linux/drivers/input/misc/ad714x.c
Jonathan Cameron c0a150eee3 Input: ad714x - unify dev_pm_ops using EXPORT_SIMPLE_DEV_PM_OPS()
The I2C and SPI PM callbacks were identical (though wrapped in some
bouncing out to the bus specific container of the struct device and
then back again to get the drvdata). As such rather than just moving
these to SIMPLE_DEV_PM_OPS() and pm_sleep_ptr() take the opportunity
to unify the struct dev_pm_ops and use the new EXPORT_SIMPLE_DEV_PM_OPS()
macro so that we can drop the unused suspend and resume callbacks as well
as the structure if !CONFIG_PM_SLEEP without needing to mark the callbacks
__maybe_unused.

Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michael Hennerich <michael.hennerich@analog.com>
Link: https://lore.kernel.org/r/20230114171620.42891-8-jic23@kernel.org
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
2023-01-27 14:49:52 -08:00

1210 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AD714X CapTouch Programmable Controller driver supporting AD7142/3/7/8/7A
*
* Copyright 2009-2011 Analog Devices Inc.
*/
#include <linux/device.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/input/ad714x.h>
#include <linux/module.h>
#include "ad714x.h"
#define AD714X_PWR_CTRL 0x0
#define AD714X_STG_CAL_EN_REG 0x1
#define AD714X_AMB_COMP_CTRL0_REG 0x2
#define AD714X_PARTID_REG 0x17
#define AD7142_PARTID 0xE620
#define AD7143_PARTID 0xE630
#define AD7147_PARTID 0x1470
#define AD7148_PARTID 0x1480
#define AD714X_STAGECFG_REG 0x80
#define AD714X_SYSCFG_REG 0x0
#define STG_LOW_INT_EN_REG 0x5
#define STG_HIGH_INT_EN_REG 0x6
#define STG_COM_INT_EN_REG 0x7
#define STG_LOW_INT_STA_REG 0x8
#define STG_HIGH_INT_STA_REG 0x9
#define STG_COM_INT_STA_REG 0xA
#define CDC_RESULT_S0 0xB
#define CDC_RESULT_S1 0xC
#define CDC_RESULT_S2 0xD
#define CDC_RESULT_S3 0xE
#define CDC_RESULT_S4 0xF
#define CDC_RESULT_S5 0x10
#define CDC_RESULT_S6 0x11
#define CDC_RESULT_S7 0x12
#define CDC_RESULT_S8 0x13
#define CDC_RESULT_S9 0x14
#define CDC_RESULT_S10 0x15
#define CDC_RESULT_S11 0x16
#define STAGE0_AMBIENT 0xF1
#define STAGE1_AMBIENT 0x115
#define STAGE2_AMBIENT 0x139
#define STAGE3_AMBIENT 0x15D
#define STAGE4_AMBIENT 0x181
#define STAGE5_AMBIENT 0x1A5
#define STAGE6_AMBIENT 0x1C9
#define STAGE7_AMBIENT 0x1ED
#define STAGE8_AMBIENT 0x211
#define STAGE9_AMBIENT 0x234
#define STAGE10_AMBIENT 0x259
#define STAGE11_AMBIENT 0x27D
#define PER_STAGE_REG_NUM 36
#define STAGE_CFGREG_NUM 8
#define SYS_CFGREG_NUM 8
/*
* driver information which will be used to maintain the software flow
*/
enum ad714x_device_state { IDLE, JITTER, ACTIVE, SPACE };
struct ad714x_slider_drv {
int highest_stage;
int abs_pos;
int flt_pos;
enum ad714x_device_state state;
struct input_dev *input;
};
struct ad714x_wheel_drv {
int abs_pos;
int flt_pos;
int pre_highest_stage;
int highest_stage;
enum ad714x_device_state state;
struct input_dev *input;
};
struct ad714x_touchpad_drv {
int x_highest_stage;
int x_flt_pos;
int x_abs_pos;
int y_highest_stage;
int y_flt_pos;
int y_abs_pos;
int left_ep;
int left_ep_val;
int right_ep;
int right_ep_val;
int top_ep;
int top_ep_val;
int bottom_ep;
int bottom_ep_val;
enum ad714x_device_state state;
struct input_dev *input;
};
struct ad714x_button_drv {
enum ad714x_device_state state;
/*
* Unlike slider/wheel/touchpad, all buttons point to
* same input_dev instance
*/
struct input_dev *input;
};
struct ad714x_driver_data {
struct ad714x_slider_drv *slider;
struct ad714x_wheel_drv *wheel;
struct ad714x_touchpad_drv *touchpad;
struct ad714x_button_drv *button;
};
/*
* information to integrate all things which will be private data
* of spi/i2c device
*/
static void ad714x_use_com_int(struct ad714x_chip *ad714x,
int start_stage, int end_stage)
{
unsigned short data;
unsigned short mask;
mask = ((1 << (end_stage + 1)) - 1) - ((1 << start_stage) - 1);
ad714x->read(ad714x, STG_COM_INT_EN_REG, &data, 1);
data |= 1 << end_stage;
ad714x->write(ad714x, STG_COM_INT_EN_REG, data);
