mirror of
https://github.com/torvalds/linux.git
synced 2024-11-19 18:41:48 +00:00
e283546c04
When an MCDI command times out (whether or not we find it completed when we poll), call efx_mcdi_abandon(), which tells all subsequent MCDI calls to fail-fast, and queues up an FLR. Because an FLR doesn't lead to receiving any reboot even from the MC (unlike most other types of reset), we have to call efx_ef10_reset_mc_allocations. In efx_start_all(), if a reset (of any kind) is pending, we bail out. Without this, attempts to reconfigure (e.g. change mtu) can cause driver/mc state inconsistency if the first MCDI call triggers an FLR. For similar reasons, on EF10, in efx_reset_down(method=RESET_TYPE_MCDI_TIMEOUT), set the number of active queues to zero before calling efx_stop_all(). And, on farch, in efx_reset_up(method=RESET_TYPE_MCDI_TIMEOUT), set active_queues and flushes pending & outstanding to zero. efx_mcdi_mode_{poll,event}() should not take us out of fail-fast mode. Instead, this is done by efx_mcdi_reset() after the FLR completes. The new FLR reset_type RESET_TYPE_MCDI_TIMEOUT doesn't really fit into the hierarchy of reset 'scopes' whereby efx_reset() decides some resets subsume others. Thus, it uses separate logic. Also, fixed up some inconsistency around RESET_TYPE_MC_BIST, which was in the wrong place in that hierarchy. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1892 lines
51 KiB
C
1892 lines
51 KiB
C
/****************************************************************************
|
|
* Driver for Solarflare network controllers and boards
|
|
* Copyright 2008-2013 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <asm/cmpxchg.h>
|
|
#include "net_driver.h"
|
|
#include "nic.h"
|
|
#include "io.h"
|
|
#include "farch_regs.h"
|
|
#include "mcdi_pcol.h"
|
|
#include "phy.h"
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Management-Controller-to-Driver Interface
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
#define MCDI_RPC_TIMEOUT (10 * HZ)
|
|
|
|
/* A reboot/assertion causes the MCDI status word to be set after the
|
|
* command word is set or a REBOOT event is sent. If we notice a reboot
|
|
* via these mechanisms then wait 250ms for the status word to be set.
|
|
*/
|
|
#define MCDI_STATUS_DELAY_US 100
|
|
#define MCDI_STATUS_DELAY_COUNT 2500
|
|
#define MCDI_STATUS_SLEEP_MS \
|
|
(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
|
|
|
|
#define SEQ_MASK \
|
|
EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
|
|
|
|
struct efx_mcdi_async_param {
|
|
struct list_head list;
|
|
unsigned int cmd;
|
|
size_t inlen;
|
|
size_t outlen;
|
|
bool quiet;
|
|
efx_mcdi_async_completer *complete;
|
|
unsigned long cookie;
|
|
/* followed by request/response buffer */
|
|
};
|
|
|
|
static void efx_mcdi_timeout_async(unsigned long context);
|
|
static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
|
|
bool *was_attached_out);
|
|
static bool efx_mcdi_poll_once(struct efx_nic *efx);
|
|
static void efx_mcdi_abandon(struct efx_nic *efx);
|
|
|
|
int efx_mcdi_init(struct efx_nic *efx)
|
|
{
|
|
struct efx_mcdi_iface *mcdi;
|
|
bool already_attached;
|
|
int rc;
|
|
|
|
efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
|
|
if (!efx->mcdi)
|
|
return -ENOMEM;
|
|
|
|
mcdi = efx_mcdi(efx);
|
|
mcdi->efx = efx;
|
|
init_waitqueue_head(&mcdi->wq);
|
|
spin_lock_init(&mcdi->iface_lock);
|
|
mcdi->state = MCDI_STATE_QUIESCENT;
|
|
mcdi->mode = MCDI_MODE_POLL;
|
|
spin_lock_init(&mcdi->async_lock);
|
|
INIT_LIST_HEAD(&mcdi->async_list);
|
|
setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
|
|
(unsigned long)mcdi);
|
|
|
|
(void) efx_mcdi_poll_reboot(efx);
|
|
mcdi->new_epoch = true;
|
|
|
|
/* Recover from a failed assertion before probing */
|
|
rc = efx_mcdi_handle_assertion(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Let the MC (and BMC, if this is a LOM) know that the driver
|
|
* is loaded. We should do this before we reset the NIC.
|
|
*/
|
|
rc = efx_mcdi_drv_attach(efx, true, &already_attached);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"Unable to register driver with MCPU\n");
|
|
return rc;
|
|
}
|
|
if (already_attached)
|
|
/* Not a fatal error */
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"Host already registered with MCPU\n");
|
|
|
|
if (efx->mcdi->fn_flags &
|
|
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
|
|
efx->primary = efx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void efx_mcdi_fini(struct efx_nic *efx)
|
|
{
|
|
if (!efx->mcdi)
|
|
return;
|
|
|
|
BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
|
|
|
|
/* Relinquish the device (back to the BMC, if this is a LOM) */
|
|
efx_mcdi_drv_attach(efx, false, NULL);
|
|
|
|
kfree(efx->mcdi);
|
|
}
|
|
|
|
static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
|
|
const efx_dword_t *inbuf, size_t inlen)
|
|
{
|
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
|
efx_dword_t hdr[2];
|
|
size_t hdr_len;
|
|
u32 xflags, seqno;
|
|
|
|
BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
|
|
|
|
/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
|
|
spin_lock_bh(&mcdi->iface_lock);
|
|
++mcdi->seqno;
|
|
spin_unlock_bh(&mcdi->iface_lock);
|
|
|
|
seqno = mcdi->seqno & SEQ_MASK;
|
|
xflags = 0;
|
|
if (mcdi->mode == MCDI_MODE_EVENTS)
|
|
xflags |= MCDI_HEADER_XFLAGS_EVREQ;
|
|
|
|
if (efx->type->mcdi_max_ver == 1) {
|
|
/* MCDI v1 */
|
|
EFX_POPULATE_DWORD_7(hdr[0],
|
|
MCDI_HEADER_RESPONSE, 0,
|
|
MCDI_HEADER_RESYNC, 1,
|
|
MCDI_HEADER_CODE, cmd,
|
|
MCDI_HEADER_DATALEN, inlen,
|
|
MCDI_HEADER_SEQ, seqno,
|
|
MCDI_HEADER_XFLAGS, xflags,
|
|
MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
|
|
hdr_len = 4;
|
|
