linux/fs/btrfs/raid56.c
Qu Wenruo 7a31507230 btrfs: raid56: do data csum verification during RMW cycle
[BUG]
For the following small script, btrfs will be unable to recover the
content of file1:

  mkfs.btrfs -f -m raid1 -d raid5 -b 1G $dev1 $dev2 $dev3

  mount $dev1 $mnt
  xfs_io -f -c "pwrite -S 0xff 0 64k" -c sync $mnt/file1
  md5sum $mnt/file1
  umount $mnt

  # Corrupt the above 64K data stripe.
  xfs_io -f -c "pwrite -S 0x00 323026944 64K" -c sync $dev3
  mount $dev1 $mnt

  # Write a new 64K, which should be in the other data stripe
  # And this is a sub-stripe write, which will cause RMW
  xfs_io -f -c "pwrite 0 64k" -c sync $mnt/file2
  md5sum $mnt/file1
  umount $mnt

Above md5sum would fail.

[CAUSE]
There is a long existing problem for raid56 (not limited to btrfs
raid56) that, if we already have some corrupted on-disk data, and then
trigger a sub-stripe write (which needs RMW cycle), it can cause further
damage into P/Q stripe.

  Disk 1: data 1 |0x000000000000| <- Corrupted
  Disk 2: data 2 |0x000000000000|
  Disk 2: parity |0xffffffffffff|

In above case, data 1 is already corrupted, the original data should be
64KiB of 0xff.

At this stage, if we read data 1, and it has data checksum, we can still
recovery going via the regular RAID56 recovery path.

But if now we decide to write some data into data 2, then we need to go
RMW.
Let's say we want to write 64KiB of '0x00' into data 2, then we read the
on-disk data of data 1, calculate the new parity, resulting the
following layout:

  Disk 1: data 1 |0x000000000000| <- Corrupted
  Disk 2: data 2 |0x000000000000| <- New '0x00' writes
  Disk 2: parity |0x000000000000| <- New Parity.

But the new parity is calculated using the *corrupted* data 1, we can
no longer recover the correct data of data1.  Thus the corruption is
forever there.

[FIX]
To solve above problem, this patch will do a full stripe data checksum
verification at RMW time.

This involves the following changes:

- Always read the full stripe (including data/P/Q) when doing RMW
  Before we only read the missing data sectors, but since we may do a
  data csum verification and recovery, we need to read everything out.

  Please note that, if we have a cached rbio, we don't need to read
  anything, and can treat it the same as full stripe write.

  As only stripe with all its csum matches can be cached.

- Verify the data csum during read.
  The goal is only the rbio stripe sectors, and only if the rbio
  already has csum_buf/csum_bitmap filled.

  And sectors which cannot pass csum verification will have their bit
  set in error_bitmap.

- Always call recovery_sectors() after we read out all the sectors
  Since error_bitmap will be updated during read, recover_sectors()
  can easily find out all the bad sectors and try to recover (if still
  under tolerance).

  And since recovery_sectors() is already migrated to use error_bitmap,
  it can skip vertical stripes which don't have any error.

- Verify the repaired sectors against its csum in recover_vertical()

- Rename rmw_read_and_wait() to rmw_read_wait_recover()
  Since we will always recover the sectors, the old name is no longer
  accurate.

  Furthermore since recovery is already done in rmw_read_wait_recover(),
  we no longer need to call recovery_sectors() inside rmw_rbio().

Obviously this will have a performance impact, as we are doing more
work during RMW cycle:

- Fetch the data checksums
- Do checksum verification for all data stripes
- Do checksum verification again after repair

But for full stripe write or cached rbio we won't have the overhead all,
thus for fully optimized RAID56 workload (always full stripe write),
there should be no extra overhead.

To me, the extra overhead looks reasonable, as data consistency is way
more important than performance.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:57 +01:00