ad714x->read(ad714x, STG_HIGH_INT_EN_REG, &data, 1);
data &= ~mask;
ad714x->write(ad714x, STG_HIGH_INT_EN_REG, data);
}
static void ad714x_use_thr_int(struct ad714x_chip *ad714x,
int start_stage, int end_stage)
{
unsigned short data;
unsigned short mask;
mask = ((1 << (end_stage + 1)) - 1) - ((1 << start_stage) - 1);
ad714x->read(ad714x, STG_COM_INT_EN_REG, &data, 1);
data &= ~(1 << end_stage);
ad714x->write(ad714x, STG_COM_INT_EN_REG, data);
ad714x->read(ad714x, STG_HIGH_INT_EN_REG, &data, 1);
data |= mask;
ad714x->write(ad714x, STG_HIGH_INT_EN_REG, data);
}
static int ad714x_cal_highest_stage(struct ad714x_chip *ad714x,
int start_stage, int end_stage)
{
int max_res = 0;
int max_idx = 0;
int i;
for (i = start_stage; i <= end_stage; i++) {
if (ad714x->sensor_val[i] > max_res) {
max_res = ad714x->sensor_val[i];
max_idx = i;
}
}
return max_idx;
}
static int ad714x_cal_abs_pos(struct ad714x_chip *ad714x,
int start_stage, int end_stage,
int highest_stage, int max_coord)
{
int a_param, b_param;
if (highest_stage == start_stage) {
a_param = ad714x->sensor_val[start_stage + 1];
b_param = ad714x->sensor_val[start_stage] +
ad714x->sensor_val[start_stage + 1];
} else if (highest_stage == end_stage) {
a_param = ad714x->sensor_val[end_stage] *
(end_stage - start_stage) +
ad714x->sensor_val[end_stage - 1] *
(end_stage - start_stage - 1);
b_param = ad714x->sensor_val[end_stage] +
ad714x->sensor_val[end_stage - 1];
} else {
a_param = ad714x->sensor_val[highest_stage] *
(highest_stage - start_stage) +
ad714x->sensor_val[highest_stage - 1] *
(highest_stage - start_stage - 1) +
ad714x->sensor_val[highest_stage + 1] *
(highest_stage - start_stage + 1);
b_param = ad714x->sensor_val[highest_stage] +
ad714x->sensor_val[highest_stage - 1] +
ad714x->sensor_val[highest_stage + 1];
}
return (max_coord / (end_stage - start_stage)) * a_param / b_param;
}
/*
* One button can connect to multi positive and negative of CDCs
* Multi-buttons can connect to same positive/negative of one CDC
*/
static void ad714x_button_state_machine(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_button_plat *hw = &ad714x->hw->button[idx];
struct ad714x_button_drv *sw = &ad714x->sw->button[idx];
switch (sw->state) {
case IDLE:
if (((ad714x->h_state & hw->h_mask) == hw->h_mask) &&
((ad714x->l_state & hw->l_mask) == hw->l_mask)) {
dev_dbg(ad714x->dev, "button %d touched\n", idx);
input_report_key(sw->input, hw->keycode, 1);
input_sync(sw->input);
sw->state = ACTIVE;
}
break;
case ACTIVE:
if (((ad714x->h_state & hw->h_mask) != hw->h_mask) ||
((ad714x->l_state & hw->l_mask) != hw->l_mask)) {
dev_dbg(ad714x->dev, "button %d released\n", idx);
input_report_key(sw->input, hw->keycode, 0);
input_sync(sw->input);
sw->state = IDLE;
}
break;
default:
break;
}
}
/*
* The response of a sensor is defined by the absolute number of codes
* between the current CDC value and the ambient value.
*/
static void ad714x_slider_cal_sensor_val(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
int i;
ad714x->read(ad714x, CDC_RESULT_S0 + hw->start_stage,
&ad714x->adc_reg[hw->start_stage],
hw->end_stage - hw->start_stage + 1);
for (i = hw->start_stage; i <= hw->end_stage; i++) {
ad714x->read(ad714x, STAGE0_AMBIENT + i * PER_STAGE_REG_NUM,
&ad714x->amb_reg[i], 1);
ad714x->sensor_val[i] =
abs(ad714x->adc_reg[i] - ad714x->amb_reg[i]);
}
}
static void ad714x_slider_cal_highest_stage(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx];
sw->highest_stage = ad714x_cal_highest_stage(ad714x, hw->start_stage,
hw->end_stage);
dev_dbg(ad714x->dev, "slider %d highest_stage:%d\n", idx,
sw->highest_stage);
}
/*
* The formulae are very straight forward. It uses the sensor with the
* highest response and the 2 adjacent ones.
* When Sensor 0 has the highest response, only sensor 0 and sensor 1
* are used in the calculations. Similarly when the last sensor has the
* highest response, only the last sensor and the second last sensors
* are used in the calculations.