} else {
|
|
/* MCDI v2 */
|
|
BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
|
|
EFX_POPULATE_DWORD_7(hdr[0],
|
|
MCDI_HEADER_RESPONSE, 0,
|
|
MCDI_HEADER_RESYNC, 1,
|
|
MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
|
|
MCDI_HEADER_DATALEN, 0,
|
|
MCDI_HEADER_SEQ, seqno,
|
|
MCDI_HEADER_XFLAGS, xflags,
|
|
MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
|
|
EFX_POPULATE_DWORD_2(hdr[1],
|
|
MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
|
|
MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
|
|
hdr_len = 8;
|
|
}
|
|
|
|
efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
|
|
|
|
mcdi->new_epoch = false;
|
|
}
|
|
|
|
static int efx_mcdi_errno(unsigned int mcdi_err)
|
|
{
|
|
switch (mcdi_err) {
|
|
case 0:
|
|
return 0;
|
|
#define TRANSLATE_ERROR(name) \
|
|
case MC_CMD_ERR_ ## name: \
|
|
return -name;
|
|
TRANSLATE_ERROR(EPERM);
|
|
TRANSLATE_ERROR(ENOENT);
|
|
TRANSLATE_ERROR(EINTR);
|
|
TRANSLATE_ERROR(EAGAIN);
|
|
TRANSLATE_ERROR(EACCES);
|
|
TRANSLATE_ERROR(EBUSY);
|
|
TRANSLATE_ERROR(EINVAL);
|
|
TRANSLATE_ERROR(EDEADLK);
|
|
TRANSLATE_ERROR(ENOSYS);
|
|
TRANSLATE_ERROR(ETIME);
|
|
TRANSLATE_ERROR(EALREADY);
|
|
TRANSLATE_ERROR(ENOSPC);
|
|
#undef TRANSLATE_ERROR
|
|
case MC_CMD_ERR_ENOTSUP:
|
|
return -EOPNOTSUPP;
|
|
case MC_CMD_ERR_ALLOC_FAIL:
|
|
return -ENOBUFS;
|
|
case MC_CMD_ERR_MAC_EXIST:
|
|
return -EADDRINUSE;
|
|
default:
|
|
return -EPROTO;
|
|
}
|
|
}
|
|
|
|
static void efx_mcdi_read_response_header(struct efx_nic *efx)
|
|
{
|
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
|
unsigned int respseq, respcmd, error;
|
|
efx_dword_t hdr;
|
|
|
|
efx->type->mcdi_read_response(efx, &hdr, 0, 4);
|
|
respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
|
|
respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
|
|
error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
|
|
|
|
if (respcmd != MC_CMD_V2_EXTN) {
|
|
mcdi->resp_hdr_len = 4;
|
|
mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
|
|
} else {
|
|
efx->type->mcdi_read_response(efx, &hdr, 4, 4);
|
|
mcdi->resp_hdr_len = 8;
|
|
mcdi->resp_data_len =
|
|
EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
|
|
}
|
|
|
|
if (error && mcdi->resp_data_len == 0) {
|
|
netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
|
|
mcdi->resprc = -EIO;
|
|
} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"MC response mismatch tx seq 0x%x rx seq 0x%x\n",
|
|
respseq, mcdi->seqno);
|
|
mcdi->resprc = -EIO;
|
|
} else if (error) {
|
|
efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
|
|
mcdi->resprc =
|
|
efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0));
|
|
} else {
|
|
mcdi->resprc = 0;
|
|
}
|
|
}
|
|
|
|
static bool efx_mcdi_poll_once(struct efx_nic *efx)
|
|
{
|
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
|
|
|
rmb();
|
|
if (!efx->type->mcdi_poll_response(efx))
|
|
return false;
|
|
|
|
spin_lock_bh(&mcdi->iface_lock);
|
|
efx_mcdi_read_response_header(efx);
|
|
spin_unlock_bh(&mcdi->iface_lock);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int efx_mcdi_poll(struct efx_nic *efx)
|
|
{
|
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
|
unsigned long time, finish;
|
|
unsigned int spins;
|
|
int rc;
|
|
|
|
/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
|
|
rc = efx_mcdi_poll_reboot(efx);
|
|
if (rc) {
|
|
spin_lock_bh(&mcdi->iface_lock);
|
|
mcdi->resprc = rc;
|
|
mcdi->resp_hdr_len = 0;
|
|
mcdi->resp_data_len = 0;
|
|
spin_unlock_bh(&mcdi->iface_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
|
|
* because generally mcdi responses are fast. After that, back off
|
|
* and poll once a jiffy (approximately)
|
|
*/
|
|
spins = TICK_USEC;
|
|
finish = jiffies + MCDI_RPC_TIMEOUT;
|
|
|
|
while (1) {
|
|
if (spins != 0) {
|
|
--spins;
|
|
udelay(1);
|
|
} else {
|
|
schedule_timeout_uninterruptible(1);
|
|
}
|
|
|
|
time = jiffies;
|
|
|
|
if (efx_mcdi_poll_once(efx))
|
|
break;
|
|
|
|
if (time_after(time, finish))
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Return rc=0 like wait_event_timeout() */
|
|
return 0;
|
|
}
|
|
|
|
/* Test and clear MC-rebooted flag for this port/function; reset
|
|
* software state as necessary.
|
|
*/
|
|
int efx_mcdi_poll_reboot(struct efx_nic *efx)
|
|
{
|
|
if (!efx->mcdi)
|
|
return 0;
|
|
|
|
return efx->type->mcdi_poll_reboot(efx);
|
|
}
|
|
|
|
static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
|
|
{
|
|
return cmpxchg(&mcdi->state,
|
|
MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
|
|
MCDI_STATE_QUIESCENT;
|
|
}
|
|
|
|
static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
|
|
{
|
|
/* Wait until the interface becomes QUIESCENT and we win the race
|
|
* to mark it RUNNING_SYNC.
|
|
*/
|
|
wait_event(mcdi->wq,
|
|
cmpxchg(&mcdi->state,
|
|
MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
|
|
MCDI_STATE_QUIESCENT);
|
|
}
|
|
|
|
static int efx_mcdi_await_completion(struct efx_nic *efx)
|
|
{
|
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
|
|
|
if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
|
|
MCDI_RPC_TIMEOUT) == 0)
|
|
return -ETIMEDOUT;
|
|
|
|
/* Check if efx_mcdi_set_mode() switched us back to polled completions.
|
|
* In which case, poll for completions directly. If efx_mcdi_ev_cpl()
|
|
* completed the request first, then we'll just end up completing the
|
|
* request again, which is safe.
|
|
*
|
|
* We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
|
|
* wait_event_timeout() implicitly provides.
|
|
*/
|
|
if (mcdi->mode == MCDI_MODE_POLL)
|
|
return efx_mcdi_poll(efx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
|
|
* requester. Return whether this was done. Does not take any locks.