2874 lines
75 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2012 Fusion-io All rights reserved.
* Copyright (C) 2012 Intel Corp. All rights reserved.
*/
#include <linux/sched.h>
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/raid/pq.h>
#include <linux/hash.h>
#include <linux/list_sort.h>
#include <linux/raid/xor.h>
#include <linux/mm.h>
#include "messages.h"
#include "misc.h"
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"
#include "file-item.h"
#include "btrfs_inode.h"
/* set when additional merges to this rbio are not allowed */
#define RBIO_RMW_LOCKED_BIT 1
/*
* set when this rbio is sitting in the hash, but it is just a cache
* of past RMW
*/
#define RBIO_CACHE_BIT 2
/*
* set when it is safe to trust the stripe_pages for caching
*/
#define RBIO_CACHE_READY_BIT 3
#define RBIO_CACHE_SIZE 1024
#define BTRFS_STRIPE_HASH_TABLE_BITS 11
/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash {
struct list_head hash_list;
spinlock_t lock;
};
/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash_table {
struct list_head stripe_cache;
spinlock_t cache_lock;
int cache_size;
struct btrfs_stripe_hash table[];
};
/*
* A bvec like structure to present a sector inside a page.
*
* Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
*/
struct sector_ptr {
struct page *page;
unsigned int pgoff:24;
unsigned int uptodate:8;
};
static void rmw_rbio_work(struct work_struct *work);
static void rmw_rbio_work_locked(struct work_struct *work);
static void index_rbio_pages(struct btrfs_raid_bio *rbio);
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check);
static void scrub_rbio_work_locked(struct work_struct *work);
static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
{
bitmap_free(rbio->error_bitmap);
kfree(rbio->stripe_pages);
kfree(rbio->bio_sectors);
kfree(rbio->stripe_sectors);
kfree(rbio->finish_pointers);
}
static void free_raid_bio(struct btrfs_raid_bio *rbio)
{
int i;
if (!refcount_dec_and_test(&rbio->refs))
return;
WARN_ON(!list_empty(&rbio->stripe_cache));
WARN_ON(!list_empty(&rbio->hash_list));
WARN_ON(!bio_list_empty(&rbio->bio_list));
for (i = 0; i < rbio->nr_pages; i++) {
if (rbio->stripe_pages[i]) {
__free_page(rbio->stripe_pages[i]);
rbio->stripe_pages[i] = NULL;
}
}
btrfs_put_bioc(rbio->bioc);
free_raid_bio_pointers(rbio);
kfree(rbio);
}
static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
{
INIT_WORK(&rbio->work, work_func);
queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
}
/*
* the stripe hash table is used for locking, and to collect
* bios in hopes of making a full stripe
*/
int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
{
struct btrfs_stripe_hash_table *table;
struct btrfs_stripe_hash_table *x;
struct btrfs_stripe_hash *cur;
struct btrfs_stripe_hash *h;
int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
int i;
if (info->stripe_hash_table)
return 0;
/*
* The table is large, starting with order 4 and can go as high as
* order 7 in case lock debugging is turned on.
*
* Try harder to allocate and fallback to vmalloc to lower the chance
* of a failing mount.
*/
table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
if (!table)
return -ENOMEM;
spin_lock_init(&table->cache_lock);
INIT_LIST_HEAD(&table->stripe_cache);
h = table->table;
for (i = 0; i < num_entries; i++) {
cur = h + i;
INIT_LIST_HEAD(&cur->hash_list);
spin_lock_init(&cur->lock);
}
x = cmpxchg(&info->stripe_hash_table, NULL, table);
kvfree(x);
return 0;
}
/*
* caching an rbio means to copy anything from the
* bio_sectors array into the stripe_pages array. We
* use the page uptodate bit in the stripe cache array
* to indicate if it has valid data
*
* once the caching is done, we set the cache ready
* bit.
*/
static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
{
int i;
int ret;
ret = alloc_rbio_pages(rbio);
if (ret)
return;
for (i = 0; i < rbio->nr_sectors; i++) {
/* Some range not covered by bio (partial write), skip it */
if (!rbio->bio_sectors[i].page) {
/*
* Even if the sector is not covered by bio, if it is
* a data sector it should still be uptodate as it is
* read from disk.
*/
if (i < rbio->nr_data * rbio->stripe_nsectors)
ASSERT(rbio->stripe_sectors[i].uptodate);
continue;
}
ASSERT(rbio->stripe_sectors[i].page);
memcpy_page(rbio->stripe_sectors[i].page,
rbio->stripe_sectors[i].pgoff,
rbio->bio_sectors[i].page,
rbio->bio_sectors[i].pgoff,
rbio->bioc->fs_info->sectorsize);
rbio->stripe_sectors[i].uptodate = 1;
}
set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
}
/*
* we hash on the first logical address of the stripe
*/
static int rbio_bucket(struct btrfs_raid_bio *rbio)
{
u64 num = rbio->bioc->raid_map[0];
/*
* we shift down quite a bit. We're using byte
* addressing, and most of the lower bits are zeros.
* This tends to upset hash_64, and it consistently
* returns just one or two different values.
*
* shifting off the lower bits fixes things.
*/
return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
}
static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
unsigned int page_nr)
{
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
const u32 sectors_per_page = PAGE_SIZE / sectorsize;
int i;
ASSERT(page_nr < rbio->nr_pages);
for (i = sectors_per_page * page_nr;
i < sectors_per_page * page_nr + sectors_per_page;
i++) {
if (!rbio->stripe_sectors[i].uptodate)
return false;
}
return true;
}
/*
* Update the stripe_sectors[] array to use correct page and pgoff
*
* Should be called every time any page pointer in stripes_pages[] got modified.
*/
static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
{
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
u32 offset;
int i;
for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
int page_index = offset >> PAGE_SHIFT;
ASSERT(page_index < rbio->nr_pages);
rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
}
}
static void steal_rbio_page(struct btrfs_raid_bio *src,
struct btrfs_raid_bio *dest, int page_nr)
{
const u32 sectorsize = src->bioc->fs_info->sectorsize;
const u32 sectors_per_page = PAGE_SIZE / sectorsize;
int i;
if (dest->stripe_pages[page_nr])
__free_page(dest->stripe_pages[page_nr]);
dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
src->stripe_pages[page_nr] = NULL;
/* Also update the sector->uptodate bits. */
for (i = sectors_per_page * page_nr;
i < sectors_per_page * page_nr + sectors_per_page; i++)
dest->stripe_sectors[i].uptodate = true;
}
static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
{
const int sector_nr = (page_nr << PAGE_SHIFT) >>
rbio->bioc->fs_info->sectorsize_bits;
/*
* We have ensured PAGE_SIZE is aligned with sectorsize, thus
* we won't have a page which is half data half parity.
*
* Thus if the first sector of the page belongs to data stripes, then
* the full page belongs to data stripes.
*/
return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
}
/*
* Stealing an rbio means taking all the uptodate pages from the stripe array
* in the source rbio and putting them into the destination rbio.
*
* This will also update the involved stripe_sectors[] which are referring to
* the old pages.
*/
static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
{
int i;
if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
return;
for (i = 0; i < dest->nr_pages; i++) {
struct page *p = src->stripe_pages[i];
/*
* We don't need to steal P/Q pages as they will always be
* regenerated for RMW or full write anyway.
*/
if (!is_data_stripe_page(src, i))
continue;
/*
* If @src already has RBIO_CACHE_READY_BIT, it should have
* all data stripe pages present and uptodate.
*/
ASSERT(p);
ASSERT(full_page_sectors_uptodate(src, i));
steal_rbio_page(src, dest, i);
}
index_stripe_sectors(dest);
index_stripe_sectors(src);
}
/*
* merging means we take the bio_list from the victim and
* splice it into the destination. The victim should
* be discarded afterwards.
*
* must be called with dest->rbio_list_lock held
*/
static void merge_rbio(struct btrfs_raid_bio *dest,
struct btrfs_raid_bio *victim)
{
bio_list_merge(&dest->bio_list, &victim->bio_list);
dest->bio_list_bytes += victim->bio_list_bytes;
/* Also inherit the bitmaps from @victim. */
bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
dest->stripe_nsectors);
bio_list_init(&victim->bio_list);
}
/*
* used to prune items that are in the cache. The caller
* must hold the hash table lock.
*/
static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
int bucket = rbio_bucket(rbio);
struct btrfs_stripe_hash_table *table;
struct btrfs_stripe_hash *h;
int freeit = 0;
/*
* check the bit again under the hash table lock.
*/
if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
return;
table = rbio->bioc->fs_info->stripe_hash_table;
h = table->table + bucket;
/* hold the lock for the bucket because we may be
* removing it from the hash table
*/
spin_lock(&h->lock);
/*
* hold the lock for the bio list because we need
* to make sure the bio list is empty
*/
spin_lock(&rbio->bio_list_lock);
if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
list_del_init(&rbio->stripe_cache);
table->cache_size -= 1;
freeit = 1;
/* if the bio list isn't empty, this rbio is
* still involved in an IO. We take it out
* of the cache list, and drop the ref that
* was held for the list.
*
* If the bio_list was empty, we also remove
* the rbio from the hash_table, and drop
* the corresponding ref
*/
if (bio_list_empty(&rbio->bio_list)) {
if (!list_empty(&rbio->hash_list)) {
list_del_init(&rbio->hash_list);
refcount_dec(&rbio->refs);
BUG_ON(!list_empty(&rbio->plug_list));
}
}
}
spin_unlock(&rbio->bio_list_lock);
spin_unlock(&h->lock);
if (freeit)
free_raid_bio(rbio);
}
/*
* prune a given rbio from the cache
*/
static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
struct btrfs_stripe_hash_table *table;
unsigned long flags;
if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
return;