*
* For i= idx_of_peak_Sensor-1 to i= idx_of_peak_Sensor+1
* v += Sensor response(i)*i
* w += Sensor response(i)
* POS=(Number_of_Positions_Wanted/(Number_of_Sensors_Used-1)) *(v/w)
*/
static void ad714x_slider_cal_abs_pos(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx];
sw->abs_pos = ad714x_cal_abs_pos(ad714x, hw->start_stage, hw->end_stage,
sw->highest_stage, hw->max_coord);
dev_dbg(ad714x->dev, "slider %d absolute position:%d\n", idx,
sw->abs_pos);
}
/*
* To minimise the Impact of the noise on the algorithm, ADI developed a
* routine that filters the CDC results after they have been read by the
* host processor.
* The filter used is an Infinite Input Response(IIR) filter implemented
* in firmware and attenuates the noise on the CDC results after they've
* been read by the host processor.
* Filtered_CDC_result = (Filtered_CDC_result * (10 - Coefficient) +
* Latest_CDC_result * Coefficient)/10
*/
static void ad714x_slider_cal_flt_pos(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx];
sw->flt_pos = (sw->flt_pos * (10 - 4) +
sw->abs_pos * 4)/10;
dev_dbg(ad714x->dev, "slider %d filter position:%d\n", idx,
sw->flt_pos);
}
static void ad714x_slider_use_com_int(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
ad714x_use_com_int(ad714x, hw->start_stage, hw->end_stage);
}
static void ad714x_slider_use_thr_int(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
ad714x_use_thr_int(ad714x, hw->start_stage, hw->end_stage);
}
static void ad714x_slider_state_machine(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx];
unsigned short h_state, c_state;
unsigned short mask;
mask = ((1 << (hw->end_stage + 1)) - 1) - ((1 << hw->start_stage) - 1);
h_state = ad714x->h_state & mask;
c_state = ad714x->c_state & mask;
switch (sw->state) {
case IDLE:
if (h_state) {
sw->state = JITTER;
/* In End of Conversion interrupt mode, the AD714X
* continuously generates hardware interrupts.
*/
ad714x_slider_use_com_int(ad714x, idx);
dev_dbg(ad714x->dev, "slider %d touched\n", idx);
}
break;
case JITTER:
if (c_state == mask) {
ad714x_slider_cal_sensor_val(ad714x, idx);
ad714x_slider_cal_highest_stage(ad714x, idx);
ad714x_slider_cal_abs_pos(ad714x, idx);
sw->flt_pos = sw->abs_pos;
sw->state = ACTIVE;
}
break;
case ACTIVE:
if (c_state == mask) {
if (h_state) {
ad714x_slider_cal_sensor_val(ad714x, idx);
ad714x_slider_cal_highest_stage(ad714x, idx);
ad714x_slider_cal_abs_pos(ad714x, idx);
ad714x_slider_cal_flt_pos(ad714x, idx);
input_report_abs(sw->input, ABS_X, sw->flt_pos);
input_report_key(sw->input, BTN_TOUCH, 1);
} else {
/* When the user lifts off the sensor, configure
* the AD714X back to threshold interrupt mode.
*/
ad714x_slider_use_thr_int(ad714x, idx);
sw->state = IDLE;
input_report_key(sw->input, BTN_TOUCH, 0);
dev_dbg(ad714x->dev, "slider %d released\n",
idx);
}
input_sync(sw->input);
}
break;
default:
break;
}
}
/*
* When the scroll wheel is activated, we compute the absolute position based
* on the sensor values. To calculate the position, we first determine the
* sensor that has the greatest response among the 8 sensors that constitutes
* the scrollwheel. Then we determined the 2 sensors on either sides of the
* sensor with the highest response and we apply weights to these sensors.
*/
static void ad714x_wheel_cal_highest_stage(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx];
sw->pre_highest_stage = sw->highest_stage;
sw->highest_stage = ad714x_cal_highest_stage(ad714x, hw->start_stage,
hw->end_stage);
dev_dbg(ad714x->dev, "wheel %d highest_stage:%d\n", idx,
sw->highest_stage);
}
static void ad714x_wheel_cal_sensor_val(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
int i;
ad714x->read(ad714x, CDC_RESULT_S0 + hw->start_stage,
&ad714x->adc_reg[hw->start_stage],
hw->end_stage - hw->start_stage + 1);
for (i = hw->start_stage; i <= hw->end_stage; i++) {
ad714x->read(ad714x, STAGE0_AMBIENT + i * PER_STAGE_REG_NUM,
&ad714x->amb_reg[i], 1);
if (ad714x->adc_reg[i] > ad714x->amb_reg[i])
ad714x->sensor_val[i] =
ad714x->adc_reg[i] - ad714x->amb_reg[i];
else
ad714x->sensor_val[i] = 0;
}
}
/*
* When the scroll wheel is activated, we compute the absolute position based
* on the sensor values. To calculate the position, we first determine the
* sensor that has the greatest response among the sensors that constitutes
* the scrollwheel. Then we determined the sensors on either sides of the
* sensor with the highest response and we apply weights to these sensors. The
* result of this computation gives us the mean value.