|
|
*/
|
|
static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
|
|
{
|
|
if (cmpxchg(&mcdi->state,
|
|
MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
|
|
MCDI_STATE_RUNNING_SYNC) {
|
|
wake_up(&mcdi->wq);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
|
|
{
|
|
if (mcdi->mode == MCDI_MODE_EVENTS) {
|
|
struct efx_mcdi_async_param *async;
|
|
struct efx_nic *efx = mcdi->efx;
|
|
|
|
/* Process the asynchronous request queue */
|
|
spin_lock_bh(&mcdi->async_lock);
|
|
async = list_first_entry_or_null(
|
|
&mcdi->async_list, struct efx_mcdi_async_param, list);
|
|
if (async) {
|
|
mcdi->state = MCDI_STATE_RUNNING_ASYNC;
|
|
efx_mcdi_send_request(efx, async->cmd,
|
|
(const efx_dword_t *)(async + 1),
|
|
async->inlen);
|
|
mod_timer(&mcdi->async_timer,
|
|
jiffies + MCDI_RPC_TIMEOUT);
|
|
}
|
|
spin_unlock_bh(&mcdi->async_lock);
|
|
|
|
if (async)
|
|
return;
|
|
}
|
|
|
|
mcdi->state = MCDI_STATE_QUIESCENT;
|
|
wake_up(&mcdi->wq);
|
|
}
|
|
|
|
/* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
|
|
* asynchronous completion function, and release the interface.
|
|
* Return whether this was done. Must be called in bh-disabled
|
|
* context. Will take iface_lock and async_lock.
|
|
*/
|
|
static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
|
|
{
|
|
struct efx_nic *efx = mcdi->efx;
|
|
struct efx_mcdi_async_param *async;
|
|
size_t hdr_len, data_len, err_len;
|
|
efx_dword_t *outbuf;
|
|
MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0);
|
|
int rc;
|
|
|
|
if (cmpxchg(&mcdi->state,
|
|
MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
|
|
MCDI_STATE_RUNNING_ASYNC)
|
|
return false;
|
|
|
|
spin_lock(&mcdi->iface_lock);
|
|
if (timeout) {
|
|
/* Ensure that if the completion event arrives later,
|
|
* the seqno check in efx_mcdi_ev_cpl() will fail
|
|
*/
|
|
++mcdi->seqno;
|
|
++mcdi->credits;
|
|
rc = -ETIMEDOUT;
|
|
hdr_len = 0;
|
|
data_len = 0;
|
|
} else {
|
|
rc = mcdi->resprc;
|
|
hdr_len = mcdi->resp_hdr_len;
|
|
data_len = mcdi->resp_data_len;
|
|
}
|
|
spin_unlock(&mcdi->iface_lock);
|
|
|
|
/* Stop the timer. In case the timer function is running, we
|
|
* must wait for it to return so that there is no possibility
|
|
* of it aborting the next request.
|
|
*/
|
|
if (!timeout)
|
|
del_timer_sync(&mcdi->async_timer);
|
|
|
|
spin_lock(&mcdi->async_lock);
|
|
async = list_first_entry(&mcdi->async_list,
|
|
struct efx_mcdi_async_param, list);
|
|
list_del(&async->list);
|
|
spin_unlock(&mcdi->async_lock);
|
|
|
|
outbuf = (efx_dword_t *)(async + 1);
|
|
efx->type->mcdi_read_response(efx, outbuf, hdr_len,
|
|
min(async->outlen, data_len));
|
|
if (!timeout && rc && !async->quiet) {
|
|
err_len = min(sizeof(errbuf), data_len);
|
|
efx->type->mcdi_read_response(efx, errbuf, hdr_len,
|
|
sizeof(errbuf));
|
|
efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
|
|
err_len, rc);
|
|
}
|
|
async->complete(efx, async->cookie, rc, outbuf, data_len);
|
|
kfree(async);
|
|
|
|
efx_mcdi_release(mcdi);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
|
|
unsigned int datalen, unsigned int mcdi_err)
|
|
{
|
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
|
bool wake = false;
|
|
|
|
spin_lock(&mcdi->iface_lock);
|
|
|
|
if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
|
|
if (mcdi->credits)
|
|
/* The request has been cancelled */
|
|
--mcdi->credits;
|
|
else
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"MC response mismatch tx seq 0x%x rx "
|
|
"seq 0x%x\n", seqno, mcdi->seqno);
|
|
} else {
|
|
if (efx->type->mcdi_max_ver >= 2) {
|
|
/* MCDI v2 responses don't fit in an event */
|
|
efx_mcdi_read_response_header(efx);
|
|
} else {
|
|
mcdi->resprc = efx_mcdi_errno(mcdi_err);
|
|
mcdi->resp_hdr_len = 4;
|
|
mcdi->resp_data_len = datalen;
|
|
}
|
|
|
|
wake = true;
|
|
}
|
|
|
|
spin_unlock(&mcdi->iface_lock);
|
|
|
|
if (wake) {
|
|
if (!efx_mcdi_complete_async(mcdi, false))
|
|
(void) efx_mcdi_complete_sync(mcdi);
|
|
|
|
/* If the interface isn't RUNNING_ASYNC or
|
|
* RUNNING_SYNC then we've received a duplicate
|
|
* completion after we've already transitioned back to
|
|
* QUIESCENT. [A subsequent invocation would increment
|
|
* seqno, so would have failed the seqno check].
|
|
*/
|
|
}
|
|
}
|
|
|
|
static void efx_mcdi_timeout_async(unsigned long context)
|
|
{
|
|
struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
|
|
|
|
efx_mcdi_complete_async(mcdi, true);
|
|
}
|
|
|
|
static int
|
|
efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
|
|
{
|
|
if (efx->type->mcdi_max_ver < 0 ||
|
|
(efx->type->mcdi_max_ver < 2 &&
|
|
cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
|
|
return -EINVAL;
|
|
|
|
if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
|
|
(efx->type->mcdi_max_ver < 2 &&
|
|
inlen > MCDI_CTL_SDU_LEN_MAX_V1))
|
|
return -EMSGSIZE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
|
|
efx_dword_t *outbuf, size_t outlen,
|
|
size_t *outlen_actual, bool quiet)
|
|
{
|
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
|
MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0);
|
|
int rc;
|
|
|
|
if (mcdi->mode == MCDI_MODE_POLL)
|
|
rc = efx_mcdi_poll(efx);
|
|
else
|
|
rc = efx_mcdi_await_completion(efx);
|
|
|
|
if (rc != 0) {
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"MC command 0x%x inlen %d mode %d timed out\n",
|
|
cmd, (int)inlen, mcdi->mode);
|
|
|
|
if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"MCDI request was completed without an event\n");
|
|
rc = 0;
|
|
}
|
|
|
|
efx_mcdi_abandon(efx);
|
|
|
|
/* Close the race with efx_mcdi_ev_cpl() executing just too late
|
|
* and completing a request we've just cancelled, by ensuring
|
|
* that the seqno check therein fails.
