linux/mm/sparse.c
Mike Rapoport e31cf2f4ca mm: don't include asm/pgtable.h if linux/mm.h is already included
Patch series "mm: consolidate definitions of page table accessors", v2.

The low level page table accessors (pXY_index(), pXY_offset()) are
duplicated across all architectures and sometimes more than once.  For
instance, we have 31 definition of pgd_offset() for 25 supported
architectures.

Most of these definitions are actually identical and typically it boils
down to, e.g.

static inline unsigned long pmd_index(unsigned long address)
{
        return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
}

static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
        return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
}

These definitions can be shared among 90% of the arches provided
XYZ_SHIFT, PTRS_PER_XYZ and xyz_page_vaddr() are defined.

For architectures that really need a custom version there is always
possibility to override the generic version with the usual ifdefs magic.

These patches introduce include/linux/pgtable.h that replaces
include/asm-generic/pgtable.h and add the definitions of the page table
accessors to the new header.

This patch (of 12):

The linux/mm.h header includes <asm/pgtable.h> to allow inlining of the
functions involving page table manipulations, e.g.  pte_alloc() and
pmd_alloc().  So, there is no point to explicitly include <asm/pgtable.h>
in the files that include <linux/mm.h>.

The include statements in such cases are remove with a simple loop:

	for f in $(git grep -l "include <linux/mm.h>") ; do
		sed -i -e '/include <asm\/pgtable.h>/ d' $f
	done

Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-1-rppt@kernel.org
Link: http://lkml.kernel.org/r/20200514170327.31389-2-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:13 -07:00