*/
static void ad714x_wheel_cal_abs_pos(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx];
int stage_num = hw->end_stage - hw->start_stage + 1;
int first_before, highest, first_after;
int a_param, b_param;
first_before = (sw->highest_stage + stage_num - 1) % stage_num;
highest = sw->highest_stage;
first_after = (sw->highest_stage + stage_num + 1) % stage_num;
a_param = ad714x->sensor_val[highest] *
(highest - hw->start_stage) +
ad714x->sensor_val[first_before] *
(highest - hw->start_stage - 1) +
ad714x->sensor_val[first_after] *
(highest - hw->start_stage + 1);
b_param = ad714x->sensor_val[highest] +
ad714x->sensor_val[first_before] +
ad714x->sensor_val[first_after];
sw->abs_pos = ((hw->max_coord / (hw->end_stage - hw->start_stage)) *
a_param) / b_param;
if (sw->abs_pos > hw->max_coord)
sw->abs_pos = hw->max_coord;
else if (sw->abs_pos < 0)
sw->abs_pos = 0;
}
static void ad714x_wheel_cal_flt_pos(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx];
if (((sw->pre_highest_stage == hw->end_stage) &&
(sw->highest_stage == hw->start_stage)) ||
((sw->pre_highest_stage == hw->start_stage) &&
(sw->highest_stage == hw->end_stage)))
sw->flt_pos = sw->abs_pos;
else
sw->flt_pos = ((sw->flt_pos * 30) + (sw->abs_pos * 71)) / 100;
if (sw->flt_pos > hw->max_coord)
sw->flt_pos = hw->max_coord;
}
static void ad714x_wheel_use_com_int(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
ad714x_use_com_int(ad714x, hw->start_stage, hw->end_stage);
}
static void ad714x_wheel_use_thr_int(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
ad714x_use_thr_int(ad714x, hw->start_stage, hw->end_stage);
}
static void ad714x_wheel_state_machine(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx];
unsigned short h_state, c_state;
unsigned short mask;
mask = ((1 << (hw->end_stage + 1)) - 1) - ((1 << hw->start_stage) - 1);
h_state = ad714x->h_state & mask;
c_state = ad714x->c_state & mask;
switch (sw->state) {
case IDLE:
if (h_state) {
sw->state = JITTER;
/* In End of Conversion interrupt mode, the AD714X
* continuously generates hardware interrupts.
*/
ad714x_wheel_use_com_int(ad714x, idx);
dev_dbg(ad714x->dev, "wheel %d touched\n", idx);
}
break;
case JITTER:
if (c_state == mask) {
ad714x_wheel_cal_sensor_val(ad714x, idx);
ad714x_wheel_cal_highest_stage(ad714x, idx);
ad714x_wheel_cal_abs_pos(ad714x, idx);
sw->flt_pos = sw->abs_pos;
sw->state = ACTIVE;
}
break;
case ACTIVE:
if (c_state == mask) {
if (h_state) {
ad714x_wheel_cal_sensor_val(ad714x, idx);
ad714x_wheel_cal_highest_stage(ad714x, idx);
ad714x_wheel_cal_abs_pos(ad714x, idx);
ad714x_wheel_cal_flt_pos(ad714x, idx);
input_report_abs(sw->input, ABS_WHEEL,
sw->flt_pos);
input_report_key(sw->input, BTN_TOUCH, 1);
} else {
/* When the user lifts off the sensor, configure
* the AD714X back to threshold interrupt mode.
*/
ad714x_wheel_use_thr_int(ad714x, idx);
sw->state = IDLE;
input_report_key(sw->input, BTN_TOUCH, 0);
dev_dbg(ad714x->dev, "wheel %d released\n",
idx);
}
input_sync(sw->input);
}
break;
default:
break;
}
}
static void touchpad_cal_sensor_val(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
int i;
ad714x->read(ad714x, CDC_RESULT_S0 + hw->x_start_stage,
&ad714x->adc_reg[hw->x_start_stage],
hw->x_end_stage - hw->x_start_stage + 1);
for (i = hw->x_start_stage; i <= hw->x_end_stage; i++) {
ad714x->read(ad714x, STAGE0_AMBIENT + i * PER_STAGE_REG_NUM,
&ad714x->amb_reg[i], 1);
if (ad714x->adc_reg[i] > ad714x->amb_reg[i])
ad714x->sensor_val[i] =
ad714x->adc_reg[i] - ad714x->amb_reg[i];
else
ad714x->sensor_val[i] = 0;
}
}
static void touchpad_cal_highest_stage(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
sw->x_highest_stage = ad714x_cal_highest_stage(ad714x,
hw->x_start_stage, hw->x_end_stage);
sw->y_highest_stage = ad714x_cal_highest_stage(ad714x,
hw->y_start_stage, hw->y_end_stage);
dev_dbg(ad714x->dev,
"touchpad %d x_highest_stage:%d, y_highest_stage:%d\n",
idx, sw->x_highest_stage, sw->y_highest_stage);
}
/*
* If 2 fingers are touching the sensor then 2 peaks can be observed in the
* distribution.
* The arithmetic doesn't support to get absolute coordinates for multi-touch
* yet.