table = rbio->bioc->fs_info->stripe_hash_table;
spin_lock_irqsave(&table->cache_lock, flags);
__remove_rbio_from_cache(rbio);
spin_unlock_irqrestore(&table->cache_lock, flags);
}
/*
* remove everything in the cache
*/
static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
{
struct btrfs_stripe_hash_table *table;
unsigned long flags;
struct btrfs_raid_bio *rbio;
table = info->stripe_hash_table;
spin_lock_irqsave(&table->cache_lock, flags);
while (!list_empty(&table->stripe_cache)) {
rbio = list_entry(table->stripe_cache.next,
struct btrfs_raid_bio,
stripe_cache);
__remove_rbio_from_cache(rbio);
}
spin_unlock_irqrestore(&table->cache_lock, flags);
}
/*
* remove all cached entries and free the hash table
* used by unmount
*/
void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
{
if (!info->stripe_hash_table)
return;
btrfs_clear_rbio_cache(info);
kvfree(info->stripe_hash_table);
info->stripe_hash_table = NULL;
}
/*
* insert an rbio into the stripe cache. It
* must have already been prepared by calling
* cache_rbio_pages
*
* If this rbio was already cached, it gets
* moved to the front of the lru.
*
* If the size of the rbio cache is too big, we
* prune an item.
*/
static void cache_rbio(struct btrfs_raid_bio *rbio)
{
struct btrfs_stripe_hash_table *table;
unsigned long flags;
if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
return;
table = rbio->bioc->fs_info->stripe_hash_table;
spin_lock_irqsave(&table->cache_lock, flags);
spin_lock(&rbio->bio_list_lock);
/* bump our ref if we were not in the list before */
if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
refcount_inc(&rbio->refs);
if (!list_empty(&rbio->stripe_cache)){
list_move(&rbio->stripe_cache, &table->stripe_cache);
} else {
list_add(&rbio->stripe_cache, &table->stripe_cache);
table->cache_size += 1;
}
spin_unlock(&rbio->bio_list_lock);
if (table->cache_size > RBIO_CACHE_SIZE) {
struct btrfs_raid_bio *found;
found = list_entry(table->stripe_cache.prev,
struct btrfs_raid_bio,
stripe_cache);
if (found != rbio)
__remove_rbio_from_cache(found);
}
spin_unlock_irqrestore(&table->cache_lock, flags);
}
/*
* helper function to run the xor_blocks api. It is only
* able to do MAX_XOR_BLOCKS at a time, so we need to
* loop through.
*/
static void run_xor(void **pages, int src_cnt, ssize_t len)
{
int src_off = 0;
int xor_src_cnt = 0;
void *dest = pages[src_cnt];
while(src_cnt > 0) {
xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
xor_blocks(xor_src_cnt, len, dest, pages + src_off);
src_cnt -= xor_src_cnt;
src_off += xor_src_cnt;
}
}
/*
* Returns true if the bio list inside this rbio covers an entire stripe (no
* rmw required).
*/
static int rbio_is_full(struct btrfs_raid_bio *rbio)
{
unsigned long flags;
unsigned long size = rbio->bio_list_bytes;
int ret = 1;
spin_lock_irqsave(&rbio->bio_list_lock, flags);
if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
ret = 0;
BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
return ret;
}
/*
* returns 1 if it is safe to merge two rbios together.
* The merging is safe if the two rbios correspond to
* the same stripe and if they are both going in the same
* direction (read vs write), and if neither one is
* locked for final IO
*
* The caller is responsible for locking such that
* rmw_locked is safe to test
*/
static int rbio_can_merge(struct btrfs_raid_bio *last,
struct btrfs_raid_bio *cur)
{
if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
return 0;
/*
* we can't merge with cached rbios, since the
* idea is that when we merge the destination
* rbio is going to run our IO for us. We can
* steal from cached rbios though, other functions
* handle that.
*/
if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
test_bit(RBIO_CACHE_BIT, &cur->flags))
return 0;
if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
return 0;
/* we can't merge with different operations */
if (last->operation != cur->operation)
return 0;
/*
* We've need read the full stripe from the drive.
* check and repair the parity and write the new results.
*
* We're not allowed to add any new bios to the
* bio list here, anyone else that wants to
* change this stripe needs to do their own rmw.
*/
if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
return 0;
if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
last->operation == BTRFS_RBIO_READ_REBUILD)
return 0;
return 1;
}
static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
unsigned int stripe_nr,
unsigned int sector_nr)
{
ASSERT(stripe_nr < rbio->real_stripes);
ASSERT(sector_nr < rbio->stripe_nsectors);
return stripe_nr * rbio->stripe_nsectors + sector_nr;
}
/* Return a sector from rbio->stripe_sectors, not from the bio list */
static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
unsigned int stripe_nr,
unsigned int sector_nr)
{
return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
sector_nr)];
}
/* Grab a sector inside P stripe */
static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
unsigned int sector_nr)
{
return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
}
/* Grab a sector inside Q stripe, return NULL if not RAID6 */
static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
unsigned int sector_nr)
{
if (rbio->nr_data + 1 == rbio->real_stripes)
return NULL;
return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
}
/*
* The first stripe in the table for a logical address
* has the lock. rbios are added in one of three ways:
*
* 1) Nobody has the stripe locked yet. The rbio is given
* the lock and 0 is returned. The caller must start the IO
* themselves.
*
* 2) Someone has the stripe locked, but we're able to merge
* with the lock owner. The rbio is freed and the IO will
* start automatically along with the existing rbio. 1 is returned.
*
* 3) Someone has the stripe locked, but we're not able to merge.
* The rbio is added to the lock owner's plug list, or merged into
* an rbio already on the plug list. When the lock owner unlocks,
* the next rbio on the list is run and the IO is started automatically.
* 1 is returned
*
* If we return 0, the caller still owns the rbio and must continue with
* IO submission. If we return 1, the caller must assume the rbio has
* already been freed.
*/
static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
{
struct btrfs_stripe_hash *h;
struct btrfs_raid_bio *cur;
struct btrfs_raid_bio *pending;
unsigned long flags;
struct btrfs_raid_bio *freeit = NULL;
struct btrfs_raid_bio *cache_drop = NULL;
int ret = 0;
h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
spin_lock_irqsave(&h->lock, flags);
list_for_each_entry(cur, &h->hash_list, hash_list) {
if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
continue;
spin_lock(&cur->bio_list_lock);
/* Can we steal this cached rbio's pages? */
if (bio_list_empty(&cur->bio_list) &&
list_empty(&cur->plug_list) &&
test_bit(RBIO_CACHE_BIT, &cur->flags) &&
!test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
list_del_init(&cur->hash_list);
refcount_dec(&cur->refs);
steal_rbio(cur, rbio);
cache_drop = cur;
spin_unlock(&cur->bio_list_lock);
goto lockit;
}
/* Can we merge into the lock owner? */
if (rbio_can_merge(cur, rbio)) {
merge_rbio(cur, rbio);
spin_unlock(&cur->bio_list_lock);
freeit = rbio;
ret = 1;
goto out;
}
/*
* We couldn't merge with the running rbio, see if we can merge
* with the pending ones. We don't have to check for rmw_locked
* because there is no way they are inside finish_rmw right now
*/
list_for_each_entry(pending, &cur->plug_list, plug_list) {
if (rbio_can_merge(pending, rbio)) {
merge_rbio(pending, rbio);
spin_unlock(&cur->bio_list_lock);
freeit = rbio;
ret = 1;
goto out;
}
}
/*
* No merging, put us on the tail of the plug list, our rbio
* will be started with the currently running rbio unlocks
*/
list_add_tail(&rbio->plug_list, &cur->plug_list);
spin_unlock(&cur->bio_list_lock);
ret = 1;
goto out;
}
lockit:
refcount_inc(&rbio->refs);
list_add(&rbio->hash_list, &h->hash_list);
out:
spin_unlock_irqrestore(&h->lock, flags);
if (cache_drop)
remove_rbio_from_cache(cache_drop);
if (freeit)
free_raid_bio(freeit);
return ret;
}
static void recover_rbio_work_locked(struct work_struct *work);
/*
* called as rmw or parity rebuild is completed. If the plug list has more
* rbios waiting for this stripe, the next one on the list will be started
*/
static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
{
int bucket;
struct btrfs_stripe_hash *h;
unsigned long flags;
int keep_cache = 0;
bucket = rbio_bucket(rbio);
h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
if (list_empty(&rbio->plug_list))
cache_rbio(rbio);
spin_lock_irqsave(&h->lock, flags);
spin_lock(&rbio->bio_list_lock);
if (!list_empty(&rbio->hash_list)) {
/*
* if we're still cached and there is no other IO
* to perform, just leave this rbio here for others
* to steal from later
*/
if (list_empty(&rbio->plug_list) &&
test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
keep_cache = 1;
clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
BUG_ON(!bio_list_empty(&rbio->bio_list));
goto done;
}
list_del_init(&rbio->hash_list);
refcount_dec(&rbio->refs);
/*
* we use the plug list to hold all the rbios
* waiting for the chance to lock this stripe.
* hand the lock over to one of them.
*/
if (!list_empty(&rbio->plug_list)) {
struct btrfs_raid_bio *next;
struct list_head *head = rbio->plug_list.next;
next = list_entry(head, struct btrfs_raid_bio,
plug_list);
list_del_init(&rbio->plug_list);
list_add(&next->hash_list, &h->hash_list);
refcount_inc(&next->refs);
spin_unlock(&rbio->bio_list_lock);
spin_unlock_irqrestore(&h->lock, flags);
if (next->operation == BTRFS_RBIO_READ_REBUILD)
start_async_work(next, recover_rbio_work_locked);
else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
steal_rbio(rbio, next);
start_async_work(next, recover_rbio_work_locked);
} else if (next->operation == BTRFS_RBIO_WRITE) {
steal_rbio(rbio, next);
