mirror of
https://github.com/torvalds/linux.git
synced 2024-11-14 08:02:07 +00:00
0f296829b5
With this, the guest can use 1TB segments as well as 256MB segments. Since we now have the situation where a single emulated guest segment could correspond to multiple shadow segments (as the shadow segments are still 256MB segments), this adds a new kvmppc_mmu_flush_segment() to scan for all shadow segments that need to be removed. This restructures the guest HPT (hashed page table) lookup code to use the correct hashing and matching functions for HPTEs within a 1TB segment. We use the standard hpt_hash() function instead of open-coding the hash calculation, and we use HPTE_V_COMPARE() with an AVPN value that has the B (segment size) field included. The calculation of avpn is done a little earlier since it doesn't change in the loop starting at the do_second label. The computation in kvmppc_mmu_book3s_64_esid_to_vsid() changes so that it returns a 256MB VSID even if the guest SLB entry is a 1TB entry. This is because the users of this function are creating 256MB SLB entries. We set a new VSID_1T flag so that entries created from 1T segments don't collide with entries from 256MB segments. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
354 lines
8.9 KiB
C
354 lines
8.9 KiB
C
/*
|
|
* Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved.
|
|
*
|
|
* Authors:
|
|
* Alexander Graf <agraf@suse.de>
|
|
* Kevin Wolf <mail@kevin-wolf.de>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_book3s.h>
|
|
#include <asm/mmu-hash64.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/hw_irq.h>
|
|
#include "trace.h"
|
|
|
|
#define PTE_SIZE 12
|
|
|
|
void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
|
|
{
|
|
ppc_md.hpte_invalidate(pte->slot, pte->host_vpn,
|
|
MMU_PAGE_4K, MMU_SEGSIZE_256M,
|
|
false);
|
|
}
|
|
|
|
/* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
|
|
* a hash, so we don't waste cycles on looping */
|
|
static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
|
|
{
|
|
return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
|
|
((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
|
|
((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
|
|
((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
|
|
((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
|
|
((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
|
|
((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
|
|
((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
|
|
}
|
|
|
|
|
|
static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
|
|
{
|
|
struct kvmppc_sid_map *map;
|
|
u16 sid_map_mask;
|
|
|
|
if (vcpu->arch.shared->msr & MSR_PR)
|
|
gvsid |= VSID_PR;
|
|
|
|
sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
|
|
map = &to_book3s(vcpu)->sid_map[sid_map_mask];
|
|
if (map->valid && (map->guest_vsid == gvsid)) {
|
|
trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
|
|
return map;
|
|
}
|
|
|
|
map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
|
|
if (map->valid && (map->guest_vsid == gvsid)) {
|
|
trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
|
|
return map;
|
|
}
|
|
|
|
trace_kvm_book3s_slb_fail(sid_map_mask, gvsid);
|
|
return NULL;
|
|
}
|
|
|
|
int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
|
|
{
|
|
unsigned long vpn;
|
|
pfn_t hpaddr;
|
|
ulong hash, hpteg;
|
|
u64 vsid;
|
|
int ret;
|
|
int rflags = 0x192;
|
|
int vflags = 0;
|
|