|
|
*/
|
|
spin_lock_bh(&mcdi->iface_lock);
|
|
++mcdi->seqno;
|
|
++mcdi->credits;
|
|
spin_unlock_bh(&mcdi->iface_lock);
|
|
}
|
|
|
|
if (rc != 0) {
|
|
if (outlen_actual)
|
|
*outlen_actual = 0;
|
|
} else {
|
|
size_t hdr_len, data_len, err_len;
|
|
|
|
/* At the very least we need a memory barrier here to ensure
|
|
* we pick up changes from efx_mcdi_ev_cpl(). Protect against
|
|
* a spurious efx_mcdi_ev_cpl() running concurrently by
|
|
* acquiring the iface_lock. */
|
|
spin_lock_bh(&mcdi->iface_lock);
|
|
rc = mcdi->resprc;
|
|
hdr_len = mcdi->resp_hdr_len;
|
|
data_len = mcdi->resp_data_len;
|
|
err_len = min(sizeof(errbuf), data_len);
|
|
spin_unlock_bh(&mcdi->iface_lock);
|
|
|
|
BUG_ON(rc > 0);
|
|
|
|
efx->type->mcdi_read_response(efx, outbuf, hdr_len,
|
|
min(outlen, data_len));
|
|
if (outlen_actual)
|
|
*outlen_actual = data_len;
|
|
|
|
efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
|
|
|
|
if (cmd == MC_CMD_REBOOT && rc == -EIO) {
|
|
/* Don't reset if MC_CMD_REBOOT returns EIO */
|
|
} else if (rc == -EIO || rc == -EINTR) {
|
|
netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
|
|
-rc);
|
|
efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
|
|
} else if (rc && !quiet) {
|
|
efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
|
|
rc);
|
|
}
|
|
|
|
if (rc == -EIO || rc == -EINTR) {
|
|
msleep(MCDI_STATUS_SLEEP_MS);
|
|
efx_mcdi_poll_reboot(efx);
|
|
mcdi->new_epoch = true;
|
|
}
|
|
}
|
|
|
|
efx_mcdi_release(mcdi);
|
|
return rc;
|
|
}
|
|
|
|
static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
|
|
const efx_dword_t *inbuf, size_t inlen,
|
|
efx_dword_t *outbuf, size_t outlen,
|
|
size_t *outlen_actual, bool quiet)
|
|
{
|
|
int rc;
|
|
|
|
rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
|
|
if (rc) {
|
|
if (outlen_actual)
|
|
*outlen_actual = 0;
|
|
return rc;
|
|
}
|
|
return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
|
|
outlen_actual, quiet);
|
|
}
|
|
|
|
int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
|
|
const efx_dword_t *inbuf, size_t inlen,
|
|
efx_dword_t *outbuf, size_t outlen,
|
|
size_t *outlen_actual)
|
|
{
|
|
return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
|
|
outlen_actual, false);
|
|
}
|
|
|
|
/* Normally, on receiving an error code in the MCDI response,
|
|
* efx_mcdi_rpc will log an error message containing (among other
|
|
* things) the raw error code, by means of efx_mcdi_display_error.
|
|
* This _quiet version suppresses that; if the caller wishes to log
|
|
* the error conditionally on the return code, it should call this
|
|
* function and is then responsible for calling efx_mcdi_display_error
|
|
* as needed.
|
|
*/
|
|
int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
|
|
const efx_dword_t *inbuf, size_t inlen,
|
|
efx_dword_t *outbuf, size_t outlen,
|
|
size_t *outlen_actual)
|
|
{
|
|
return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
|
|
outlen_actual, true);
|
|
}
|
|
|
|
int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
|
|
const efx_dword_t *inbuf, size_t inlen)
|
|
{
|
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
|
int rc;
|
|
|
|
rc = efx_mcdi_check_supported(efx, cmd, inlen);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (efx->mc_bist_for_other_fn)
|
|
return -ENETDOWN;
|
|
|
|
if (mcdi->mode == MCDI_MODE_FAIL)
|
|
return -ENETDOWN;
|
|
|
|
efx_mcdi_acquire_sync(mcdi);
|
|
efx_mcdi_send_request(efx, cmd, inbuf, inlen);
|
|
return 0;
|
|
}
|
|
|
|
static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
|
|
const efx_dword_t *inbuf, size_t inlen,
|
|
size_t outlen,
|
|
efx_mcdi_async_completer *complete,
|
|
unsigned long cookie, bool quiet)
|
|
{
|
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
|
struct efx_mcdi_async_param *async;
|
|
int rc;
|
|
|
|
rc = efx_mcdi_check_supported(efx, cmd, inlen);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (efx->mc_bist_for_other_fn)
|
|
return -ENETDOWN;
|
|
|
|
async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
|
|
GFP_ATOMIC);
|
|
if (!async)
|
|
return -ENOMEM;
|
|
|
|
async->cmd = cmd;
|
|
async->inlen = inlen;
|
|
async->outlen = outlen;
|
|
async->quiet = quiet;
|
|
async->complete = complete;
|
|
async->cookie = cookie;
|
|
memcpy(async + 1, inbuf, inlen);
|
|
|
|
spin_lock_bh(&mcdi->async_lock);
|
|
|
|
if (mcdi->mode == MCDI_MODE_EVENTS) {
|
|
list_add_tail(&async->list, &mcdi->async_list);
|
|
|
|
/* If this is at the front of the queue, try to start it
|
|
* immediately
|
|
*/
|
|
if (mcdi->async_list.next == &async->list &&
|
|
efx_mcdi_acquire_async(mcdi)) {
|
|
efx_mcdi_send_request(efx, cmd, inbuf, inlen);
|
|
mod_timer(&mcdi->async_timer,
|
|
jiffies + MCDI_RPC_TIMEOUT);
|
|
}
|
|
} else {
|
|
kfree(async);
|
|
rc = -ENETDOWN;
|
|
}
|
|
|
|
spin_unlock_bh(&mcdi->async_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
|
|
* @efx: NIC through which to issue the command
|
|
* @cmd: Command type number
|
|
* @inbuf: Command parameters
|
|
* @inlen: Length of command parameters, in bytes
|
|
* @outlen: Length to allocate for response buffer, in bytes
|
|
* @complete: Function to be called on completion or cancellation.
|
|
* @cookie: Arbitrary value to be passed to @complete.
|
|
*
|
|
* This function does not sleep and therefore may be called in atomic
|
|
* context. It will fail if event queues are disabled or if MCDI
|
|
* event completions have been disabled due to an error.