967 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* sparse memory mappings.
*/
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/mmzone.h>
#include <linux/memblock.h>
#include <linux/compiler.h>
#include <linux/highmem.h>
#include <linux/export.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include "internal.h"
#include <asm/dma.h>
#include <asm/pgalloc.h>
/*
* Permanent SPARSEMEM data:
*
* 1) mem_section - memory sections, mem_map's for valid memory
*/
#ifdef CONFIG_SPARSEMEM_EXTREME
struct mem_section **mem_section;
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
____cacheline_internodealigned_in_smp;
#endif
EXPORT_SYMBOL(mem_section);
#ifdef NODE_NOT_IN_PAGE_FLAGS
/*
* If we did not store the node number in the page then we have to
* do a lookup in the section_to_node_table in order to find which
* node the page belongs to.
*/
#if MAX_NUMNODES <= 256
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#else
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif
int page_to_nid(const struct page *page)
{
return section_to_node_table[page_to_section(page)];
}
EXPORT_SYMBOL(page_to_nid);
static void set_section_nid(unsigned long section_nr, int nid)
{
section_to_node_table[section_nr] = nid;
}
#else /* !NODE_NOT_IN_PAGE_FLAGS */
static inline void set_section_nid(unsigned long section_nr, int nid)
{
}
#endif
#ifdef CONFIG_SPARSEMEM_EXTREME
static noinline struct mem_section __ref *sparse_index_alloc(int nid)
{
struct mem_section *section = NULL;
unsigned long array_size = SECTIONS_PER_ROOT *
sizeof(struct mem_section);
if (slab_is_available()) {
section = kzalloc_node(array_size, GFP_KERNEL, nid);
} else {
section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
nid);
if (!section)
panic("%s: Failed to allocate %lu bytes nid=%d\n",
__func__, array_size, nid);
}
return section;
}
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
{
unsigned long root = SECTION_NR_TO_ROOT(section_nr);
struct mem_section *section;
/*
* An existing section is possible in the sub-section hotplug
* case. First hot-add instantiates, follow-on hot-add reuses
* the existing section.
*
* The mem_hotplug_lock resolves the apparent race below.
*/
if (mem_section[root])
return 0;
section = sparse_index_alloc(nid);
if (!section)
return -ENOMEM;
mem_section[root] = section;
return 0;
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
return 0;
}
#endif
#ifdef CONFIG_SPARSEMEM_EXTREME
unsigned long __section_nr(struct mem_section *ms)
{
unsigned long root_nr;
struct mem_section *root = NULL;
for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
if (!root)
continue;
if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
break;
}
VM_BUG_ON(!root);
return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
}
#else
unsigned long __section_nr(struct mem_section *ms)
{
return (unsigned long)(ms - mem_section[0]);
}
#endif
/*
* During early boot, before section_mem_map is used for an actual
* mem_map, we use section_mem_map to store the section's NUMA
* node. This keeps us from having to use another data structure. The
* node information is cleared just before we store the real mem_map.
*/
static inline unsigned long sparse_encode_early_nid(int nid)
{
return (nid << SECTION_NID_SHIFT);
}
static inline int sparse_early_nid(struct mem_section *section)
{
return (section->section_mem_map >> SECTION_NID_SHIFT);
}
/* Validate the physical addressing limitations of the model */
void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
unsigned long *end_pfn)
{
unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
/*
* Sanity checks - do not allow an architecture to pass
* in larger pfns than the maximum scope of sparsemem:
*/
if (*start_pfn > max_sparsemem_pfn) {
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
*start_pfn, *end_pfn, max_sparsemem_pfn);
WARN_ON_ONCE(1);
*start_pfn = max_sparsemem_pfn;
*end_pfn = max_sparsemem_pfn;
} else if (*end_pfn > max_sparsemem_pfn) {
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
*start_pfn, *end_pfn, max_sparsemem_pfn);
WARN_ON_ONCE(1);
*end_pfn = max_sparsemem_pfn;
}
}
/*
* There are a number of times that we loop over NR_MEM_SECTIONS,
* looking for section_present() on each. But, when we have very
* large physical address spaces, NR_MEM_SECTIONS can also be
* very large which makes the loops quite long.
*
* Keeping track of this gives us an easy way to break out of
* those loops early.
*/
unsigned long __highest_present_section_nr;
static void section_mark_present(struct mem_section *ms)
{
unsigned long section_nr = __section_nr(ms);
if (section_nr > __highest_present_section_nr)
__highest_present_section_nr = section_nr;
ms->section_mem_map |= SECTION_MARKED_PRESENT;
}
#define for_each_present_section_nr(start, section_nr) \
for (section_nr = next_present_section_nr(start-1); \
