,
				  bool retire)

If retire is true, any backing data will be discarded immediately.

Changes
=======
ver #3:
 - fscache_hash()'s size parameter is now in bytes.  Use __le32 as the unit
   to round up to.
 - When comparing cookies, simply see if the attributes are the same rather
   than subtracting them to produce a strcmp-style return[1].
 - Add a check to see if the cookie is still hashed at the point of
   freeing.

ver #2:
 - Don't hold n_accesses elevated whilst cache is bound to a cookie, but
   rather add a flag that prevents the state machine from being queued when
   n_accesses reaches 0.
 - Remove the unused cookie pointer field from the fscache_acquire
   tracepoint.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/CAHk-=whtkzB446+hX0zdLsdcUJsJ=8_-0S1mE_R+YurThfUbLA@mail.gmail.com/ [1]
Link: https://lore.kernel.org/r/163819590658.215744.14934902514281054323.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906891983.143852.6219772337558577395.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967088507.1823006.12659006350221417165.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021498432.640689.12743483856927722772.stgit@warthog.procyon.org.uk/ # v4
2022-01-07 09:22:19 +00:00

61 lines
1.5 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* FS-Cache statistics
*
* Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#define FSCACHE_DEBUG_LEVEL CACHE
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include "internal.h"
/*
* operation counters
*/
atomic_t fscache_n_volumes;
atomic_t fscache_n_volumes_collision;
atomic_t fscache_n_volumes_nomem;
atomic_t fscache_n_cookies;
atomic_t fscache_n_acquires;
atomic_t fscache_n_acquires_ok;
atomic_t fscache_n_acquires_oom;
atomic_t fscache_n_updates;
EXPORT_SYMBOL(fscache_n_updates);
atomic_t fscache_n_relinquishes;
atomic_t fscache_n_relinquishes_retire;
atomic_t fscache_n_relinquishes_dropped;
/*
* display the general statistics
*/
int fscache_stats_show(struct seq_file *m, void *v)
{
seq_puts(m, "FS-Cache statistics\n");
seq_printf(m, "Cookies: n=%d v=%d vcol=%u voom=%u\n",
atomic_read(&fscache_n_cookies),
atomic_read(&fscache_n_volumes),
atomic_read(&fscache_n_volumes_collision),
atomic_read(&fscache_n_volumes_nomem)
);
seq_printf(m, "Acquire: n=%u ok=%u oom=%u\n",
atomic_read(&fscache_n_acquires),
atomic_read(&fscache_n_acquires_ok),
atomic_read(&fscache_n_acquires_oom));
seq_printf(m, "Updates: n=%u\n",
atomic_read(&fscache_n_updates));
seq_printf(m, "Relinqs: n=%u rtr=%u drop=%u\n",
atomic_read(&fscache_n_relinquishes),
atomic_read(&fscache_n_relinquishes_retire),
atomic_read(&fscache_n_relinquishes_dropped));
netfs_stats_show(m);
return 0;
}