|
|
*
|
|
* If it succeeds, the @complete function will be called exactly once
|
|
* in atomic context, when one of the following occurs:
|
|
* (a) the completion event is received (in NAPI context)
|
|
* (b) event queues are disabled (in the process that disables them)
|
|
* (c) the request times-out (in timer context)
|
|
*/
|
|
int
|
|
efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
|
|
const efx_dword_t *inbuf, size_t inlen, size_t outlen,
|
|
efx_mcdi_async_completer *complete, unsigned long cookie)
|
|
{
|
|
return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
|
|
cookie, false);
|
|
}
|
|
|
|
int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
|
|
const efx_dword_t *inbuf, size_t inlen,
|
|
size_t outlen, efx_mcdi_async_completer *complete,
|
|
unsigned long cookie)
|
|
{
|
|
return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
|
|
cookie, true);
|
|
}
|
|
|
|
int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
|
|
efx_dword_t *outbuf, size_t outlen,
|
|
size_t *outlen_actual)
|
|
{
|
|
return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
|
|
outlen_actual, false);
|
|
}
|
|
|
|
int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
|
|
efx_dword_t *outbuf, size_t outlen,
|
|
size_t *outlen_actual)
|
|
{
|
|
return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
|
|
outlen_actual, true);
|
|
}
|
|
|
|
void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
|
|
size_t inlen, efx_dword_t *outbuf,
|
|
size_t outlen, int rc)
|
|
{
|
|
int code = 0, err_arg = 0;
|
|
|
|
if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
|
|
code = MCDI_DWORD(outbuf, ERR_CODE);
|
|
if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
|
|
err_arg = MCDI_DWORD(outbuf, ERR_ARG);
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n",
|
|
cmd, (int)inlen, rc, code, err_arg);
|
|
}
|
|
|
|
/* Switch to polled MCDI completions. This can be called in various
|
|
* error conditions with various locks held, so it must be lockless.
|
|
* Caller is responsible for flushing asynchronous requests later.
|
|
*/
|
|
void efx_mcdi_mode_poll(struct efx_nic *efx)
|
|
{
|
|
struct efx_mcdi_iface *mcdi;
|
|
|
|
if (!efx->mcdi)
|
|
return;
|
|
|
|
mcdi = efx_mcdi(efx);
|
|
/* If already in polling mode, nothing to do.
|
|
* If in fail-fast state, don't switch to polled completion.
|
|
* FLR recovery will do that later.
|
|
*/
|
|
if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
|
|
return;
|
|
|
|
/* We can switch from event completion to polled completion, because
|
|
* mcdi requests are always completed in shared memory. We do this by
|
|
* switching the mode to POLL'd then completing the request.
|
|
* efx_mcdi_await_completion() will then call efx_mcdi_poll().
|
|
*
|
|
* We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
|
|
* which efx_mcdi_complete_sync() provides for us.
|
|
*/
|
|
mcdi->mode = MCDI_MODE_POLL;
|
|
|
|
efx_mcdi_complete_sync(mcdi);
|
|
}
|
|
|
|
/* Flush any running or queued asynchronous requests, after event processing
|
|
* is stopped
|
|
*/
|
|
void efx_mcdi_flush_async(struct efx_nic *efx)
|
|
{
|
|
struct efx_mcdi_async_param *async, *next;
|
|
struct efx_mcdi_iface *mcdi;
|
|
|
|
if (!efx->mcdi)
|
|
return;
|
|
|
|
mcdi = efx_mcdi(efx);
|
|
|
|
/* We must be in poll or fail mode so no more requests can be queued */
|
|
BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
|
|
|
|
del_timer_sync(&mcdi->async_timer);
|
|
|
|
/* If a request is still running, make sure we give the MC
|
|
* time to complete it so that the response won't overwrite our
|
|
* next request.
|
|
*/
|
|
if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
|
|
efx_mcdi_poll(efx);
|
|
mcdi->state = MCDI_STATE_QUIESCENT;
|
|
}
|
|
|
|
/* Nothing else will access the async list now, so it is safe
|
|
* to walk it without holding async_lock. If we hold it while
|
|
* calling a completer then lockdep may warn that we have
|
|
* acquired locks in the wrong order.
|
|
*/
|
|
list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
|
|
async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
|
|
list_del(&async->list);
|
|
kfree(async);
|
|
}
|
|
}
|
|
|
|
void efx_mcdi_mode_event(struct efx_nic *efx)
|
|
{
|
|
struct efx_mcdi_iface *mcdi;
|
|
|
|
if (!efx->mcdi)
|
|
return;
|
|
|
|
mcdi = efx_mcdi(efx);
|
|
/* If already in event completion mode, nothing to do.
|
|
* If in fail-fast state, don't switch to event completion. FLR
|
|
* recovery will do that later.
|
|
*/
|
|
if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
|
|
return;
|
|
|
|
/* We can't switch from polled to event completion in the middle of a
|
|
* request, because the completion method is specified in the request.
|
|
* So acquire the interface to serialise the requestors. We don't need
|
|
* to acquire the iface_lock to change the mode here, but we do need a
|
|
* write memory barrier ensure that efx_mcdi_rpc() sees it, which
|
|
* efx_mcdi_acquire() provides.
|
|
*/
|
|
efx_mcdi_acquire_sync(mcdi);
|
|
mcdi->mode = MCDI_MODE_EVENTS;
|
|
efx_mcdi_release(mcdi);
|
|
}
|
|
|
|
static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
|
|
{
|
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
|
|
|
/* If there is an outstanding MCDI request, it has been terminated
|
|
* either by a BADASSERT or REBOOT event. If the mcdi interface is
|
|
* in polled mode, then do nothing because the MC reboot handler will
|
|
* set the header correctly. However, if the mcdi interface is waiting
|
|
* for a CMDDONE event it won't receive it [and since all MCDI events
|
|
* are sent to the same queue, we can't be racing with
|
|
* efx_mcdi_ev_cpl()]
|
|
*
|
|
* If there is an outstanding asynchronous request, we can't
|
|
* complete it now (efx_mcdi_complete() would deadlock). The
|
|
* reset process will take care of this.
|
|
*
|
|
* There's a race here with efx_mcdi_send_request(), because
|
|
* we might receive a REBOOT event *before* the request has
|
|
* been copied out. In polled mode (during startup) this is
|
|
* irrelevant, because efx_mcdi_complete_sync() is ignored. In
|
|
* event mode, this condition is just an edge-case of
|
|
* receiving a REBOOT event after posting the MCDI
|
|
* request. Did the mc reboot before or after the copyout? The
|
|
* best we can do always is just return failure.
|
|
*/
|
|
spin_lock(&mcdi->iface_lock);
|
|
if (efx_mcdi_complete_sync(mcdi)) {
|
|
if (mcdi->mode == MCDI_MODE_EVENTS) {
|
|
mcdi->resprc = rc;
|
|
mcdi->resp_hdr_len = 0;
|
|
mcdi->resp_data_len = 0;
|
|
++mcdi->credits;
|
|
}
|
|
} else {
|
|
int count;
|
|
|
|
/* Consume the status word since efx_mcdi_rpc_finish() won't */
|
|
for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
|
|
if (efx_mcdi_poll_reboot(efx))
|
|
break;
|
|
udelay(MCDI_STATUS_DELAY_US);
|
|
}
|
|
mcdi->new_epoch = true;
|
|
|
|
/* Nobody was waiting for an MCDI request, so trigger a reset */
|
|
efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
|
|
}
|
|
|
|
spin_unlock(&mcdi->iface_lock);
|
|
}
|
|
|
|
/* The MC is going down in to BIST mode. set the BIST flag to block
|
|
* new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
|
|
* (which doesn't actually execute a reset, it waits for the controlling
|
|
* function to reset it).