int attempt = 0;
|
|
struct kvmppc_sid_map *map;
|
|
int r = 0;
|
|
|
|
/* Get host physical address for gpa */
|
|
hpaddr = kvmppc_gfn_to_pfn(vcpu, orig_pte->raddr >> PAGE_SHIFT);
|
|
if (is_error_noslot_pfn(hpaddr)) {
|
|
printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", orig_pte->eaddr);
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
hpaddr <<= PAGE_SHIFT;
|
|
hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK);
|
|
|
|
/* and write the mapping ea -> hpa into the pt */
|
|
vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
|
|
map = find_sid_vsid(vcpu, vsid);
|
|
if (!map) {
|
|
ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr);
|
|
WARN_ON(ret < 0);
|
|
map = find_sid_vsid(vcpu, vsid);
|
|
}
|
|
if (!map) {
|
|
printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n",
|
|
vsid, orig_pte->eaddr);
|
|
WARN_ON(true);
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
vsid = map->host_vsid;
|
|
vpn = hpt_vpn(orig_pte->eaddr, vsid, MMU_SEGSIZE_256M);
|
|
|
|
if (!orig_pte->may_write)
|
|
rflags |= HPTE_R_PP;
|
|
else
|
|
mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
|
|
|
|
if (!orig_pte->may_execute)
|
|
rflags |= HPTE_R_N;
|
|
else
|
|
kvmppc_mmu_flush_icache(hpaddr >> PAGE_SHIFT);
|
|
|
|
hash = hpt_hash(vpn, PTE_SIZE, MMU_SEGSIZE_256M);
|
|
|
|
map_again:
|
|
hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
|
|
|
|
/* In case we tried normal mapping already, let's nuke old entries */
|
|
if (attempt > 1)
|
|
if (ppc_md.hpte_remove(hpteg) < 0) {
|
|
r = -1;
|
|
goto out;
|
|
}
|
|
|
|
ret = ppc_md.hpte_insert(hpteg, vpn, hpaddr, rflags, vflags,
|
|
MMU_PAGE_4K, MMU_PAGE_4K, MMU_SEGSIZE_256M);
|
|
|
|
if (ret < 0) {
|
|
/* If we couldn't map a primary PTE, try a secondary */
|
|
hash = ~hash;
|
|
vflags ^= HPTE_V_SECONDARY;
|
|
attempt++;
|
|
goto map_again;
|
|
} else {
|
|
struct hpte_cache *pte = kvmppc_mmu_hpte_cache_next(vcpu);
|
|
|
|
trace_kvm_book3s_64_mmu_map(rflags, hpteg,
|
|
vpn, hpaddr, orig_pte);
|
|
|
|
/* The ppc_md code may give us a secondary entry even though we
|
|
asked for a primary. Fix up. */
|
|
if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) {
|
|
hash = ~hash;
|
|
hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
|
|
}
|
|
|
|
pte->slot = hpteg + (ret & 7);
|
|
pte->host_vpn = vpn;
|
|
pte->pte = *orig_pte;
|
|
pte->pfn = hpaddr >> PAGE_SHIFT;
|
|
|
|
kvmppc_mmu_hpte_cache_map(vcpu, pte);
|
|
}
|
|
kvm_release_pfn_clean(hpaddr >> PAGE_SHIFT);
|
|
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
|
|
{
|
|
struct kvmppc_sid_map *map;
|
|
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
|
|
u16 sid_map_mask;
|
|
static int backwards_map = 0;
|
|
|
|
if (vcpu->arch.shared->msr & MSR_PR)
|
|
gvsid |= VSID_PR;
|
|
|
|
/* We might get collisions that trap in preceding order, so let's
|
|
map them differently */
|
|
|
|
sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
|
|
if (backwards_map)
|
|
sid_map_mask = SID_MAP_MASK - sid_map_mask;
|
|
|
|
map = &to_book3s(vcpu)->sid_map[sid_map_mask];
|
|
|
|
/* Make sure we're taking the other map next time */
|
|
backwards_map = !backwards_map;
|
|
|
|
/* Uh-oh ... out of mappings. Let's flush! */
|
|
if (vcpu_book3s->proto_vsid_next == vcpu_book3s->proto_vsid_max) {
|
|
vcpu_book3s->proto_vsid_next = vcpu_book3s->proto_vsid_first;
|
|
memset(vcpu_book3s->sid_map, 0,
|
|
sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
|
|