start_async_work(next, rmw_rbio_work_locked);
} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
steal_rbio(rbio, next);
start_async_work(next, scrub_rbio_work_locked);
}
goto done_nolock;
}
}
done:
spin_unlock(&rbio->bio_list_lock);
spin_unlock_irqrestore(&h->lock, flags);
done_nolock:
if (!keep_cache)
remove_rbio_from_cache(rbio);
}
static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
{
struct bio *next;
while (cur) {
next = cur->bi_next;
cur->bi_next = NULL;
cur->bi_status = err;
bio_endio(cur);
cur = next;
}
}
/*
* this frees the rbio and runs through all the bios in the
* bio_list and calls end_io on them
*/
static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
{
struct bio *cur = bio_list_get(&rbio->bio_list);
struct bio *extra;
kfree(rbio->csum_buf);
bitmap_free(rbio->csum_bitmap);
rbio->csum_buf = NULL;
rbio->csum_bitmap = NULL;
/*
* Clear the data bitmap, as the rbio may be cached for later usage.
* do this before before unlock_stripe() so there will be no new bio
* for this bio.
*/
bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
/*
* At this moment, rbio->bio_list is empty, however since rbio does not
* always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
* hash list, rbio may be merged with others so that rbio->bio_list
* becomes non-empty.
* Once unlock_stripe() is done, rbio->bio_list will not be updated any
* more and we can call bio_endio() on all queued bios.
*/
unlock_stripe(rbio);
extra = bio_list_get(&rbio->bio_list);
free_raid_bio(rbio);
rbio_endio_bio_list(cur, err);
if (extra)
rbio_endio_bio_list(extra, err);
}
/*
* Get a sector pointer specified by its @stripe_nr and @sector_nr.
*
* @rbio: The raid bio
* @stripe_nr: Stripe number, valid range [0, real_stripe)
* @sector_nr: Sector number inside the stripe,
* valid range [0, stripe_nsectors)
* @bio_list_only: Whether to use sectors inside the bio list only.
*
* The read/modify/write code wants to reuse the original bio page as much
* as possible, and only use stripe_sectors as fallback.
*/
static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
int stripe_nr, int sector_nr,
bool bio_list_only)
{
struct sector_ptr *sector;
int index;
ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
index = stripe_nr * rbio->stripe_nsectors + sector_nr;
ASSERT(index >= 0 && index < rbio->nr_sectors);
spin_lock_irq(&rbio->bio_list_lock);
sector = &rbio->bio_sectors[index];
if (sector->page || bio_list_only) {
/* Don't return sector without a valid page pointer */
if (!sector->page)
sector = NULL;
spin_unlock_irq(&rbio->bio_list_lock);
return sector;
}
spin_unlock_irq(&rbio->bio_list_lock);
return &rbio->stripe_sectors[index];
}
/*
* allocation and initial setup for the btrfs_raid_bio. Not
* this does not allocate any pages for rbio->pages.
*/
static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
struct btrfs_io_context *bioc)
{
const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
const unsigned int num_pages = stripe_npages * real_stripes;
const unsigned int stripe_nsectors =
BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
const unsigned int num_sectors = stripe_nsectors * real_stripes;
struct btrfs_raid_bio *rbio;
/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
/*
* Our current stripe len should be fixed to 64k thus stripe_nsectors
* (at most 16) should be no larger than BITS_PER_LONG.
*/
ASSERT(stripe_nsectors <= BITS_PER_LONG);
rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
if (!rbio)
return ERR_PTR(-ENOMEM);
rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
GFP_NOFS);
rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
GFP_NOFS);
rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
GFP_NOFS);
rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
!rbio->finish_pointers || !rbio->error_bitmap) {
free_raid_bio_pointers(rbio);
kfree(rbio);
return ERR_PTR(-ENOMEM);
}
bio_list_init(&rbio->bio_list);
init_waitqueue_head(&rbio->io_wait);
INIT_LIST_HEAD(&rbio->plug_list);
spin_lock_init(&rbio->bio_list_lock);
INIT_LIST_HEAD(&rbio->stripe_cache);
INIT_LIST_HEAD(&rbio->hash_list);
btrfs_get_bioc(bioc);
rbio->bioc = bioc;
rbio->nr_pages = num_pages;
rbio->nr_sectors = num_sectors;
rbio->real_stripes = real_stripes;
rbio->stripe_npages = stripe_npages;
rbio->stripe_nsectors = stripe_nsectors;
refcount_set(&rbio->refs, 1);
atomic_set(&rbio->stripes_pending, 0);
ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
return rbio;
}
/* allocate pages for all the stripes in the bio, including parity */
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
{
int ret;
ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
if (ret < 0)
return ret;
/* Mapping all sectors */
index_stripe_sectors(rbio);
return 0;
}
/* only allocate pages for p/q stripes */
static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
{
const int data_pages = rbio->nr_data * rbio->stripe_npages;
int ret;
ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
rbio->stripe_pages + data_pages);
if (ret < 0)
return ret;
index_stripe_sectors(rbio);
return 0;
}
/*
* Return the total numer of errors found in the vertical stripe of @sector_nr.
*
* @faila and @failb will also be updated to the first and second stripe
* number of the errors.
*/
static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
int *faila, int *failb)
{
int stripe_nr;
int found_errors = 0;
if (faila || failb) {
/*
* Both @faila and @failb should be valid pointers if any of
* them is specified.
*/
ASSERT(faila && failb);
*faila = -1;
*failb = -1;
}
for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
if (test_bit(total_sector_nr, rbio->error_bitmap)) {
found_errors++;
if (faila) {
/* Update faila and failb. */
if (*faila < 0)
*faila = stripe_nr;
else if (*failb < 0)
*failb = stripe_nr;
}
}
}
return found_errors;
}
/*
* Add a single sector @sector into our list of bios for IO.
*
* Return 0 if everything went well.
* Return <0 for error.
*/
static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
struct bio_list *bio_list,
struct sector_ptr *sector,
unsigned int stripe_nr,
unsigned int sector_nr,
enum req_op op)
{
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
struct bio *last = bio_list->tail;
int ret;
struct bio *bio;
struct btrfs_io_stripe *stripe;
u64 disk_start;
/*
* Note: here stripe_nr has taken device replace into consideration,
* thus it can be larger than rbio->real_stripe.
* So here we check against bioc->num_stripes, not rbio->real_stripes.
*/
ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
ASSERT(sector->page);
stripe = &rbio->bioc->stripes[stripe_nr];
disk_start = stripe->physical + sector_nr * sectorsize;
/* if the device is missing, just fail this stripe */
if (!stripe->dev->bdev) {
int found_errors;
set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
rbio->error_bitmap);
/* Check if we have reached tolerance early. */
found_errors = get_rbio_veritical_errors(rbio, sector_nr,
NULL, NULL);
if (found_errors > rbio->bioc->max_errors)
return -EIO;
return 0;
}
/* see if we can add this page onto our existing bio */
if (last) {
u64 last_end = last->bi_iter.bi_sector << 9;
last_end += last->bi_iter.bi_size;
/*
* we can't merge these if they are from different
* devices or if they are not contiguous
*/
if (last_end == disk_start && !last->bi_status &&
last->bi_bdev == stripe->dev->bdev) {
ret = bio_add_page(last, sector->page, sectorsize,
sector->pgoff);
if (ret == sectorsize)
return 0;
}
}
/* put a new bio on the list */
bio = bio_alloc(stripe->dev->bdev,
max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
op, GFP_NOFS);
bio->bi_iter.bi_sector = disk_start >> 9;
bio->bi_private = rbio;
bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
bio_list_add(bio_list, bio);
return 0;
}
static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
{
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
struct bio_vec bvec;
struct bvec_iter iter;
u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
rbio->bioc->raid_map[0];
bio_for_each_segment(bvec, bio, iter) {
u32 bvec_offset;
for (bvec_offset = 0; bvec_offset < bvec.bv_len;
bvec_offset += sectorsize, offset += sectorsize) {
int index = offset / sectorsize;
struct sector_ptr *sector = &rbio->bio_sectors[index];
sector->page = bvec.bv_page;
sector->pgoff = bvec.bv_offset + bvec_offset;
ASSERT(sector->pgoff < PAGE_SIZE);
}
}
}
/*
* helper function to walk our bio list and populate the bio_pages array with
* the result. This seems expensive, but it is faster than constantly
* searching through the bio list as we setup the IO in finish_rmw or stripe
* reconstruction.
*
* This must be called before you trust the answers from page_in_rbio
*/
static void index_rbio_pages(struct btrfs_raid_bio *rbio)
{
struct bio *bio;
spin_lock_irq(&rbio->bio_list_lock);
bio_list_for_each(bio, &rbio->bio_list)
index_one_bio(rbio, bio);
spin_unlock_irq(&rbio->bio_list_lock);
}
static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
struct raid56_bio_trace_info *trace_info)
{
const struct btrfs_io_context *bioc = rbio->bioc;
int i;
ASSERT(bioc);
/* We rely on bio->bi_bdev to find the stripe number. */
if (!bio->bi_bdev)
goto not_found;
for (i = 0; i < bioc->num_stripes; i++) {
if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
continue;
trace_info->stripe_nr = i;
trace_info->devid = bioc->stripes[i].dev->devid;
trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
bioc->stripes[i].physical;
return;
}
not_found:
trace_info->devid = -1;
trace_info->offset = -1;
trace_info->stripe_nr = -1;
}
/* Generate PQ for one veritical stripe. */
static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
{
void **pointers = rbio->finish_pointers;
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
struct sector_ptr *sector;
int stripe;
const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
/* First collect one sector from each data stripe */