|
|
*/
|
|
static void efx_mcdi_ev_bist(struct efx_nic *efx)
|
|
{
|
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
|
|
|
spin_lock(&mcdi->iface_lock);
|
|
efx->mc_bist_for_other_fn = true;
|
|
if (efx_mcdi_complete_sync(mcdi)) {
|
|
if (mcdi->mode == MCDI_MODE_EVENTS) {
|
|
mcdi->resprc = -EIO;
|
|
mcdi->resp_hdr_len = 0;
|
|
mcdi->resp_data_len = 0;
|
|
++mcdi->credits;
|
|
}
|
|
}
|
|
mcdi->new_epoch = true;
|
|
efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
|
|
spin_unlock(&mcdi->iface_lock);
|
|
}
|
|
|
|
/* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
|
|
* to recover.
|
|
*/
|
|
static void efx_mcdi_abandon(struct efx_nic *efx)
|
|
{
|
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
|
|
|
if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
|
|
return; /* it had already been done */
|
|
netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
|
|
efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
|
|
}
|
|
|
|
/* Called from falcon_process_eventq for MCDI events */
|
|
void efx_mcdi_process_event(struct efx_channel *channel,
|
|
efx_qword_t *event)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
|
|
u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
|
|
|
|
switch (code) {
|
|
case MCDI_EVENT_CODE_BADSSERT:
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"MC watchdog or assertion failure at 0x%x\n", data);
|
|
efx_mcdi_ev_death(efx, -EINTR);
|
|
break;
|
|
|
|
case MCDI_EVENT_CODE_PMNOTICE:
|
|
netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
|
|
break;
|
|
|
|
case MCDI_EVENT_CODE_CMDDONE:
|
|
efx_mcdi_ev_cpl(efx,
|
|
MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
|
|
MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
|
|
MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
|
|
break;
|
|
|
|
case MCDI_EVENT_CODE_LINKCHANGE:
|
|
efx_mcdi_process_link_change(efx, event);
|
|
break;
|
|
case MCDI_EVENT_CODE_SENSOREVT:
|
|
efx_mcdi_sensor_event(efx, event);
|
|
break;
|
|
case MCDI_EVENT_CODE_SCHEDERR:
|
|
netif_dbg(efx, hw, efx->net_dev,
|
|
"MC Scheduler alert (0x%x)\n", data);
|
|
break;
|
|
case MCDI_EVENT_CODE_REBOOT:
|
|
case MCDI_EVENT_CODE_MC_REBOOT:
|
|
netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
|
|
efx_mcdi_ev_death(efx, -EIO);
|
|
break;
|
|
case MCDI_EVENT_CODE_MC_BIST:
|
|
netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
|
|
efx_mcdi_ev_bist(efx);
|
|
break;
|
|
case MCDI_EVENT_CODE_MAC_STATS_DMA:
|
|
/* MAC stats are gather lazily. We can ignore this. */
|
|
break;
|
|
case MCDI_EVENT_CODE_FLR:
|
|
efx_sriov_flr(efx, MCDI_EVENT_FIELD(*event, FLR_VF));
|
|
break;
|
|
case MCDI_EVENT_CODE_PTP_RX:
|
|
case MCDI_EVENT_CODE_PTP_FAULT:
|
|
case MCDI_EVENT_CODE_PTP_PPS:
|
|
efx_ptp_event(efx, event);
|
|
break;
|
|
case MCDI_EVENT_CODE_PTP_TIME:
|
|
efx_time_sync_event(channel, event);
|
|
break;
|
|
case MCDI_EVENT_CODE_TX_FLUSH:
|
|
case MCDI_EVENT_CODE_RX_FLUSH:
|
|
/* Two flush events will be sent: one to the same event
|
|
* queue as completions, and one to event queue 0.
|
|
* In the latter case the {RX,TX}_FLUSH_TO_DRIVER
|
|
* flag will be set, and we should ignore the event
|
|
* because we want to wait for all completions.
|
|
*/
|
|
BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
|
|
MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
|
|
if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
|
|
efx_ef10_handle_drain_event(efx);
|
|
break;
|
|
case MCDI_EVENT_CODE_TX_ERR:
|
|
case MCDI_EVENT_CODE_RX_ERR:
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"%s DMA error (event: "EFX_QWORD_FMT")\n",
|
|
code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
|
|
EFX_QWORD_VAL(*event));
|
|
efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
|
|
break;
|
|
default:
|
|
netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
|
|
code);
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Specific request functions
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
|
|
{
|
|
MCDI_DECLARE_BUF(outbuf,
|
|
max(MC_CMD_GET_VERSION_OUT_LEN,
|
|
MC_CMD_GET_CAPABILITIES_OUT_LEN));
|
|
size_t outlength;
|
|
const __le16 *ver_words;
|
|
size_t offset;
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
|
|
outbuf, sizeof(outbuf), &outlength);
|
|
if (rc)
|
|
goto fail;
|
|
if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
|
|
rc = -EIO;
|
|
goto fail;
|
|
}
|
|
|
|
ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
|
|
offset = snprintf(buf, len, "%u.%u.%u.%u",
|
|
le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
|
|
le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
|
|
|
|
/* EF10 may have multiple datapath firmware variants within a
|
|
* single version. Report which variants are running.
|
|
*/
|
|
if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
|
|
BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
|
|
outbuf, sizeof(outbuf), &outlength);
|
|
if (rc || outlength < MC_CMD_GET_CAPABILITIES_OUT_LEN)
|
|
offset += snprintf(
|
|
buf + offset, len - offset, " rx? tx?");
|
|
else
|
|
offset += snprintf(
|
|
buf + offset, len - offset, " rx%x tx%x",
|
|
MCDI_WORD(outbuf,
|
|
GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID),
|
|
MCDI_WORD(outbuf,
|
|
GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID));
|
|
|
|
/* It's theoretically possible for the string to exceed 31
|
|
* characters, though in practice the first three version
|
|
* components are short enough that this doesn't happen.