kvmppc_mmu_pte_flush(vcpu, 0, 0);
|
|
kvmppc_mmu_flush_segments(vcpu);
|
|
}
|
|
map->host_vsid = vsid_scramble(vcpu_book3s->proto_vsid_next++, 256M);
|
|
|
|
map->guest_vsid = gvsid;
|
|
map->valid = true;
|
|
|
|
trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid);
|
|
|
|
return map;
|
|
}
|
|
|
|
static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid)
|
|
{
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
|
int i;
|
|
int max_slb_size = 64;
|
|
int found_inval = -1;
|
|
int r;
|
|
|
|
if (!svcpu->slb_max)
|
|
svcpu->slb_max = 1;
|
|
|
|
/* Are we overwriting? */
|
|
for (i = 1; i < svcpu->slb_max; i++) {
|
|
if (!(svcpu->slb[i].esid & SLB_ESID_V))
|
|
found_inval = i;
|
|
else if ((svcpu->slb[i].esid & ESID_MASK) == esid) {
|
|
r = i;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Found a spare entry that was invalidated before */
|
|
if (found_inval > 0) {
|
|
r = found_inval;
|
|
goto out;
|
|
}
|
|
|
|
/* No spare invalid entry, so create one */
|
|
|
|
if (mmu_slb_size < 64)
|
|
max_slb_size = mmu_slb_size;
|
|
|
|
/* Overflowing -> purge */
|
|
if ((svcpu->slb_max) == max_slb_size)
|
|
kvmppc_mmu_flush_segments(vcpu);
|
|
|
|
r = svcpu->slb_max;
|
|
svcpu->slb_max++;
|
|
|
|
out:
|
|
svcpu_put(svcpu);
|
|
return r;
|
|
}
|
|
|
|
int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
|
|
{
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
|
u64 esid = eaddr >> SID_SHIFT;
|
|
u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V;
|
|
u64 slb_vsid = SLB_VSID_USER;
|
|
u64 gvsid;
|
|
int slb_index;
|
|
struct kvmppc_sid_map *map;
|
|
int r = 0;
|
|
|
|
slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK);
|
|
|
|
if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
|
|
/* Invalidate an entry */
|
|
svcpu->slb[slb_index].esid = 0;
|
|
r = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
map = find_sid_vsid(vcpu, gvsid);
|
|
if (!map)
|
|
map = create_sid_map(vcpu, gvsid);
|
|
|
|
map->guest_esid = esid;
|
|
|
|
slb_vsid |= (map->host_vsid << 12);
|
|
slb_vsid &= ~SLB_VSID_KP;
|
|
slb_esid |= slb_index;
|
|
|
|
svcpu->slb[slb_index].esid = slb_esid;
|
|
svcpu->slb[slb_index].vsid = slb_vsid;
|
|
|
|
trace_kvm_book3s_slbmte(slb_vsid, slb_esid);
|
|
|
|
out:
|
|
svcpu_put(svcpu);
|
|
return r;
|
|
}
|
|
|
|
void kvmppc_mmu_flush_segment(struct kvm_vcpu *vcpu, ulong ea, ulong seg_size)
|
|
{
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
|
ulong seg_mask = -seg_size;
|
|
int i;
|
|
|
|
for (i = 1; i < svcpu->slb_max; i++) {
|
|
if ((svcpu->slb[i].esid & SLB_ESID_V) &&
|
|
(svcpu->slb[i].esid & seg_mask) == ea) {
|
|
/* Invalidate this entry */
|
|
svcpu->slb[i].esid = 0;
|
|
}
|
|
}
|
|
|
|
svcpu_put(svcpu);
|
|
}
|
|
|
|
void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
|
svcpu->slb_max = 1;
|
|
svcpu->slb[0].esid = 0;
|
|
svcpu_put(svcpu);
|
|
}
|
|
|
|
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvmppc_mmu_hpte_destroy(vcpu);
|
|
__destroy_context(to_book3s(vcpu)->context_id[0]);
|
|
}
|
|
|
|
int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
|
|
int err;
|
|
|
|
err = __init_new_context();
|
|
if (err < 0)
|
|
return -1;
|
|
vcpu3s->context_id[0] = err;
|
|
|
|
vcpu3s->proto_vsid_max = ((u64)(vcpu3s->context_id[0] + 1)
|
|
<< ESID_BITS) - 1;
|
|
vcpu3s->proto_vsid_first = (u64)vcpu3s->context_id[0] << ESID_BITS;
|
|
vcpu3s->proto_vsid_next = vcpu3s->proto_vsid_first;
|
|
|
|
kvmppc_mmu_hpte_init(vcpu);
|
|
|
|
return 0;
|
|
}
|