for (stripe = 0; stripe < rbio->nr_data; stripe++) {
sector = sector_in_rbio(rbio, stripe, sectornr, 0);
pointers[stripe] = kmap_local_page(sector->page) +
sector->pgoff;
}
/* Then add the parity stripe */
sector = rbio_pstripe_sector(rbio, sectornr);
sector->uptodate = 1;
pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
if (has_qstripe) {
/*
* RAID6, add the qstripe and call the library function
* to fill in our p/q
*/
sector = rbio_qstripe_sector(rbio, sectornr);
sector->uptodate = 1;
pointers[stripe++] = kmap_local_page(sector->page) +
sector->pgoff;
raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
pointers);
} else {
/* raid5 */
memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
}
for (stripe = stripe - 1; stripe >= 0; stripe--)
kunmap_local(pointers[stripe]);
}
static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
struct bio_list *bio_list)
{
struct bio *bio;
/* The total sector number inside the full stripe. */
int total_sector_nr;
int sectornr;
int stripe;
int ret;
ASSERT(bio_list_size(bio_list) == 0);
/* We should have at least one data sector. */
ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
/*
* Reset errors, as we may have errors inherited from from degraded
* write.
*/
bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
/*
* Start assembly. Make bios for everything from the higher layers (the
* bio_list in our rbio) and our P/Q. Ignore everything else.
*/
for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
total_sector_nr++) {
struct sector_ptr *sector;
stripe = total_sector_nr / rbio->stripe_nsectors;
sectornr = total_sector_nr % rbio->stripe_nsectors;
/* This vertical stripe has no data, skip it. */
if (!test_bit(sectornr, &rbio->dbitmap))
continue;
if (stripe < rbio->nr_data) {
sector = sector_in_rbio(rbio, stripe, sectornr, 1);
if (!sector)
continue;
} else {
sector = rbio_stripe_sector(rbio, stripe, sectornr);
}
ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
sectornr, REQ_OP_WRITE);
if (ret)
goto error;
}
if (likely(!rbio->bioc->num_tgtdevs))
return 0;
/* Make a copy for the replace target device. */
for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
total_sector_nr++) {
struct sector_ptr *sector;
stripe = total_sector_nr / rbio->stripe_nsectors;
sectornr = total_sector_nr % rbio->stripe_nsectors;
if (!rbio->bioc->tgtdev_map[stripe]) {
/*
* We can skip the whole stripe completely, note
* total_sector_nr will be increased by one anyway.
*/
ASSERT(sectornr == 0);
total_sector_nr += rbio->stripe_nsectors - 1;
continue;
}
/* This vertical stripe has no data, skip it. */
if (!test_bit(sectornr, &rbio->dbitmap))
continue;
if (stripe < rbio->nr_data) {
sector = sector_in_rbio(rbio, stripe, sectornr, 1);
if (!sector)
continue;
} else {
sector = rbio_stripe_sector(rbio, stripe, sectornr);
}
ret = rbio_add_io_sector(rbio, bio_list, sector,
rbio->bioc->tgtdev_map[stripe],
sectornr, REQ_OP_WRITE);
if (ret)
goto error;
}
return 0;
error:
while ((bio = bio_list_pop(bio_list)))
bio_put(bio);
return -EIO;
}
static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
{
struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
rbio->bioc->raid_map[0];
int total_nr_sector = offset >> fs_info->sectorsize_bits;
ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
bitmap_set(rbio->error_bitmap, total_nr_sector,
bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
/*
* Special handling for raid56_alloc_missing_rbio() used by
* scrub/replace. Unlike call path in raid56_parity_recover(), they
* pass an empty bio here. Thus we have to find out the missing device
* and mark the stripe error instead.
*/
if (bio->bi_iter.bi_size == 0) {
bool found_missing = false;
int stripe_nr;
for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
found_missing = true;
bitmap_set(rbio->error_bitmap,
stripe_nr * rbio->stripe_nsectors,
rbio->stripe_nsectors);
}
}
ASSERT(found_missing);
}
}
/*
* For subpage case, we can no longer set page Uptodate directly for
* stripe_pages[], thus we need to locate the sector.
*/
static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
struct page *page,
unsigned int pgoff)
{
int i;
for (i = 0; i < rbio->nr_sectors; i++) {
struct sector_ptr *sector = &rbio->stripe_sectors[i];
if (sector->page == page && sector->pgoff == pgoff)
return sector;
}
return NULL;
}
/*
* this sets each page in the bio uptodate. It should only be used on private
* rbio pages, nothing that comes in from the higher layers
*/
static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
{
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
ASSERT(!bio_flagged(bio, BIO_CLONED));
bio_for_each_segment_all(bvec, bio, iter_all) {
struct sector_ptr *sector;
int pgoff;
for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
pgoff += sectorsize) {
sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
ASSERT(sector);
if (sector)
sector->uptodate = 1;
}
}
}
static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
{
struct bio_vec *bv = bio_first_bvec_all(bio);
int i;
for (i = 0; i < rbio->nr_sectors; i++) {
struct sector_ptr *sector;
sector = &rbio->stripe_sectors[i];
if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
break;
sector = &rbio->bio_sectors[i];
if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
break;
}
ASSERT(i < rbio->nr_sectors);
return i;
}
static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
{
int total_sector_nr = get_bio_sector_nr(rbio, bio);
u32 bio_size = 0;
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
bio_for_each_segment_all(bvec, bio, iter_all)
bio_size += bvec->bv_len;
bitmap_set(rbio->error_bitmap, total_sector_nr,
bio_size >> rbio->bioc->fs_info->sectorsize_bits);
}
/* Verify the data sectors at read time. */
static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
struct bio *bio)
{
struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
int total_sector_nr = get_bio_sector_nr(rbio, bio);
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
/* No data csum for the whole stripe, no need to verify. */
if (!rbio->csum_bitmap || !rbio->csum_buf)
return;
/* P/Q stripes, they have no data csum to verify against. */
if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
return;
bio_for_each_segment_all(bvec, bio, iter_all) {
int bv_offset;
for (bv_offset = bvec->bv_offset;
bv_offset < bvec->bv_offset + bvec->bv_len;
bv_offset += fs_info->sectorsize, total_sector_nr++) {
u8 csum_buf[BTRFS_CSUM_SIZE];
u8 *expected_csum = rbio->csum_buf +
total_sector_nr * fs_info->csum_size;
int ret;
/* No csum for this sector, skip to the next sector. */
if (!test_bit(total_sector_nr, rbio->csum_bitmap))
continue;
ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
bv_offset, csum_buf, expected_csum);
if (ret < 0)
set_bit(total_sector_nr, rbio->error_bitmap);
}
}
}
static void raid_wait_read_end_io(struct bio *bio)
{
struct btrfs_raid_bio *rbio = bio->bi_private;
if (bio->bi_status) {
rbio_update_error_bitmap(rbio, bio);
} else {
set_bio_pages_uptodate(rbio, bio);
verify_bio_data_sectors(rbio, bio);
}
bio_put(bio);
if (atomic_dec_and_test(&rbio->stripes_pending))
wake_up(&rbio->io_wait);
}
static void submit_read_bios(struct btrfs_raid_bio *rbio,
struct bio_list *bio_list)
{
struct bio *bio;
atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
while ((bio = bio_list_pop(bio_list))) {
bio->bi_end_io = raid_wait_read_end_io;
if (trace_raid56_scrub_read_recover_enabled()) {
struct raid56_bio_trace_info trace_info = { 0 };
bio_get_trace_info(rbio, bio, &trace_info);
trace_raid56_scrub_read_recover(rbio, bio, &trace_info);
}
submit_bio(bio);
}
}
static int rmw_assemble_read_bios(struct btrfs_raid_bio *rbio,
struct bio_list *bio_list)
{
struct bio *bio;
int total_sector_nr;
int ret = 0;
ASSERT(bio_list_size(bio_list) == 0);
/*
* Build a list of bios to read all sectors (including data and P/Q).
*
* This behaviro is to compensate the later csum verification and
* recovery.
*/
for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
total_sector_nr++) {
struct sector_ptr *sector;
int stripe = total_sector_nr / rbio->stripe_nsectors;
int sectornr = total_sector_nr % rbio->stripe_nsectors;
sector = rbio_stripe_sector(rbio, stripe, sectornr);
ret = rbio_add_io_sector(rbio, bio_list, sector,
stripe, sectornr, REQ_OP_READ);
if (ret)
goto cleanup;
}
return 0;
cleanup:
while ((bio = bio_list_pop(bio_list)))
bio_put(bio);
return ret;
}
static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
{
const int data_pages = rbio->nr_data * rbio->stripe_npages;
int ret;
ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages);
if (ret < 0)
return ret;
index_stripe_sectors(rbio);
return 0;
}
/*
* We use plugging call backs to collect full stripes.
* Any time we get a partial stripe write while plugged
* we collect it into a list. When the unplug comes down,
* we sort the list by logical block number and merge
* everything we can into the same rbios
*/
struct btrfs_plug_cb {
struct blk_plug_cb cb;
struct btrfs_fs_info *info;
struct list_head rbio_list;
struct work_struct work;
};
/*
* rbios on the plug list are sorted for easier merging.
*/
static int plug_cmp(void *priv, const struct list_head *a,
const struct list_head *b)
{
const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
plug_list);
const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
plug_list);
u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
if (a_sector < b_sector)
return -1;
if (a_sector > b_sector)
return 1;
return 0;
}
static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
{
struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
struct btrfs_raid_bio *cur;
struct btrfs_raid_bio *last = NULL;
list_sort(NULL, &plug->rbio_list, plug_cmp);
while (!list_empty(&plug->rbio_list)) {
cur = list_entry(plug->rbio_list.next,
struct btrfs_raid_bio, plug_list);
list_del_init(&cur->plug_list);
if (rbio_is_full(cur)) {