|
|
*/
|
|
if (WARN_ON(offset >= len))
|
|
buf[0] = 0;
|
|
}
|
|
|
|
return;
|
|
|
|
fail:
|
|
netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
|
|
buf[0] = 0;
|
|
}
|
|
|
|
static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
|
|
bool *was_attached)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
|
|
driver_operating ? 1 : 0);
|
|
MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
|
|
MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
goto fail;
|
|
if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
|
|
rc = -EIO;
|
|
goto fail;
|
|
}
|
|
|
|
if (driver_operating) {
|
|
if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
|
|
efx->mcdi->fn_flags =
|
|
MCDI_DWORD(outbuf,
|
|
DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
|
|
} else {
|
|
/* Synthesise flags for Siena */
|
|
efx->mcdi->fn_flags =
|
|
1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
|
|
1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
|
|
(efx_port_num(efx) == 0) <<
|
|
MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
|
|
}
|
|
}
|
|
|
|
/* We currently assume we have control of the external link
|
|
* and are completely trusted by firmware. Abort probing
|
|
* if that's not true for this function.
|
|
*/
|
|
if (driver_operating &&
|
|
(efx->mcdi->fn_flags &
|
|
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
|
|
1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) !=
|
|
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
|
|
1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"This driver version only supports one function per port\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (was_attached != NULL)
|
|
*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
|
|
return 0;
|
|
|
|
fail:
|
|
netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
|
|
return rc;
|
|
}
|
|
|
|
int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
|
|
u16 *fw_subtype_list, u32 *capabilities)
|
|
{
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
|
|
size_t outlen, i;
|
|
int port_num = efx_port_num(efx);
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
|
|
/* we need __aligned(2) for ether_addr_copy */
|
|
BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
|
|
BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
|
|
rc = -EIO;
|
|
goto fail;
|
|
}
|
|
|
|
if (mac_address)
|
|
ether_addr_copy(mac_address,
|
|
port_num ?
|
|
MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
|
|
MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
|
|
if (fw_subtype_list) {
|
|
for (i = 0;
|
|
i < MCDI_VAR_ARRAY_LEN(outlen,
|
|
GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
|
|
i++)
|
|
fw_subtype_list[i] = MCDI_ARRAY_WORD(
|
|
outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
|
|
for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
|
|
fw_subtype_list[i] = 0;
|
|
}
|
|
if (capabilities) {
|
|
if (port_num)
|
|
*capabilities = MCDI_DWORD(outbuf,
|
|
GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
|
|
else
|
|
*capabilities = MCDI_DWORD(outbuf,
|
|
GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
|
|
__func__, rc, (int)outlen);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
|
|
u32 dest = 0;
|
|
int rc;
|
|
|
|
if (uart)
|
|
dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
|
|
if (evq)
|
|
dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
|
|
|
|
MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
|
|
MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
|
|
|
|
BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
return rc;
|
|
}
|
|
|
|
int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
|
|
{
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
goto fail;
|
|
if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
|
|
rc = -EIO;
|
|
goto fail;
|
|
}
|
|
|
|
*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
|
|
return 0;
|
|
|
|
fail:
|
|
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
|
|
__func__, rc);
|
|
return rc;
|
|
}
|
|
|
|
int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
|
|
size_t *size_out, size_t *erase_size_out,
|
|
bool *protected_out)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
goto fail;
|
|
if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
|
|
rc = -EIO;
|
|
goto fail;
|
|
}
|
|
|
|
*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
|
|
*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
|
|
*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
|
|
(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
|
|
return 0;
|
|
|
|
fail:
|
|
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
|
|
return rc;
|
|
}
|
|
|
|
static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
|
|
int rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), NULL);
|
|
if (rc)
|
|
return rc;
|
|
|
|
switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
|
|
case MC_CMD_NVRAM_TEST_PASS:
|
|
case MC_CMD_NVRAM_TEST_NOTSUPP:
|
|
return 0;
|
|
default:
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
int efx_mcdi_nvram_test_all(struct efx_nic *efx)
|
|
{
|
|
u32 nvram_types;
|
|
unsigned int type;
|
|
int rc;
|
|
|
|
rc = efx_mcdi_nvram_types(efx, &nvram_types);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
type = 0;
|
|
while (nvram_types != 0) {
|
|
if (nvram_types & 1) {
|
|
rc = efx_mcdi_nvram_test(efx, type);
|
|
if (rc)
|
|
goto fail2;
|
|
}
|
|
type++;
|
|
nvram_types >>= 1;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail2:
|
|
netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
|
|
__func__, type);
|
|
fail1:
|
|
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
|
|
return rc;
|
|
}
|
|
|
|
static int efx_mcdi_read_assertion(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
|
|
MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
|
|
unsigned int flags, index;
|
|
const char *reason;
|
|
size_t outlen;
|
|
int retry;
|
|
int rc;
|
|
|
|
/* Attempt to read any stored assertion state before we reboot
|
|
* the mcfw out of the assertion handler. Retry twice, once
|
|
* because a boot-time assertion might cause this command to fail
|
|
* with EINTR. And once again because GET_ASSERTS can race with
|
|
* MC_CMD_REBOOT running on the other port. */
|
|
retry = 2;
|
|
do {
|
|
MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
|
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
|
|
inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
|
|
|
|
if (rc) {
|
|
efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
|
|
MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
|
|
outlen, rc);
|
|
return rc;
|
|
}
|
|
if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
|
|
return -EIO;
|
|
|
|
/* Print out any recorded assertion state */
|
|
flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
|
|
if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
|
|
return 0;
|
|
|
|
reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
|
|
? "system-level assertion"
|
|
: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
|
|
? "thread-level assertion"
|
|
: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
|
|
? "watchdog reset"
|
|
: "unknown assertion";
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
|
|
MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
|
|
MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
|
|
|
|
/* Print out the registers */
|
|
for (index = 0;
|
|
index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
|
|
index++)
|
|
netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
|
|
1 + index,
|
|
MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
|
|
index));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void efx_mcdi_exit_assertion(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
|
|
|
|
/* If the MC is running debug firmware, it might now be
|
|
* waiting for a debugger to attach, but we just want it to
|
|
* reboot. We set a flag that makes the command a no-op if it
|
|
* has already done so. We don't know what return code to
|
|
* expect (0 or -EIO), so ignore it.
