linux/Documentation/arm64/silicon-errata.txt
Suzuki K Poulose ece1397cbc arm64: Add work around for Arm Cortex-A55 Erratum 1024718
Some variants of the Arm Cortex-55 cores (r0p0, r0p1, r1p0) suffer
from an erratum 1024718, which causes incorrect updates when DBM/AP
bits in a page table entry is modified without a break-before-make
sequence. The work around is to skip enabling the hardware DBM feature
on the affected cores. The hardware Access Flag management features
is not affected. There are some other cores suffering from this
errata, which could be added to the midr_list to trigger the work
around.

Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: ckadabi@codeaurora.org
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:44 +01:00

80 lines
5.0 KiB
Plaintext

Silicon Errata and Software Workarounds
=======================================
Author: Will Deacon <will.deacon@arm.com>
Date : 27 November 2015
It is an unfortunate fact of life that hardware is often produced with
so-called "errata", which can cause it to deviate from the architecture
under specific circumstances. For hardware produced by ARM, these
errata are broadly classified into the following categories:
Category A: A critical error without a viable workaround.
Category B: A significant or critical error with an acceptable
workaround.
Category C: A minor error that is not expected to occur under normal
operation.
For more information, consult one of the "Software Developers Errata
Notice" documents available on infocenter.arm.com (registration
required).
As far as Linux is concerned, Category B errata may require some special
treatment in the operating system. For example, avoiding a particular
sequence of code, or configuring the processor in a particular way. A
less common situation may require similar actions in order to declassify
a Category A erratum into a Category C erratum. These are collectively
known as "software workarounds" and are only required in the minority of
cases (e.g. those cases that both require a non-secure workaround *and*
can be triggered by Linux).
For software workarounds that may adversely impact systems unaffected by
the erratum in question, a Kconfig entry is added under "Kernel
Features" -> "ARM errata workarounds via the alternatives framework".
These are enabled by default and patched in at runtime when an affected
CPU is detected. For less-intrusive workarounds, a Kconfig option is not
available and the code is structured (preferably with a comment) in such
a way that the erratum will not be hit.
This approach can make it slightly onerous to determine exactly which
errata are worked around in an arbitrary kernel source tree, so this
file acts as a registry of software workarounds in the Linux Kernel and
will be updated when new workarounds are committed and backported to
stable kernels.
| Implementor | Component | Erratum ID | Kconfig |
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #826319 | ARM64_ERRATUM_826319 |
| ARM | Cortex-A53 | #827319 | ARM64_ERRATUM_827319 |
| ARM | Cortex-A53 | #824069 | ARM64_ERRATUM_824069 |
| ARM | Cortex-A53 | #819472 | ARM64_ERRATUM_819472 |
| ARM | Cortex-A53 | #845719 | ARM64_ERRATUM_845719 |
| ARM | Cortex-A53 | #843419 | ARM64_ERRATUM_843419 |
| ARM | Cortex-A57 | #832075 | ARM64_ERRATUM_832075 |
| ARM | Cortex-A57 | #852523 | N/A |
| ARM | Cortex-A57 | #834220 | ARM64_ERRATUM_834220 |
| ARM | Cortex-A72 | #853709 | N/A |
| ARM | Cortex-A73 | #858921 | ARM64_ERRATUM_858921 |
| ARM | Cortex-A55 | #1024718 | ARM64_ERRATUM_1024718 |
| ARM | MMU-500 | #841119,#826419 | N/A |
| | | | |
| Cavium | ThunderX ITS | #22375, #24313 | CAVIUM_ERRATUM_22375 |
| Cavium | ThunderX ITS | #23144 | CAVIUM_ERRATUM_23144 |
| Cavium | ThunderX GICv3 | #23154 | CAVIUM_ERRATUM_23154 |
| Cavium | ThunderX Core | #27456 | CAVIUM_ERRATUM_27456 |
| Cavium | ThunderX Core | #30115 | CAVIUM_ERRATUM_30115 |
| Cavium | ThunderX SMMUv2 | #27704 | N/A |
| Cavium | ThunderX2 SMMUv3| #74 | N/A |
| Cavium | ThunderX2 SMMUv3| #126 | N/A |
| | | | |
| Freescale/NXP | LS2080A/LS1043A | A-008585 | FSL_ERRATUM_A008585 |
| | | | |
| Hisilicon | Hip0{5,6,7} | #161010101 | HISILICON_ERRATUM_161010101 |
| Hisilicon | Hip0{6,7} | #161010701 | N/A |
| Hisilicon | Hip07 | #161600802 | HISILICON_ERRATUM_161600802 |
| | | | |
| Qualcomm Tech. | Kryo/Falkor v1 | E1003 | QCOM_FALKOR_ERRATUM_1003 |
| Qualcomm Tech. | Falkor v1 | E1009 | QCOM_FALKOR_ERRATUM_1009 |
| Qualcomm Tech. | QDF2400 ITS | E0065 | QCOM_QDF2400_ERRATUM_0065 |
| Qualcomm Tech. | Falkor v{1,2} | E1041 | QCOM_FALKOR_ERRATUM_1041 |