/* We have a full stripe, queue it down. */
start_async_work(cur, rmw_rbio_work);
continue;
}
if (last) {
if (rbio_can_merge(last, cur)) {
merge_rbio(last, cur);
free_raid_bio(cur);
continue;
}
start_async_work(last, rmw_rbio_work);
}
last = cur;
}
if (last)
start_async_work(last, rmw_rbio_work);
kfree(plug);
}
/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
{
const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
const u64 full_stripe_start = rbio->bioc->raid_map[0];
const u32 orig_len = orig_bio->bi_iter.bi_size;
const u32 sectorsize = fs_info->sectorsize;
u64 cur_logical;
ASSERT(orig_logical >= full_stripe_start &&
orig_logical + orig_len <= full_stripe_start +
rbio->nr_data * BTRFS_STRIPE_LEN);
bio_list_add(&rbio->bio_list, orig_bio);
rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
/* Update the dbitmap. */
for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
cur_logical += sectorsize) {
int bit = ((u32)(cur_logical - full_stripe_start) >>
fs_info->sectorsize_bits) % rbio->stripe_nsectors;
set_bit(bit, &rbio->dbitmap);
}
}
/*
* our main entry point for writes from the rest of the FS.
*/
void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
{
struct btrfs_fs_info *fs_info = bioc->fs_info;
struct btrfs_raid_bio *rbio;
struct btrfs_plug_cb *plug = NULL;
struct blk_plug_cb *cb;
int ret = 0;
rbio = alloc_rbio(fs_info, bioc);
if (IS_ERR(rbio)) {
ret = PTR_ERR(rbio);
goto fail;
}
rbio->operation = BTRFS_RBIO_WRITE;
rbio_add_bio(rbio, bio);
/*
* Don't plug on full rbios, just get them out the door
* as quickly as we can
*/
if (rbio_is_full(rbio))
goto queue_rbio;
cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
if (cb) {
plug = container_of(cb, struct btrfs_plug_cb, cb);
if (!plug->info) {
plug->info = fs_info;
INIT_LIST_HEAD(&plug->rbio_list);
}
list_add_tail(&rbio->plug_list, &plug->rbio_list);
return;
}
queue_rbio:
/*
* Either we don't have any existing plug, or we're doing a full stripe,
* can queue the rmw work now.
*/
start_async_work(rbio, rmw_rbio_work);
return;
fail:
bio->bi_status = errno_to_blk_status(ret);
bio_endio(bio);
}
static int verify_one_sector(struct btrfs_raid_bio *rbio,
int stripe_nr, int sector_nr)
{
struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
struct sector_ptr *sector;
u8 csum_buf[BTRFS_CSUM_SIZE];
u8 *csum_expected;
int ret;
if (!rbio->csum_bitmap || !rbio->csum_buf)
return 0;
/* No way to verify P/Q as they are not covered by data csum. */
if (stripe_nr >= rbio->nr_data)
return 0;
/*
* If we're rebuilding a read, we have to use pages from the
* bio list if possible.
*/
if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
} else {
sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
}
ASSERT(sector->page);
csum_expected = rbio->csum_buf +
(stripe_nr * rbio->stripe_nsectors + sector_nr) *
fs_info->csum_size;
ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
csum_buf, csum_expected);
return ret;
}
/*
* Recover a vertical stripe specified by @sector_nr.
* @*pointers are the pre-allocated pointers by the caller, so we don't
* need to allocate/free the pointers again and again.
*/
static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
void **pointers, void **unmap_array)
{
struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
struct sector_ptr *sector;
const u32 sectorsize = fs_info->sectorsize;
int found_errors;
int faila;
int failb;
int stripe_nr;
int ret = 0;
/*
* Now we just use bitmap to mark the horizontal stripes in
* which we have data when doing parity scrub.
*/
if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
!test_bit(sector_nr, &rbio->dbitmap))
return 0;
found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
&failb);
/*
* No errors in the veritical stripe, skip it. Can happen for recovery
* which only part of a stripe failed csum check.
*/
if (!found_errors)
return 0;
if (found_errors > rbio->bioc->max_errors)
return -EIO;
/*
* Setup our array of pointers with sectors from each stripe
*
* NOTE: store a duplicate array of pointers to preserve the
* pointer order.
*/
for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
/*
* If we're rebuilding a read, we have to use pages from the
* bio list if possible.
*/
if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
} else {
sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
}
ASSERT(sector->page);
pointers[stripe_nr] = kmap_local_page(sector->page) +
sector->pgoff;
unmap_array[stripe_nr] = pointers[stripe_nr];
}
/* All raid6 handling here */
if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
/* Single failure, rebuild from parity raid5 style */
if (failb < 0) {
if (faila == rbio->nr_data)
/*
* Just the P stripe has failed, without
* a bad data or Q stripe.
* We have nothing to do, just skip the
* recovery for this stripe.
*/
goto cleanup;
/*
* a single failure in raid6 is rebuilt
* in the pstripe code below
*/
goto pstripe;
}
/*
* If the q stripe is failed, do a pstripe reconstruction from
* the xors.
* If both the q stripe and the P stripe are failed, we're
* here due to a crc mismatch and we can't give them the
* data they want.
*/
if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
if (rbio->bioc->raid_map[faila] ==
RAID5_P_STRIPE)
/*
* Only P and Q are corrupted.
* We only care about data stripes recovery,
* can skip this vertical stripe.
*/
goto cleanup;
/*
* Otherwise we have one bad data stripe and
* a good P stripe. raid5!
*/
goto pstripe;
}
if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
raid6_datap_recov(rbio->real_stripes, sectorsize,
faila, pointers);
} else {
raid6_2data_recov(rbio->real_stripes, sectorsize,
faila, failb, pointers);
}
} else {
void *p;
/* Rebuild from P stripe here (raid5 or raid6). */
ASSERT(failb == -1);
pstripe:
/* Copy parity block into failed block to start with */
memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
/* Rearrange the pointer array */
p = pointers[faila];
for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
stripe_nr++)
pointers[stripe_nr] = pointers[stripe_nr + 1];
pointers[rbio->nr_data - 1] = p;
/* Xor in the rest */
run_xor(pointers, rbio->nr_data - 1, sectorsize);
}
/*
* No matter if this is a RMW or recovery, we should have all
* failed sectors repaired in the vertical stripe, thus they are now
* uptodate.
* Especially if we determine to cache the rbio, we need to
* have at least all data sectors uptodate.
*
* If possible, also check if the repaired sector matches its data
* checksum.
*/
if (faila >= 0) {
ret = verify_one_sector(rbio, faila, sector_nr);
if (ret < 0)
goto cleanup;
sector = rbio_stripe_sector(rbio, faila, sector_nr);
sector->uptodate = 1;
}
if (failb >= 0) {
ret = verify_one_sector(rbio, faila, sector_nr);
if (ret < 0)
goto cleanup;
sector = rbio_stripe_sector(rbio, failb, sector_nr);
sector->uptodate = 1;
}
cleanup:
for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
kunmap_local(unmap_array[stripe_nr]);
return ret;
}
static int recover_sectors(struct btrfs_raid_bio *rbio)
{
void **pointers = NULL;
void **unmap_array = NULL;
int sectornr;
int ret = 0;
/*
* @pointers array stores the pointer for each sector.
*
* @unmap_array stores copy of pointers that does not get reordered
* during reconstruction so that kunmap_local works.
*/
pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
if (!pointers || !unmap_array) {
ret = -ENOMEM;
goto out;
}
if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
spin_lock_irq(&rbio->bio_list_lock);
set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
spin_unlock_irq(&rbio->bio_list_lock);
}
index_rbio_pages(rbio);
for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
if (ret < 0)
break;
}
out:
kfree(pointers);
kfree(unmap_array);
return ret;
}
static int recover_assemble_read_bios(struct btrfs_raid_bio *rbio,
struct bio_list *bio_list)
{
struct bio *bio;
int total_sector_nr;
int ret = 0;
ASSERT(bio_list_size(bio_list) == 0);
/*
* Read everything that hasn't failed. However this time we will
* not trust any cached sector.
* As we may read out some stale data but higher layer is not reading
* that stale part.
*
* So here we always re-read everything in recovery path.
*/
for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
total_sector_nr++) {
int stripe = total_sector_nr / rbio->stripe_nsectors;
int sectornr = total_sector_nr % rbio->stripe_nsectors;
struct sector_ptr *sector;
/*
* Skip the range which has error. It can be a range which is
* marked error (for csum mismatch), or it can be a missing
* device.
*/
if (!rbio->bioc->stripes[stripe].dev->bdev ||
test_bit(total_sector_nr, rbio->error_bitmap)) {
/*
* Also set the error bit for missing device, which
* may not yet have its error bit set.
*/
set_bit(total_sector_nr, rbio->error_bitmap);
continue;
}
sector = rbio_stripe_sector(rbio, stripe, sectornr);
ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
sectornr, REQ_OP_READ);
if (ret < 0)
goto error;
}
return 0;
error:
while ((bio = bio_list_pop(bio_list)))
bio_put(bio);
return -EIO;
}
static int recover_rbio(struct btrfs_raid_bio *rbio)
{
struct bio_list bio_list;
struct bio *bio;
int ret;
/*
* Either we're doing recover for a read failure or degraded write,
* caller should have set error bitmap correctly.
*/
ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
bio_list_init(&bio_list);
/* For recovery, we need to read all sectors including P/Q. */
ret = alloc_rbio_pages(rbio);
if (ret < 0)
goto out;
index_rbio_pages(rbio);
ret = recover_assemble_read_bios(rbio, &bio_list);
if (ret < 0)
goto out;
submit_read_bios(rbio, &bio_list);
wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
ret = recover_sectors(rbio);
out:
while ((bio = bio_list_pop(&bio_list)))
bio_put(bio);
return ret;
}
static void recover_rbio_work(struct work_struct *work)
{
struct btrfs_raid_bio *rbio;
int ret;
rbio = container_of(work, struct btrfs_raid_bio, work);
ret = lock_stripe_add(rbio);
if (ret == 0) {