*/
static int touchpad_check_second_peak(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
int i;
for (i = hw->x_start_stage; i < sw->x_highest_stage; i++) {
if ((ad714x->sensor_val[i] - ad714x->sensor_val[i + 1])
> (ad714x->sensor_val[i + 1] / 10))
return 1;
}
for (i = sw->x_highest_stage; i < hw->x_end_stage; i++) {
if ((ad714x->sensor_val[i + 1] - ad714x->sensor_val[i])
> (ad714x->sensor_val[i] / 10))
return 1;
}
for (i = hw->y_start_stage; i < sw->y_highest_stage; i++) {
if ((ad714x->sensor_val[i] - ad714x->sensor_val[i + 1])
> (ad714x->sensor_val[i + 1] / 10))
return 1;
}
for (i = sw->y_highest_stage; i < hw->y_end_stage; i++) {
if ((ad714x->sensor_val[i + 1] - ad714x->sensor_val[i])
> (ad714x->sensor_val[i] / 10))
return 1;
}
return 0;
}
/*
* If only one finger is used to activate the touch pad then only 1 peak will be
* registered in the distribution. This peak and the 2 adjacent sensors will be
* used in the calculation of the absolute position. This will prevent hand
* shadows to affect the absolute position calculation.
*/
static void touchpad_cal_abs_pos(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
sw->x_abs_pos = ad714x_cal_abs_pos(ad714x, hw->x_start_stage,
hw->x_end_stage, sw->x_highest_stage, hw->x_max_coord);
sw->y_abs_pos = ad714x_cal_abs_pos(ad714x, hw->y_start_stage,
hw->y_end_stage, sw->y_highest_stage, hw->y_max_coord);
dev_dbg(ad714x->dev, "touchpad %d absolute position:(%d, %d)\n", idx,
sw->x_abs_pos, sw->y_abs_pos);
}
static void touchpad_cal_flt_pos(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
sw->x_flt_pos = (sw->x_flt_pos * (10 - 4) +
sw->x_abs_pos * 4)/10;
sw->y_flt_pos = (sw->y_flt_pos * (10 - 4) +
sw->y_abs_pos * 4)/10;
dev_dbg(ad714x->dev, "touchpad %d filter position:(%d, %d)\n",
idx, sw->x_flt_pos, sw->y_flt_pos);
}
/*
* To prevent distortion from showing in the absolute position, it is
* necessary to detect the end points. When endpoints are detected, the
* driver stops updating the status variables with absolute positions.
* End points are detected on the 4 edges of the touchpad sensor. The
* method to detect them is the same for all 4.
* To detect the end points, the firmware computes the difference in
* percent between the sensor on the edge and the adjacent one. The
* difference is calculated in percent in order to make the end point
* detection independent of the pressure.
*/
#define LEFT_END_POINT_DETECTION_LEVEL 550
#define RIGHT_END_POINT_DETECTION_LEVEL 750
#define LEFT_RIGHT_END_POINT_DEAVTIVALION_LEVEL 850
#define TOP_END_POINT_DETECTION_LEVEL 550
#define BOTTOM_END_POINT_DETECTION_LEVEL 950
#define TOP_BOTTOM_END_POINT_DEAVTIVALION_LEVEL 700
static int touchpad_check_endpoint(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
int percent_sensor_diff;
/* left endpoint detect */
percent_sensor_diff = (ad714x->sensor_val[hw->x_start_stage] -
ad714x->sensor_val[hw->x_start_stage + 1]) * 100 /
ad714x->sensor_val[hw->x_start_stage + 1];
if (!sw->left_ep) {
if (percent_sensor_diff >= LEFT_END_POINT_DETECTION_LEVEL) {
sw->left_ep = 1;
sw->left_ep_val =
ad714x->sensor_val[hw->x_start_stage + 1];
}
} else {
if ((percent_sensor_diff < LEFT_END_POINT_DETECTION_LEVEL) &&
(ad714x->sensor_val[hw->x_start_stage + 1] >
LEFT_RIGHT_END_POINT_DEAVTIVALION_LEVEL + sw->left_ep_val))
sw->left_ep = 0;
}
/* right endpoint detect */
percent_sensor_diff = (ad714x->sensor_val[hw->x_end_stage] -
ad714x->sensor_val[hw->x_end_stage - 1]) * 100 /
ad714x->sensor_val[hw->x_end_stage - 1];