((section_nr != -1) && \
(section_nr <= __highest_present_section_nr)); \
section_nr = next_present_section_nr(section_nr))
static inline unsigned long first_present_section_nr(void)
{
return next_present_section_nr(-1);
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static void subsection_mask_set(unsigned long *map, unsigned long pfn,
unsigned long nr_pages)
{
int idx = subsection_map_index(pfn);
int end = subsection_map_index(pfn + nr_pages - 1);
bitmap_set(map, idx, end - idx + 1);
}
void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
{
int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
unsigned long nr, start_sec = pfn_to_section_nr(pfn);
if (!nr_pages)
return;
for (nr = start_sec; nr <= end_sec; nr++) {
struct mem_section *ms;
unsigned long pfns;
pfns = min(nr_pages, PAGES_PER_SECTION
- (pfn & ~PAGE_SECTION_MASK));
ms = __nr_to_section(nr);
subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
pfns, subsection_map_index(pfn),
subsection_map_index(pfn + pfns - 1));
pfn += pfns;
nr_pages -= pfns;
}
}
#else
void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
{
}
#endif
/* Record a memory area against a node. */
void __init memory_present(int nid, unsigned long start, unsigned long end)
{
unsigned long pfn;
#ifdef CONFIG_SPARSEMEM_EXTREME
if (unlikely(!mem_section)) {
unsigned long size, align;
size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
align = 1 << (INTERNODE_CACHE_SHIFT);
mem_section = memblock_alloc(size, align);
if (!mem_section)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, size, align);
}
#endif
start &= PAGE_SECTION_MASK;
mminit_validate_memmodel_limits(&start, &end);
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
unsigned long section = pfn_to_section_nr(pfn);
struct mem_section *ms;
sparse_index_init(section, nid);
set_section_nid(section, nid);
ms = __nr_to_section(section);
if (!ms->section_mem_map) {
ms->section_mem_map = sparse_encode_early_nid(nid) |
SECTION_IS_ONLINE;
section_mark_present(ms);
}
}
}
/*
* Mark all memblocks as present using memory_present(). This is a
* convenience function that is useful for a number of arches
* to mark all of the systems memory as present during initialization.
*/
void __init memblocks_present(void)
{
struct memblock_region *reg;
for_each_memblock(memory, reg) {
memory_present(memblock_get_region_node(reg),
memblock_region_memory_base_pfn(reg),
memblock_region_memory_end_pfn(reg));
}
}
/*
* Subtle, we encode the real pfn into the mem_map such that
* the identity pfn - section_mem_map will return the actual
* physical page frame number.
*/
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
unsigned long coded_mem_map =
(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
return coded_mem_map;
}
/*
* Decode mem_map from the coded memmap
*/
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
/* mask off the extra low bits of information */
coded_mem_map &= SECTION_MAP_MASK;
return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}
static void __meminit sparse_init_one_section(struct mem_section *ms,
unsigned long pnum, struct page *mem_map,
struct mem_section_usage *usage, unsigned long flags)
{
ms->section_mem_map &= ~SECTION_MAP_MASK;
ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
| SECTION_HAS_MEM_MAP | flags;
ms->usage = usage;
}
static unsigned long usemap_size(void)
{
return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
}
size_t mem_section_usage_size(void)
{
return sizeof(struct mem_section_usage) + usemap_size();
}
#ifdef CONFIG_MEMORY_HOTREMOVE
static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
unsigned long size)
{
struct mem_section_usage *usage;
unsigned long goal, limit;
int nid;
/*
* A page may contain usemaps for other sections preventing the
* page being freed and making a section unremovable while
* other sections referencing the usemap remain active. Similarly,
* a pgdat can prevent a section being removed. If section A
* contains a pgdat and section B contains the usemap, both
* sections become inter-dependent. This allocates usemaps
* from the same section as the pgdat where possible to avoid
* this problem.
*/
goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
limit = goal + (1UL << PA_SECTION_SHIFT);
nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
again:
usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
if (!usage && limit) {
limit = 0;
goto again;
}
return usage;
}
static void __init check_usemap_section_nr(int nid,
struct mem_section_usage *usage)
{
unsigned long usemap_snr, pgdat_snr;
static unsigned long old_usemap_snr;
static unsigned long old_pgdat_snr;
struct pglist_data *pgdat = NODE_DATA(nid);
int usemap_nid;
/* First call */
if (!old_usemap_snr) {
old_usemap_snr = NR_MEM_SECTIONS;
old_pgdat_snr = NR_MEM_SECTIONS;
}
usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
if (usemap_snr == pgdat_snr)
return;
if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
/* skip redundant message */
return;
old_usemap_snr = usemap_snr;
old_pgdat_snr = pgdat_snr;
usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
if (usemap_nid != nid) {
pr_info("node %d must be removed before remove section %ld\n",
nid, usemap_snr);
return;
}
/*
* There is a circular dependency.
* Some platforms allow un-removable section because they will just
* gather other removable sections for dynamic partitioning.
* Just notify un-removable section's number here.
*/
pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
usemap_snr, pgdat_snr, nid);
}
#else
static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
unsigned long size)
{
return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
}
static void __init check_usemap_section_nr(int nid,
struct mem_section_usage *usage)
{
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static unsigned long __init section_map_size(void)
{
return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
}
#else
static unsigned long __init section_map_size(void)
{
return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
}
struct page __init *__populate_section_memmap(unsigned long pfn,
unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
{
unsigned long size = section_map_size();
struct page *map = sparse_buffer_alloc(size);
phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
if (map)
return map;
map = memblock_alloc_try_nid_raw(size, size, addr,
MEMBLOCK_ALLOC_ACCESSIBLE, nid);
if (!map)
panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
__func__, size, PAGE_SIZE, nid, &addr);
return map;
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
static void *sparsemap_buf __meminitdata;
static void *sparsemap_buf_end __meminitdata;
static inline void __meminit sparse_buffer_free(unsigned long size)
{
WARN_ON(!sparsemap_buf || size == 0);
memblock_free_early(__pa(sparsemap_buf), size);
}
static void __init sparse_buffer_init(unsigned long size, int nid)
{
phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
/*
* Pre-allocated buffer is mainly used by __populate_section_memmap
* and we want it to be properly aligned to the section size - this is
* especially the case for VMEMMAP which maps memmap to PMDs
*/
sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
sparsemap_buf_end = sparsemap_buf + size;
}
static void __init sparse_buffer_fini(void)
{
unsigned long size = sparsemap_buf_end - sparsemap_buf;
if (sparsemap_buf && size > 0)
sparse_buffer_free(size);
sparsemap_buf = NULL;
}
void * __meminit sparse_buffer_alloc(unsigned long size)
{
void *ptr = NULL;
if (sparsemap_buf) {
ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
if (ptr + size > sparsemap_buf_end)
ptr = NULL;
else {
/* Free redundant aligned space */
if ((unsigned long)(ptr - sparsemap_buf) > 0)
sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
sparsemap_buf = ptr + size;
}
}
return ptr;
}
void __weak __meminit vmemmap_populate_print_last(void)
{
}
/*
* Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
* And number of present sections in this node is map_count.
*/
static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
unsigned long pnum_end,
unsigned long map_count)
{
struct mem_section_usage *usage;
unsigned long pnum;
struct page *map;
usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
mem_section_usage_size() * map_count);
if (!usage) {
pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
goto failed;
}
sparse_buffer_init(map_count * section_map_size(), nid);
for_each_present_section_nr(pnum_begin, pnum) {
unsigned long pfn = section_nr_to_pfn(pnum);
if (pnum >= pnum_end)
break;
map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
nid, NULL);
if (!map) {
pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
__func__, nid);
pnum_begin = pnum;
goto failed;
}
check_usemap_section_nr(nid, usage);
sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
SECTION_IS_EARLY);
usage = (void *) usage + mem_section_usage_size();
}
sparse_buffer_fini();
return;
failed:
/* We failed to allocate, mark all the following pnums as not present */
for_each_present_section_nr(pnum_begin, pnum) {
struct mem_section *ms;
if (pnum >= pnum_end)
break;
ms = __nr_to_section(pnum);
ms->section_mem_map = 0;
}
}
/*
* Allocate the accumulated non-linear sections, allocate a mem_map
* for each and record the physical to section mapping.
*/
void __init sparse_init(void)
{
unsigned long pnum_begin = first_present_section_nr();
int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
unsigned long pnum_end, map_count = 1;
/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
set_pageblock_order();
for_each_present_section_nr(pnum_begin + 1, pnum_end) {