ret = recover_rbio(rbio);
rbio_orig_end_io(rbio, errno_to_blk_status(ret));
}
}
static void recover_rbio_work_locked(struct work_struct *work)
{
struct btrfs_raid_bio *rbio;
int ret;
rbio = container_of(work, struct btrfs_raid_bio, work);
ret = recover_rbio(rbio);
rbio_orig_end_io(rbio, errno_to_blk_status(ret));
}
static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
{
bool found = false;
int sector_nr;
/*
* This is for RAID6 extra recovery tries, thus mirror number should
* be large than 2.
* Mirror 1 means read from data stripes. Mirror 2 means rebuild using
* RAID5 methods.
*/
ASSERT(mirror_num > 2);
for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
int found_errors;
int faila;
int failb;
found_errors = get_rbio_veritical_errors(rbio, sector_nr,
&faila, &failb);
/* This vertical stripe doesn't have errors. */
if (!found_errors)
continue;
/*
* If we found errors, there should be only one error marked
* by previous set_rbio_range_error().
*/
ASSERT(found_errors == 1);
found = true;
/* Now select another stripe to mark as error. */
failb = rbio->real_stripes - (mirror_num - 1);
if (failb <= faila)
failb--;
/* Set the extra bit in error bitmap. */
if (failb >= 0)
set_bit(failb * rbio->stripe_nsectors + sector_nr,
rbio->error_bitmap);
}
/* We should found at least one vertical stripe with error.*/
ASSERT(found);
}
/*
* the main entry point for reads from the higher layers. This
* is really only called when the normal read path had a failure,
* so we assume the bio they send down corresponds to a failed part
* of the drive.
*/
void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
int mirror_num)
{
struct btrfs_fs_info *fs_info = bioc->fs_info;
struct btrfs_raid_bio *rbio;
rbio = alloc_rbio(fs_info, bioc);
if (IS_ERR(rbio)) {
bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
bio_endio(bio);
return;
}
rbio->operation = BTRFS_RBIO_READ_REBUILD;
rbio_add_bio(rbio, bio);
set_rbio_range_error(rbio, bio);
/*
* Loop retry:
* for 'mirror == 2', reconstruct from all other stripes.
* for 'mirror_num > 2', select a stripe to fail on every retry.
*/
if (mirror_num > 2)
set_rbio_raid6_extra_error(rbio, mirror_num);
start_async_work(rbio, recover_rbio_work);
}
static void fill_data_csums(struct btrfs_raid_bio *rbio)
{
struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
rbio->bioc->raid_map[0]);
const u64 start = rbio->bioc->raid_map[0];
const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
fs_info->sectorsize_bits;
int ret;
/* The rbio should not have its csum buffer initialized. */
ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
/*
* Skip the csum search if:
*
* - The rbio doesn't belong to data block groups
* Then we are doing IO for tree blocks, no need to search csums.
*
* - The rbio belongs to mixed block groups
* This is to avoid deadlock, as we're already holding the full
* stripe lock, if we trigger a metadata read, and it needs to do
* raid56 recovery, we will deadlock.
*/
if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
return;
rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
fs_info->csum_size, GFP_NOFS);
rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
GFP_NOFS);
if (!rbio->csum_buf || !rbio->csum_bitmap) {
ret = -ENOMEM;
goto error;
}
ret = btrfs_lookup_csums_bitmap(csum_root, start, start + len - 1,
rbio->csum_buf, rbio->csum_bitmap);
if (ret < 0)
goto error;
if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
goto no_csum;
return;
error:
/*
* We failed to allocate memory or grab the csum, but it's not fatal,
* we can still continue. But better to warn users that RMW is no
* longer safe for this particular sub-stripe write.
*/
btrfs_warn_rl(fs_info,
"sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
rbio->bioc->raid_map[0], ret);
no_csum:
kfree(rbio->csum_buf);
bitmap_free(rbio->csum_bitmap);
rbio->csum_buf = NULL;
rbio->csum_bitmap = NULL;
}
static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
{
struct bio_list bio_list;
struct bio *bio;
int ret;
bio_list_init(&bio_list);
/*
* Fill the data csums we need for data verification. We need to fill
* the csum_bitmap/csum_buf first, as our endio function will try to
* verify the data sectors.
*/
fill_data_csums(rbio);
ret = rmw_assemble_read_bios(rbio, &bio_list);
if (ret < 0)
goto out;
submit_read_bios(rbio, &bio_list);
wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
/*
* We may or may not have any corrupted sectors (including missing dev
* and csum mismatch), just let recover_sectors() to handle them all.
*/
ret = recover_sectors(rbio);
return ret;
out:
while ((bio = bio_list_pop(&bio_list)))
bio_put(bio);
return ret;
}
static void raid_wait_write_end_io(struct bio *bio)
{
struct btrfs_raid_bio *rbio = bio->bi_private;
blk_status_t err = bio->bi_status;
if (err)
rbio_update_error_bitmap(rbio, bio);
bio_put(bio);
if (atomic_dec_and_test(&rbio->stripes_pending))
wake_up(&rbio->io_wait);
}
static void submit_write_bios(struct btrfs_raid_bio *rbio,
struct bio_list *bio_list)
{
struct bio *bio;
atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
while ((bio = bio_list_pop(bio_list))) {
bio->bi_end_io = raid_wait_write_end_io;
if (trace_raid56_write_stripe_enabled()) {
struct raid56_bio_trace_info trace_info = { 0 };
bio_get_trace_info(rbio, bio, &trace_info);
trace_raid56_write_stripe(rbio, bio, &trace_info);
}
submit_bio(bio);
}
}
/*
* To determine if we need to read any sector from the disk.
* Should only be utilized in RMW path, to skip cached rbio.
*/
static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
{
int i;
for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
struct sector_ptr *sector = &rbio->stripe_sectors[i];
/*
* We have a sector which doesn't have page nor uptodate,
* thus this rbio can not be cached one, as cached one must
* have all its data sectors present and uptodate.
*/
if (!sector->page || !sector->uptodate)
return true;
}
return false;
}
static int rmw_rbio(struct btrfs_raid_bio *rbio)
{
struct bio_list bio_list;
int sectornr;
int ret = 0;
/*
* Allocate the pages for parity first, as P/Q pages will always be
* needed for both full-stripe and sub-stripe writes.
*/
ret = alloc_rbio_parity_pages(rbio);
if (ret < 0)
return ret;
/*
* Either full stripe write, or we have every data sector already
* cached, can go to write path immediately.
*/
if (rbio_is_full(rbio) || !need_read_stripe_sectors(rbio))
goto write;
/*
* Now we're doing sub-stripe write, also need all data stripes to do
* the full RMW.
*/
ret = alloc_rbio_data_pages(rbio);
if (ret < 0)
return ret;
index_rbio_pages(rbio);
ret = rmw_read_wait_recover(rbio);
if (ret < 0)
return ret;
write:
/*
* At this stage we're not allowed to add any new bios to the
* bio list any more, anyone else that wants to change this stripe
* needs to do their own rmw.
*/
spin_lock_irq(&rbio->bio_list_lock);
set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
spin_unlock_irq(&rbio->bio_list_lock);
bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
index_rbio_pages(rbio);
/*
* We don't cache full rbios because we're assuming
* the higher layers are unlikely to use this area of
* the disk again soon. If they do use it again,
* hopefully they will send another full bio.
*/
if (!rbio_is_full(rbio))
cache_rbio_pages(rbio);
else
clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
generate_pq_vertical(rbio, sectornr);
bio_list_init(&bio_list);
ret = rmw_assemble_write_bios(rbio, &bio_list);
if (ret < 0)
return ret;
/* We should have at least one bio assembled. */
ASSERT(bio_list_size(&bio_list));
submit_write_bios(rbio, &bio_list);
wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
/* We may have more errors than our tolerance during the read. */
for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
int found_errors;
found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
if (found_errors > rbio->bioc->max_errors) {
ret = -EIO;
break;
}
}
return ret;
}
static void rmw_rbio_work(struct work_struct *work)
{
struct btrfs_raid_bio *rbio;
int ret;
rbio = container_of(work, struct btrfs_raid_bio, work);
ret = lock_stripe_add(rbio);
if (ret == 0) {
ret = rmw_rbio(rbio);
rbio_orig_end_io(rbio, errno_to_blk_status(ret));
}
}
static void rmw_rbio_work_locked(struct work_struct *work)
{
struct btrfs_raid_bio *rbio;
int ret;
rbio = container_of(work, struct btrfs_raid_bio, work);
ret = rmw_rbio(rbio);
rbio_orig_end_io(rbio, errno_to_blk_status(ret));
}
/*
* The following code is used to scrub/replace the parity stripe
*
* Caller must have already increased bio_counter for getting @bioc.
*
* Note: We need make sure all the pages that add into the scrub/replace
* raid bio are correct and not be changed during the scrub/replace. That
* is those pages just hold metadata or file data with checksum.
*/
struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
struct btrfs_io_context *bioc,
struct btrfs_device *scrub_dev,
unsigned long *dbitmap, int stripe_nsectors)
{
struct btrfs_fs_info *fs_info = bioc->fs_info;
struct btrfs_raid_bio *rbio;
int i;
rbio = alloc_rbio(fs_info, bioc);
if (IS_ERR(rbio))
return NULL;
bio_list_add(&rbio->bio_list, bio);
/*
* This is a special bio which is used to hold the completion handler
* and make the scrub rbio is similar to the other types
*/
ASSERT(!bio->bi_iter.bi_size);
rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
/*
* After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
* to the end position, so this search can start from the first parity
* stripe.
*/
for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
if (bioc->stripes[i].dev == scrub_dev) {
rbio->scrubp = i;
break;
}
}
ASSERT(i < rbio->real_stripes);
bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
return rbio;
}
/* Used for both parity scrub and missing. */
void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
unsigned int pgoff, u64 logical)
{