if (!sw->right_ep) {
if (percent_sensor_diff >= RIGHT_END_POINT_DETECTION_LEVEL) {
sw->right_ep = 1;
sw->right_ep_val =
ad714x->sensor_val[hw->x_end_stage - 1];
}
} else {
if ((percent_sensor_diff < RIGHT_END_POINT_DETECTION_LEVEL) &&
(ad714x->sensor_val[hw->x_end_stage - 1] >
LEFT_RIGHT_END_POINT_DEAVTIVALION_LEVEL + sw->right_ep_val))
sw->right_ep = 0;
}
/* top endpoint detect */
percent_sensor_diff = (ad714x->sensor_val[hw->y_start_stage] -
ad714x->sensor_val[hw->y_start_stage + 1]) * 100 /
ad714x->sensor_val[hw->y_start_stage + 1];
if (!sw->top_ep) {
if (percent_sensor_diff >= TOP_END_POINT_DETECTION_LEVEL) {
sw->top_ep = 1;
sw->top_ep_val =
ad714x->sensor_val[hw->y_start_stage + 1];
}
} else {
if ((percent_sensor_diff < TOP_END_POINT_DETECTION_LEVEL) &&
(ad714x->sensor_val[hw->y_start_stage + 1] >
TOP_BOTTOM_END_POINT_DEAVTIVALION_LEVEL + sw->top_ep_val))
sw->top_ep = 0;
}
/* bottom endpoint detect */
percent_sensor_diff = (ad714x->sensor_val[hw->y_end_stage] -
ad714x->sensor_val[hw->y_end_stage - 1]) * 100 /
ad714x->sensor_val[hw->y_end_stage - 1];
if (!sw->bottom_ep) {
if (percent_sensor_diff >= BOTTOM_END_POINT_DETECTION_LEVEL) {
sw->bottom_ep = 1;
sw->bottom_ep_val =
ad714x->sensor_val[hw->y_end_stage - 1];
}
} else {
if ((percent_sensor_diff < BOTTOM_END_POINT_DETECTION_LEVEL) &&
(ad714x->sensor_val[hw->y_end_stage - 1] >
TOP_BOTTOM_END_POINT_DEAVTIVALION_LEVEL + sw->bottom_ep_val))
sw->bottom_ep = 0;
}
return sw->left_ep || sw->right_ep || sw->top_ep || sw->bottom_ep;
}
static void touchpad_use_com_int(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
ad714x_use_com_int(ad714x, hw->x_start_stage, hw->x_end_stage);
}
static void touchpad_use_thr_int(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
ad714x_use_thr_int(ad714x, hw->x_start_stage, hw->x_end_stage);
ad714x_use_thr_int(ad714x, hw->y_start_stage, hw->y_end_stage);
}
static void ad714x_touchpad_state_machine(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
unsigned short h_state, c_state;
unsigned short mask;
mask = (((1 << (hw->x_end_stage + 1)) - 1) -
((1 << hw->x_start_stage) - 1)) +
(((1 << (hw->y_end_stage + 1)) - 1) -
((1 << hw->y_start_stage) - 1));
h_state = ad714x->h_state & mask;
c_state = ad714x->c_state & mask;
switch (sw->state) {
case IDLE:
if (h_state) {
sw->state = JITTER;
/* In End of Conversion interrupt mode, the AD714X
* continuously generates hardware interrupts.
*/
touchpad_use_com_int(ad714x, idx);
dev_dbg(ad714x->dev, "touchpad %d touched\n", idx);
}
break;
case JITTER:
if (c_state == mask) {
touchpad_cal_sensor_val(ad714x, idx);
touchpad_cal_highest_stage(ad714x, idx);
if ((!touchpad_check_second_peak(ad714x, idx)) &&
(!touchpad_check_endpoint(ad714x, idx))) {
dev_dbg(ad714x->dev,
"touchpad%d, 2 fingers or endpoint\n",
idx);
touchpad_cal_abs_pos(ad714x, idx);
sw->x_flt_pos = sw->x_abs_pos;
sw->y_flt_pos = sw->y_abs_pos;
sw->state = ACTIVE;
}
}
break;
case ACTIVE:
if (c_state == mask) {
if (h_state) {
touchpad_cal_sensor_val(ad714x, idx);
touchpad_cal_highest_stage(ad714x, idx);
if ((!touchpad_check_second_peak(ad714x, idx))
&& (!touchpad_check_endpoint(ad714x, idx))) {
touchpad_cal_abs_pos(ad714x, idx);
touchpad_cal_flt_pos(ad714x, idx);
input_report_abs(sw->input, ABS_X,
sw->x_flt_pos);
input_report_abs(sw->input, ABS_Y,
sw->y_flt_pos);
input_report_key(sw->input, BTN_TOUCH,
1);
}
} else {
/* When the user lifts off the sensor, configure
* the AD714X back to threshold interrupt mode.