int nid = sparse_early_nid(__nr_to_section(pnum_end));
if (nid == nid_begin) {
map_count++;
continue;
}
/* Init node with sections in range [pnum_begin, pnum_end) */
sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
nid_begin = nid;
pnum_begin = pnum_end;
map_count = 1;
}
/* cover the last node */
sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
vmemmap_populate_print_last();
}
#ifdef CONFIG_MEMORY_HOTPLUG
/* Mark all memory sections within the pfn range as online */
void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
unsigned long section_nr = pfn_to_section_nr(pfn);
struct mem_section *ms;
/* onlining code should never touch invalid ranges */
if (WARN_ON(!valid_section_nr(section_nr)))
continue;
ms = __nr_to_section(section_nr);
ms->section_mem_map |= SECTION_IS_ONLINE;
}
}
#ifdef CONFIG_MEMORY_HOTREMOVE
/* Mark all memory sections within the pfn range as offline */
void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
unsigned long section_nr = pfn_to_section_nr(pfn);
struct mem_section *ms;
/*
* TODO this needs some double checking. Offlining code makes
* sure to check pfn_valid but those checks might be just bogus
*/
if (WARN_ON(!valid_section_nr(section_nr)))
continue;
ms = __nr_to_section(section_nr);
ms->section_mem_map &= ~SECTION_IS_ONLINE;
}
}
#endif
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static struct page * __meminit populate_section_memmap(unsigned long pfn,
unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
{
return __populate_section_memmap(pfn, nr_pages, nid, altmap);
}
static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
struct vmem_altmap *altmap)
{
unsigned long start = (unsigned long) pfn_to_page(pfn);
unsigned long end = start + nr_pages * sizeof(struct page);
vmemmap_free(start, end, altmap);
}
static void free_map_bootmem(struct page *memmap)
{
unsigned long start = (unsigned long)memmap;
unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
vmemmap_free(start, end, NULL);
}
static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
struct mem_section *ms = __pfn_to_section(pfn);
unsigned long *subsection_map = ms->usage
? &ms->usage->subsection_map[0] : NULL;
subsection_mask_set(map, pfn, nr_pages);
if (subsection_map)
bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
"section already deactivated (%#lx + %ld)\n",
pfn, nr_pages))
return -EINVAL;
bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
return 0;
}
static bool is_subsection_map_empty(struct mem_section *ms)
{
return bitmap_empty(&ms->usage->subsection_map[0],
SUBSECTIONS_PER_SECTION);
}
static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
struct mem_section *ms = __pfn_to_section(pfn);
DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
unsigned long *subsection_map;
int rc = 0;
subsection_mask_set(map, pfn, nr_pages);
subsection_map = &ms->usage->subsection_map[0];
if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
rc = -EINVAL;
else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
rc = -EEXIST;
else
bitmap_or(subsection_map, map, subsection_map,
SUBSECTIONS_PER_SECTION);
return rc;
}
#else
struct page * __meminit populate_section_memmap(unsigned long pfn,
unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
{
return kvmalloc_node(array_size(sizeof(struct page),
PAGES_PER_SECTION), GFP_KERNEL, nid);
}
static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
struct vmem_altmap *altmap)
{
kvfree(pfn_to_page(pfn));
}
static void free_map_bootmem(struct page *memmap)
{
unsigned long maps_section_nr, removing_section_nr, i;
unsigned long magic, nr_pages;
struct page *page = virt_to_page(memmap);
nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
>> PAGE_SHIFT;
for (i = 0; i < nr_pages; i++, page++) {
magic = (unsigned long) page->freelist;
BUG_ON(magic == NODE_INFO);
maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
removing_section_nr = page_private(page);
/*
* When this function is called, the removing section is
* logical offlined state. This means all pages are isolated
* from page allocator. If removing section's memmap is placed
* on the same section, it must not be freed.
* If it is freed, page allocator may allocate it which will
* be removed physically soon.
*/
if (maps_section_nr != removing_section_nr)
put_page_bootmem(page);
}
}
static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
return 0;
}
static bool is_subsection_map_empty(struct mem_section *ms)
{
return true;
}
static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
return 0;
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
/*
* To deactivate a memory region, there are 3 cases to handle across
* two configurations (SPARSEMEM_VMEMMAP={y,n}):
*
* 1. deactivation of a partial hot-added section (only possible in
* the SPARSEMEM_VMEMMAP=y case).