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
int stripe_offset;
int index;
ASSERT(logical >= rbio->bioc->raid_map[0]);
ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] +
BTRFS_STRIPE_LEN * rbio->nr_data);
stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
index = stripe_offset / sectorsize;
rbio->bio_sectors[index].page = page;
rbio->bio_sectors[index].pgoff = pgoff;
}
/*
* We just scrub the parity that we have correct data on the same horizontal,
* so we needn't allocate all pages for all the stripes.
*/
static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
{
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
int total_sector_nr;
for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
total_sector_nr++) {
struct page *page;
int sectornr = total_sector_nr % rbio->stripe_nsectors;
int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
if (!test_bit(sectornr, &rbio->dbitmap))
continue;
if (rbio->stripe_pages[index])
continue;
page = alloc_page(GFP_NOFS);
if (!page)
return -ENOMEM;
rbio->stripe_pages[index] = page;
}
index_stripe_sectors(rbio);
return 0;
}
static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check)
{
struct btrfs_io_context *bioc = rbio->bioc;
const u32 sectorsize = bioc->fs_info->sectorsize;
void **pointers = rbio->finish_pointers;
unsigned long *pbitmap = &rbio->finish_pbitmap;
int nr_data = rbio->nr_data;
int stripe;
int sectornr;
bool has_qstripe;
struct sector_ptr p_sector = { 0 };
struct sector_ptr q_sector = { 0 };
struct bio_list bio_list;
struct bio *bio;
int is_replace = 0;
int ret;
bio_list_init(&bio_list);
if (rbio->real_stripes - rbio->nr_data == 1)
has_qstripe = false;
else if (rbio->real_stripes - rbio->nr_data == 2)
has_qstripe = true;
else
BUG();
if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) {
is_replace = 1;
bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
}
/*
* Because the higher layers(scrubber) are unlikely to
* use this area of the disk again soon, so don't cache
* it.
*/
clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
if (!need_check)
goto writeback;
p_sector.page = alloc_page(GFP_NOFS);
if (!p_sector.page)
return -ENOMEM;
p_sector.pgoff = 0;
p_sector.uptodate = 1;
if (has_qstripe) {
/* RAID6, allocate and map temp space for the Q stripe */
q_sector.page = alloc_page(GFP_NOFS);
if (!q_sector.page) {
__free_page(p_sector.page);
p_sector.page = NULL;
return -ENOMEM;
}
q_sector.pgoff = 0;
q_sector.uptodate = 1;
pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
}
bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
/* Map the parity stripe just once */
pointers[nr_data] = kmap_local_page(p_sector.page);
for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
struct sector_ptr *sector;
void *parity;
/* first collect one page from each data stripe */
for (stripe = 0; stripe < nr_data; stripe++) {
sector = sector_in_rbio(rbio, stripe, sectornr, 0);
pointers[stripe] = kmap_local_page(sector->page) +
sector->pgoff;
}
if (has_qstripe) {
/* RAID6, call the library function to fill in our P/Q */
raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
pointers);
} else {
/* raid5 */
memcpy(pointers[nr_data], pointers[0], sectorsize);
run_xor(pointers + 1, nr_data - 1, sectorsize);
}
/* Check scrubbing parity and repair it */
sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
parity = kmap_local_page(sector->page) + sector->pgoff;
if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
memcpy(parity, pointers[rbio->scrubp], sectorsize);
else
/* Parity is right, needn't writeback */
bitmap_clear(&rbio->dbitmap, sectornr, 1);
kunmap_local(parity);
for (stripe = nr_data - 1; stripe >= 0; stripe--)
kunmap_local(pointers[stripe]);
}
kunmap_local(pointers[nr_data]);
__free_page(p_sector.page);
p_sector.page = NULL;
if (q_sector.page) {
kunmap_local(pointers[rbio->real_stripes - 1]);
__free_page(q_sector.page);
q_sector.page = NULL;
}
writeback:
/*
* time to start writing. Make bios for everything from the
* higher layers (the bio_list in our rbio) and our p/q. Ignore
* everything else.
*/
for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
struct sector_ptr *sector;
sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
sectornr, REQ_OP_WRITE);
if (ret)
goto cleanup;
}
if (!is_replace)
goto submit_write;
for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
struct sector_ptr *sector;
sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
ret = rbio_add_io_sector(rbio, &bio_list, sector,
bioc->tgtdev_map[rbio->scrubp],
sectornr, REQ_OP_WRITE);
if (ret)
goto cleanup;
}
submit_write:
submit_write_bios(rbio, &bio_list);
return 0;
cleanup:
while ((bio = bio_list_pop(&bio_list)))
bio_put(bio);
return ret;
}
static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
{
if (stripe >= 0 && stripe < rbio->nr_data)
return 1;
return 0;
}
static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
{
void **pointers = NULL;
void **unmap_array = NULL;
int sector_nr;
int ret;
/*
* @pointers array stores the pointer for each sector.
*
* @unmap_array stores copy of pointers that does not get reordered
* during reconstruction so that kunmap_local works.
*/
pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
if (!pointers || !unmap_array) {
ret = -ENOMEM;
goto out;
}
for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
int dfail = 0, failp = -1;
int faila;
int failb;
int found_errors;
found_errors = get_rbio_veritical_errors(rbio, sector_nr,
&faila, &failb);
if (found_errors > rbio->bioc->max_errors) {
ret = -EIO;
goto out;
}
if (found_errors == 0)
continue;
/* We should have at least one error here. */
ASSERT(faila >= 0 || failb >= 0);
if (is_data_stripe(rbio, faila))
dfail++;
else if (is_parity_stripe(faila))
failp = faila;
if (is_data_stripe(rbio, failb))
dfail++;
else if (is_parity_stripe(failb))
failp = failb;
/*
* Because we can not use a scrubbing parity to repair the
* data, so the capability of the repair is declined. (In the
* case of RAID5, we can not repair anything.)
*/
if (dfail > rbio->bioc->max_errors - 1) {
ret = -EIO;
goto out;
}
/*
* If all data is good, only parity is correctly, just repair
* the parity, no need to recover data stripes.
*/
if (dfail == 0)
continue;
/*
* Here means we got one corrupted data stripe and one
* corrupted parity on RAID6, if the corrupted parity is
* scrubbing parity, luckily, use the other one to repair the
* data, or we can not repair the data stripe.
*/
if (failp != rbio->scrubp) {
ret = -EIO;
goto out;
}
ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
if (ret < 0)
goto out;
}
out:
kfree(pointers);
kfree(unmap_array);
return ret;
}
static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio,
struct bio_list *bio_list)
{
struct bio *bio;
int total_sector_nr;
int ret = 0;
ASSERT(bio_list_size(bio_list) == 0);
/* Build a list of bios to read all the missing parts. */
for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
total_sector_nr++) {
int sectornr = total_sector_nr % rbio->stripe_nsectors;
int stripe = total_sector_nr / rbio->stripe_nsectors;
struct sector_ptr *sector;
/* No data in the vertical stripe, no need to read. */
if (!test_bit(sectornr, &rbio->dbitmap))
continue;
/*
* We want to find all the sectors missing from the rbio and
* read them from the disk. If sector_in_rbio() finds a sector
* in the bio list we don't need to read it off the stripe.
*/
sector = sector_in_rbio(rbio, stripe, sectornr, 1);
if (sector)
continue;
sector = rbio_stripe_sector(rbio, stripe, sectornr);
/*
* The bio cache may have handed us an uptodate sector. If so,
* use it.
*/
if (sector->uptodate)
continue;
ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
sectornr, REQ_OP_READ);
if (ret)
goto error;
}
return 0;
error:
while ((bio = bio_list_pop(bio_list)))
bio_put(bio);
return ret;
}
static int scrub_rbio(struct btrfs_raid_bio *rbio)
{
bool need_check = false;
struct bio_list bio_list;
int sector_nr;
int ret;
struct bio *bio;
bio_list_init(&bio_list);
ret = alloc_rbio_essential_pages(rbio);
if (ret)
goto cleanup;
bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
ret = scrub_assemble_read_bios(rbio, &bio_list);
if (ret < 0)
goto cleanup;
submit_read_bios(rbio, &bio_list);
wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
/* We may have some failures, recover the failed sectors first. */
ret = recover_scrub_rbio(rbio);
if (ret < 0)
goto cleanup;
/*
* We have every sector properly prepared. Can finish the scrub
* and writeback the good content.
*/
ret = finish_parity_scrub(rbio, need_check);
wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
int found_errors;
found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
if (found_errors > rbio->bioc->max_errors) {
ret = -EIO;
break;
}
}
return ret;
cleanup:
while ((bio = bio_list_pop(&bio_list)))
bio_put(bio);
return ret;
}
static void scrub_rbio_work_locked(struct work_struct *work)
{
struct btrfs_raid_bio *rbio;
int ret;
rbio = container_of(work, struct btrfs_raid_bio, work);
ret = scrub_rbio(rbio);
rbio_orig_end_io(rbio, errno_to_blk_status(ret));
}
void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
{
if (!lock_stripe_add(rbio))
start_async_work(rbio, scrub_rbio_work_locked);
}
/* The following code is used for dev replace of a missing RAID 5/6 device. */
struct btrfs_raid_bio *
raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc)
{
struct btrfs_fs_info *fs_info = bioc->fs_info;
struct btrfs_raid_bio *rbio;
rbio = alloc_rbio(fs_info, bioc);
if (IS_ERR(rbio))
return NULL;
rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
bio_list_add(&rbio->bio_list, bio);
/*
* This is a special bio which is used to hold the completion handler
* and make the scrub rbio is similar to the other types
*/
ASSERT(!bio->bi_iter.bi_size);
set_rbio_range_error(rbio, bio);
return rbio;
}
void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
{
start_async_work(rbio, recover_rbio_work);
}