*/
touchpad_use_thr_int(ad714x, idx);
sw->state = IDLE;
input_report_key(sw->input, BTN_TOUCH, 0);
dev_dbg(ad714x->dev, "touchpad %d released\n",
idx);
}
input_sync(sw->input);
}
break;
default:
break;
}
}
static int ad714x_hw_detect(struct ad714x_chip *ad714x)
{
unsigned short data;
ad714x->read(ad714x, AD714X_PARTID_REG, &data, 1);
switch (data & 0xFFF0) {
case AD7142_PARTID:
ad714x->product = 0x7142;
ad714x->version = data & 0xF;
dev_info(ad714x->dev, "found AD7142 captouch, rev:%d\n",
ad714x->version);
return 0;
case AD7143_PARTID:
ad714x->product = 0x7143;
ad714x->version = data & 0xF;
dev_info(ad714x->dev, "found AD7143 captouch, rev:%d\n",
ad714x->version);
return 0;
case AD7147_PARTID:
ad714x->product = 0x7147;
ad714x->version = data & 0xF;
dev_info(ad714x->dev, "found AD7147(A) captouch, rev:%d\n",
ad714x->version);
return 0;
case AD7148_PARTID:
ad714x->product = 0x7148;
ad714x->version = data & 0xF;
dev_info(ad714x->dev, "found AD7148 captouch, rev:%d\n",
ad714x->version);
return 0;
default:
dev_err(ad714x->dev,
"fail to detect AD714X captouch, read ID is %04x\n",
data);
return -ENODEV;
}
}
static void ad714x_hw_init(struct ad714x_chip *ad714x)
{
int i, j;
unsigned short reg_base;
unsigned short data;
/* configuration CDC and interrupts */
for (i = 0; i < STAGE_NUM; i++) {
reg_base = AD714X_STAGECFG_REG + i * STAGE_CFGREG_NUM;
for (j = 0; j < STAGE_CFGREG_NUM; j++)
ad714x->write(ad714x, reg_base + j,
ad714x->hw->stage_cfg_reg[i][j]);
}
for (i = 0; i < SYS_CFGREG_NUM; i++)
ad714x->write(ad714x, AD714X_SYSCFG_REG + i,
ad714x->hw->sys_cfg_reg[i]);
for (i = 0; i < SYS_CFGREG_NUM; i++)
ad714x->read(ad714x, AD714X_SYSCFG_REG + i, &data, 1);
ad714x->write(ad714x, AD714X_STG_CAL_EN_REG, 0xFFF);
/* clear all interrupts */
ad714x->read(ad714x, STG_LOW_INT_STA_REG, &ad714x->l_state, 3);
}
static irqreturn_t ad714x_interrupt_thread(int irq, void *data)
{
struct ad714x_chip *ad714x = data;
int i;
mutex_lock(&ad714x->mutex);
ad714x->read(ad714x, STG_LOW_INT_STA_REG, &ad714x->l_state, 3);
for (i = 0; i < ad714x->hw->button_num; i++)
ad714x_button_state_machine(ad714x, i);
for (i = 0; i < ad714x->hw->slider_num; i++)
ad714x_slider_state_machine(ad714x, i);
for (i = 0; i < ad714x->hw->wheel_num; i++)
ad714x_wheel_state_machine(ad714x, i);
for (i = 0; i < ad714x->hw->touchpad_num; i++)
ad714x_touchpad_state_machine(ad714x, i);
mutex_unlock(&ad714x->mutex);
return IRQ_HANDLED;
}
struct ad714x_chip *ad714x_probe(struct device *dev, u16 bus_type, int irq,
ad714x_read_t read, ad714x_write_t write)
{
int i;
int error;
struct input_dev *input;
struct ad714x_platform_data *plat_data = dev_get_platdata(dev);
struct ad714x_chip *ad714x;
void *drv_mem;
unsigned long irqflags;
struct ad714x_button_drv *bt_drv;
struct ad714x_slider_drv *sd_drv;
struct ad714x_wheel_drv *wl_drv;
struct ad714x_touchpad_drv *tp_drv;
if (irq <= 0) {
dev_err(dev, "IRQ not configured!\n");
error = -EINVAL;
return ERR_PTR(error);
}
if (dev_get_platdata(dev) == NULL) {
dev_err(dev, "platform data for ad714x doesn't exist\n");
error = -EINVAL;
return ERR_PTR(error);
}
ad714x = devm_kzalloc(dev, sizeof(*ad714x) + sizeof(*ad714x->sw) +
sizeof(*sd_drv) * plat_data->slider_num +
sizeof(*wl_drv) * plat_data->wheel_num +
sizeof(*tp_drv) * plat_data->touchpad_num +
sizeof(*bt_drv) * plat_data->button_num,
GFP_KERNEL);
if (!ad714x) {
error = -ENOMEM;
return ERR_PTR(error);
}
ad714x->hw = plat_data;
drv_mem = ad714x + 1;
ad714x->sw = drv_mem;
drv_mem += sizeof(*ad714x->sw);
ad714x->sw->slider = sd_drv = drv_mem;
drv_mem += sizeof(*sd_drv) * ad714x->hw->slider_num;
ad714x->sw->wheel = wl_drv = drv_mem;
drv_mem += sizeof(*wl_drv) * ad714x->hw->wheel_num;
ad714x->sw->touchpad = tp_drv = drv_mem;
drv_mem += sizeof(*tp_drv) * ad714x->hw->touchpad_num;
ad714x->sw->button = bt_drv = drv_mem;
drv_mem += sizeof(*bt_drv) * ad714x->hw->button_num;
ad714x->read = read;
ad714x->write = write;
ad714x->irq = irq;
ad714x->dev = dev;
error = ad714x_hw_detect(ad714x);
if (error)
return ERR_PTR(error);
/* initialize and request sw/hw resources */
ad714x_hw_init(ad714x);
mutex_init(&ad714x->mutex);
/* a slider uses one input_dev instance */
if (ad714x->hw->slider_num > 0) {
struct ad714x_slider_plat *sd_plat = ad714x->hw->slider;