* a) section was present at memory init.
* b) section was hot-added post memory init.
* 2. deactivation of a complete hot-added section.
* 3. deactivation of a complete section from memory init.
*
* For 1, when subsection_map does not empty we will not be freeing the
* usage map, but still need to free the vmemmap range.
*
* For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
*/
static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
struct vmem_altmap *altmap)
{
struct mem_section *ms = __pfn_to_section(pfn);
bool section_is_early = early_section(ms);
struct page *memmap = NULL;
bool empty;
if (clear_subsection_map(pfn, nr_pages))
return;
empty = is_subsection_map_empty(ms);
if (empty) {
unsigned long section_nr = pfn_to_section_nr(pfn);
/*
* When removing an early section, the usage map is kept (as the
* usage maps of other sections fall into the same page). It
* will be re-used when re-adding the section - which is then no
* longer an early section. If the usage map is PageReserved, it
* was allocated during boot.
*/
if (!PageReserved(virt_to_page(ms->usage))) {
kfree(ms->usage);
ms->usage = NULL;
}
memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
/*
* Mark the section invalid so that valid_section()
* return false. This prevents code from dereferencing
* ms->usage array.
*/
ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
}
if (section_is_early && memmap)
free_map_bootmem(memmap);
else
depopulate_section_memmap(pfn, nr_pages, altmap);
if (empty)
ms->section_mem_map = (unsigned long)NULL;
}
static struct page * __meminit section_activate(int nid, unsigned long pfn,
unsigned long nr_pages, struct vmem_altmap *altmap)
{
struct mem_section *ms = __pfn_to_section(pfn);
struct mem_section_usage *usage = NULL;
struct page *memmap;
int rc = 0;
if (!ms->usage) {
usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
if (!usage)
return ERR_PTR(-ENOMEM);
ms->usage = usage;
}
rc = fill_subsection_map(pfn, nr_pages);
if (rc) {
if (usage)
ms->usage = NULL;
kfree(usage);
return ERR_PTR(rc);
}
/*
* The early init code does not consider partially populated
* initial sections, it simply assumes that memory will never be
* referenced. If we hot-add memory into such a section then we
* do not need to populate the memmap and can simply reuse what
* is already there.
*/
if (nr_pages < PAGES_PER_SECTION && early_section(ms))
return pfn_to_page(pfn);
memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
if (!memmap) {
section_deactivate(pfn, nr_pages, altmap);
return ERR_PTR(-ENOMEM);
}
return memmap;
}
/**
* sparse_add_section - add a memory section, or populate an existing one
* @nid: The node to add section on
* @start_pfn: start pfn of the memory range
* @nr_pages: number of pfns to add in the section
* @altmap: device page map
*
* This is only intended for hotplug.
*
* Note that only VMEMMAP supports sub-section aligned hotplug,
* the proper alignment and size are gated by check_pfn_span().
*
*
* Return:
* * 0 - On success.
* * -EEXIST - Section has been present.
* * -ENOMEM - Out of memory.
*/
int __meminit sparse_add_section(int nid, unsigned long start_pfn,
unsigned long nr_pages, struct vmem_altmap *altmap)
{
unsigned long section_nr = pfn_to_section_nr(start_pfn);
struct mem_section *ms;
struct page *memmap;
int ret;
ret = sparse_index_init(section_nr, nid);
if (ret < 0)
return ret;
memmap = section_activate(nid, start_pfn, nr_pages, altmap);
if (IS_ERR(memmap))
return PTR_ERR(memmap);
/*
* Poison uninitialized struct pages in order to catch invalid flags
* combinations.
*/
page_init_poison(memmap, sizeof(struct page) * nr_pages);
ms = __nr_to_section(section_nr);
set_section_nid(section_nr, nid);
section_mark_present(ms);
/* Align memmap to section boundary in the subsection case */
if (section_nr_to_pfn(section_nr) != start_pfn)
memmap = pfn_to_page(section_nr_to_pfn(section_nr));
sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
return 0;
}
#ifdef CONFIG_MEMORY_FAILURE
static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
{
int i;
/*
* A further optimization is to have per section refcounted
* num_poisoned_pages. But that would need more space per memmap, so
* for now just do a quick global check to speed up this routine in the
* absence of bad pages.
*/
if (atomic_long_read(&num_poisoned_pages) == 0)
return;
for (i = 0; i < nr_pages; i++) {
if (PageHWPoison(&memmap[i])) {
num_poisoned_pages_dec();
ClearPageHWPoison(&memmap[i]);
}
}
}
#else
static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
{
}
#endif
void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
unsigned long nr_pages, unsigned long map_offset,
struct vmem_altmap *altmap)
{
clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
nr_pages - map_offset);
section_deactivate(pfn, nr_pages, altmap);
}
#endif /* CONFIG_MEMORY_HOTPLUG */