|
|
*/
|
|
BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
|
|
MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
|
|
MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
|
|
(void) efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
|
|
NULL, 0, NULL);
|
|
}
|
|
|
|
int efx_mcdi_handle_assertion(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
rc = efx_mcdi_read_assertion(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
efx_mcdi_exit_assertion(efx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
|
|
BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
|
|
BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
|
|
|
|
BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
|
|
|
|
MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
}
|
|
|
|
static int efx_mcdi_reset_func(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
|
|
MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
|
|
ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
return rc;
|
|
}
|
|
|
|
static int efx_mcdi_reset_mc(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
|
|
MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
/* White is black, and up is down */
|
|
if (rc == -EIO)
|
|
return 0;
|
|
if (rc == 0)
|
|
rc = -EIO;
|
|
return rc;
|
|
}
|
|
|
|
enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
|
|
{
|
|
return RESET_TYPE_RECOVER_OR_ALL;
|
|
}
|
|
|
|
int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
|
|
{
|
|
int rc;
|
|
|
|
/* If MCDI is down, we can't handle_assertion */
|
|
if (method == RESET_TYPE_MCDI_TIMEOUT) {
|
|
rc = pci_reset_function(efx->pci_dev);
|
|
if (rc)
|
|
return rc;
|
|
/* Re-enable polled MCDI completion */
|
|
if (efx->mcdi) {
|
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
|
mcdi->mode = MCDI_MODE_POLL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Recover from a failed assertion pre-reset */
|
|
rc = efx_mcdi_handle_assertion(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (method == RESET_TYPE_WORLD)
|
|
return efx_mcdi_reset_mc(efx);
|
|
else
|
|
return efx_mcdi_reset_func(efx);
|
|
}
|
|
|
|
static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
|
|
const u8 *mac, int *id_out)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
|
|
MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
|
|
MC_CMD_FILTER_MODE_SIMPLE);
|
|
ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
|
|
rc = -EIO;
|
|
goto fail;
|
|
}
|
|
|
|
*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
*id_out = -1;
|
|
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
int
|
|
efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
|
|
{
|
|
return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
|
|
}
|
|
|
|
|
|
int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
|
|
{
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
|
|
rc = -EIO;
|
|
goto fail;
|
|
}
|
|
|
|
*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
*id_out = -1;
|
|
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
|
|
return rc;
|
|
}
|
|
|
|
|
|
int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
|
|
int rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
return rc;
|
|
}
|
|
|
|
int efx_mcdi_flush_rxqs(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
struct efx_rx_queue *rx_queue;
|
|
MCDI_DECLARE_BUF(inbuf,
|
|
MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
|
|
int rc, count;
|
|
|
|
BUILD_BUG_ON(EFX_MAX_CHANNELS >
|
|
MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
|
|
|
|
count = 0;
|
|
efx_for_each_channel(channel, efx) {
|
|
efx_for_each_channel_rx_queue(rx_queue, channel) {
|
|
if (rx_queue->flush_pending) {
|
|
rx_queue->flush_pending = false;
|
|
atomic_dec(&efx->rxq_flush_pending);
|
|
MCDI_SET_ARRAY_DWORD(
|
|
inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
|
|
count, efx_rx_queue_index(rx_queue));
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
|
|
MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
|
|
WARN_ON(rc < 0);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
|
|
return rc;
|
|
}
|
|
|
|
int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
|
|
|
|
BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
|
|
MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
|
|
MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
|
|
return efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_SFC_MTD
|
|
|
|
#define EFX_MCDI_NVRAM_LEN_MAX 128
|
|
|
|
static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
|
|
int rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
|
|
|
|
BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
return rc;
|
|
}
|
|
|
|
static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
|
|
loff_t offset, u8 *buffer, size_t length)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
|
|
MCDI_DECLARE_BUF(outbuf,
|
|
MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
|
|
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
|
|
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
return rc;
|
|
|
|
memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
|
|
return 0;
|
|
}
|
|
|
|
static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
|
|
loff_t offset, const u8 *buffer, size_t length)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf,
|
|
MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
|
|
int rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
|
|
MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
|
|
MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
|
|
memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
|
|
|
|
BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
|
|
ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
|
|
NULL, 0, NULL);
|
|
return rc;
|
|
}
|
|
|
|
static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
|
|
loff_t offset, size_t length)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
|
|
int rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
|
|
MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
|
|
MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
|
|
|
|
BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
return rc;
|
|
}
|
|
|
|
static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
|
|
int rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
|
|
|
|
BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
return rc;
|
|
}
|
|
|
|
int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
|
|
size_t len, size_t *retlen, u8 *buffer)
|
|
{
|
|
struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
|
|
struct efx_nic *efx = mtd->priv;
|
|
loff_t offset = start;
|
|
loff_t end = min_t(loff_t, start + len, mtd->size);
|
|
size_t chunk;
|
|
int rc = 0;
|
|
|
|
while (offset < end) {
|
|
chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
|
|
rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
|
|
buffer, chunk);
|
|
if (rc)
|
|
goto out;
|
|
offset += chunk;
|
|
buffer += chunk;
|
|
}
|
|
out:
|
|
*retlen = offset - start;
|
|
return rc;
|
|
}
|
|
|
|
int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
|
|
{
|
|
struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
|
|
struct efx_nic *efx = mtd->priv;
|
|
loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
|
|
loff_t end = min_t(loff_t, start + len, mtd->size);
|
|
size_t chunk = part->common.mtd.erasesize;
|
|
int rc = 0;
|
|
|
|
if (!part->updating) {
|
|
rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
|
|
if (rc)
|
|
goto out;
|
|
part->updating = true;
|
|
}
|
|
|
|
/* The MCDI interface can in fact do multiple erase blocks at once;
|
|
* but erasing may be slow, so we make multiple calls here to avoid
|
|
* tripping the MCDI RPC timeout. */
|
|
while (offset < end) {
|
|
rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
|
|
chunk);
|
|
if (rc)
|
|
goto out;
|
|
offset += chunk;
|
|
}
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
|
|
size_t len, size_t *retlen, const u8 *buffer)
|
|
{
|
|
struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
|
|
struct efx_nic *efx = mtd->priv;
|
|
loff_t offset = start;
|
|
loff_t end = min_t(loff_t, start + len, mtd->size);
|
|
size_t chunk;
|
|
int rc = 0;
|
|
|
|
if (!part->updating) {
|
|
rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
|
|
if (rc)
|
|
goto out;
|
|
part->updating = true;
|
|
}
|
|
|
|
while (offset < end) {
|
|
chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
|
|
rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
|
|
buffer, chunk);
|
|
if (rc)
|
|
goto out;
|
|
offset += chunk;
|
|
buffer += chunk;
|
|
}
|
|
out:
|
|
*retlen = offset - start;
|
|
return rc;
|
|
}
|
|
|
|
int efx_mcdi_mtd_sync(struct mtd_info *mtd)
|
|
{
|
|
struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
|
|
struct efx_nic *efx = mtd->priv;
|
|
int rc = 0;
|
|
|
|
if (part->updating) {
|
|
part->updating = false;
|
|
rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
|
|
{
|
|
struct efx_mcdi_mtd_partition *mcdi_part =
|
|
container_of(part, struct efx_mcdi_mtd_partition, common);
|
|
struct efx_nic *efx = part->mtd.priv;
|
|
|
|
snprintf(part->name, sizeof(part->name), "%s %s:%02x",
|
|
efx->name, part->type_name, mcdi_part->fw_subtype);
|
|
}
|
|
|
|
#endif /* CONFIG_SFC_MTD */
|