for (i = 0; i < ad714x->hw->slider_num; i++) {
input = devm_input_allocate_device(dev);
if (!input)
return ERR_PTR(-ENOMEM);
__set_bit(EV_ABS, input->evbit);
__set_bit(EV_KEY, input->evbit);
__set_bit(ABS_X, input->absbit);
__set_bit(BTN_TOUCH, input->keybit);
input_set_abs_params(input,
ABS_X, 0, sd_plat->max_coord, 0, 0);
input->id.bustype = bus_type;
input->id.product = ad714x->product;
input->id.version = ad714x->version;
input->name = "ad714x_captouch_slider";
input->dev.parent = dev;
error = input_register_device(input);
if (error)
return ERR_PTR(error);
sd_drv[i].input = input;
}
}
/* a wheel uses one input_dev instance */
if (ad714x->hw->wheel_num > 0) {
struct ad714x_wheel_plat *wl_plat = ad714x->hw->wheel;
for (i = 0; i < ad714x->hw->wheel_num; i++) {
input = devm_input_allocate_device(dev);
if (!input)
return ERR_PTR(-ENOMEM);
__set_bit(EV_KEY, input->evbit);
__set_bit(EV_ABS, input->evbit);
__set_bit(ABS_WHEEL, input->absbit);
__set_bit(BTN_TOUCH, input->keybit);
input_set_abs_params(input,
ABS_WHEEL, 0, wl_plat->max_coord, 0, 0);
input->id.bustype = bus_type;
input->id.product = ad714x->product;
input->id.version = ad714x->version;
input->name = "ad714x_captouch_wheel";
input->dev.parent = dev;
error = input_register_device(input);
if (error)
return ERR_PTR(error);
wl_drv[i].input = input;
}
}
/* a touchpad uses one input_dev instance */
if (ad714x->hw->touchpad_num > 0) {
struct ad714x_touchpad_plat *tp_plat = ad714x->hw->touchpad;
for (i = 0; i < ad714x->hw->touchpad_num; i++) {
input = devm_input_allocate_device(dev);
if (!input)
return ERR_PTR(-ENOMEM);
__set_bit(EV_ABS, input->evbit);
__set_bit(EV_KEY, input->evbit);
__set_bit(ABS_X, input->absbit);
__set_bit(ABS_Y, input->absbit);
__set_bit(BTN_TOUCH, input->keybit);
input_set_abs_params(input,
ABS_X, 0, tp_plat->x_max_coord, 0, 0);
input_set_abs_params(input,
ABS_Y, 0, tp_plat->y_max_coord, 0, 0);
input->id.bustype = bus_type;
input->id.product = ad714x->product;
input->id.version = ad714x->version;
input->name = "ad714x_captouch_pad";
input->dev.parent = dev;
error = input_register_device(input);
if (error)
return ERR_PTR(error);
tp_drv[i].input = input;
}
}
/* all buttons use one input node */
if (ad714x->hw->button_num > 0) {
struct ad714x_button_plat *bt_plat = ad714x->hw->button;
input = devm_input_allocate_device(dev);
if (!input) {
error = -ENOMEM;
return ERR_PTR(error);
}
__set_bit(EV_KEY, input->evbit);
for (i = 0; i < ad714x->hw->button_num; i++) {
bt_drv[i].input = input;
__set_bit(bt_plat[i].keycode, input->keybit);
}
input->id.bustype = bus_type;
input->id.product = ad714x->product;
input->id.version = ad714x->version;
input->name = "ad714x_captouch_button";
input->dev.parent = dev;
error = input_register_device(input);
if (error)
return ERR_PTR(error);
}
irqflags = plat_data->irqflags ?: IRQF_TRIGGER_FALLING;
irqflags |= IRQF_ONESHOT;
error = devm_request_threaded_irq(dev, ad714x->irq, NULL,
ad714x_interrupt_thread,
irqflags, "ad714x_captouch", ad714x);
if (error) {
dev_err(dev, "can't allocate irq %d\n", ad714x->irq);
return ERR_PTR(error);
}
return ad714x;
}
EXPORT_SYMBOL(ad714x_probe);
static int ad714x_suspend(struct device *dev)
{
struct ad714x_chip *ad714x = dev_get_drvdata(dev);
unsigned short data;
dev_dbg(ad714x->dev, "%s enter\n", __func__);
mutex_lock(&ad714x->mutex);
data = ad714x->hw->sys_cfg_reg[AD714X_PWR_CTRL] | 0x3;
ad714x->write(ad714x, AD714X_PWR_CTRL, data);
mutex_unlock(&ad714x->mutex);
return 0;
}
static int ad714x_resume(struct device *dev)
{
struct ad714x_chip *ad714x = dev_get_drvdata(dev);
dev_dbg(ad714x->dev, "%s enter\n", __func__);
mutex_lock(&ad714x->mutex);
/* resume to non-shutdown mode */
ad714x->write(ad714x, AD714X_PWR_CTRL,
ad714x->hw->sys_cfg_reg[AD714X_PWR_CTRL]);
/* make sure the interrupt output line is not low level after resume,
* otherwise we will get no chance to enter falling-edge irq again
*/
ad714x->read(ad714x, STG_LOW_INT_STA_REG, &ad714x->l_state, 3);
mutex_unlock(&ad714x->mutex);
return 0;
}
EXPORT_SIMPLE_DEV_PM_OPS(ad714x_pm, ad714x_suspend, ad714x_resume);
MODULE_DESCRIPTION("Analog Devices AD714X Capacitance Touch Sensor Driver");
MODULE_AUTHOR("Barry Song <21cnbao@gmail.com>");
MODULE_LICENSE("GPL");