linux/fs/xfs/scrub/inode_repair.c
Darrick J. Wong 5385f1a60d xfs: repair file modes by scanning for a dirent pointing to us
Repair might encounter an inode with a totally garbage i_mode.  To fix
this problem, we have to figure out if the file was a regular file, a
directory, or a special file.  One way to figure this out is to check if
there are any directories with entries pointing down to the busted file.

This patch recovers the file mode by scanning every directory entry on
the filesystem to see if there are any that point to the busted file.
If the ftype of all such dirents are consistent, the mode is recovered
from the ftype.  If no dirents are found, the file becomes a regular
file.  In all cases, ACLs are canceled and the file is made accessible
only by root.

A previous patch attempted to guess the mode by reading the beginning of
the file data.  This was rejected by Christoph on the grounds that we
cannot trust user-controlled data blocks.  Users do not have direct
control over the ondisk contents of directory entries, so this method
should be much safer.

If all the dirents have the same ftype, then we can translate that back
into an S_IFMT flag and fix the file.  If not, reset the mode to
S_IFREG.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-22 12:30:51 -08:00

1750 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2018-2023 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_inode.h"
#include "xfs_icache.h"
#include "xfs_inode_buf.h"
#include "xfs_inode_fork.h"
#include "xfs_ialloc.h"
#include "xfs_da_format.h"
#include "xfs_reflink.h"
#include "xfs_alloc.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_bmap.h"
#include "xfs_bmap_btree.h"
#include "xfs_bmap_util.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_quota_defs.h"
#include "xfs_quota.h"
#include "xfs_ag.h"
#include "xfs_rtbitmap.h"
#include "xfs_attr_leaf.h"
#include "xfs_log_priv.h"
#include "xfs_health.h"
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/btree.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/iscan.h"
#include "scrub/readdir.h"
/*
* Inode Record Repair
* ===================
*
* Roughly speaking, inode problems can be classified based on whether or not
* they trip the dinode verifiers. If those trip, then we won't be able to
* xfs_iget ourselves the inode.
*
* Therefore, the xrep_dinode_* functions fix anything that will cause the
* inode buffer verifier or the dinode verifier. The xrep_inode_* functions
* fix things on live incore inodes. The inode repair functions make decisions
* with security and usability implications when reviving a file:
*
* - Files with zero di_mode or a garbage di_mode are converted to regular file
* that only root can read. This file may not actually contain user data,
* if the file was not previously a regular file. Setuid and setgid bits
* are cleared.
*
* - Zero-size directories can be truncated to look empty. It is necessary to
* run the bmapbtd and directory repair functions to fully rebuild the
* directory.
*
* - Zero-size symbolic link targets can be truncated to '?'. It is necessary
* to run the bmapbtd and symlink repair functions to salvage the symlink.
*
* - Invalid extent size hints will be removed.
*
* - Quotacheck will be scheduled if we repaired an inode that was so badly
* damaged that the ondisk inode had to be rebuilt.
*
* - Invalid user, group, or project IDs (aka -1U) will be reset to zero.
* Setuid and setgid bits are cleared.
*
* - Data and attr forks are reset to extents format with zero extents if the
* fork data is inconsistent. It is necessary to run the bmapbtd or bmapbta
* repair functions to recover the space mapping.
*
* - ACLs will not be recovered if the attr fork is zapped or the extended
* attribute structure itself requires salvaging.
*
* - If the attr fork is zapped, the user and group ids are reset to root and
* the setuid and setgid bits are removed.
*/
/*
* All the information we need to repair the ondisk inode if we can't iget the
* incore inode. We don't allocate this buffer unless we're going to perform
* a repair to the ondisk inode cluster buffer.
*/
struct xrep_inode {
/* Inode mapping that we saved from the initial lookup attempt. */
struct xfs_imap imap;
struct xfs_scrub *sc;
/* Blocks in use on the data device by data extents or bmbt blocks. */
xfs_rfsblock_t data_blocks;
/* Blocks in use on the rt device. */
xfs_rfsblock_t rt_blocks;
/* Blocks in use by the attr fork. */
xfs_rfsblock_t attr_blocks;
/* Number of data device extents for the data fork. */
xfs_extnum_t data_extents;
/*
* Number of realtime device extents for the data fork. If
* data_extents and rt_extents indicate that the data fork has extents
* on both devices, we'll just back away slowly.
*/
xfs_extnum_t rt_extents;
/* Number of (data device) extents for the attr fork. */
xfs_aextnum_t attr_extents;
/* Sick state to set after zapping parts of the inode. */
unsigned int ino_sick_mask;
/* Must we remove all access from this file? */
bool zap_acls;
/* Inode scanner to see if we can find the ftype from dirents */
struct xchk_iscan ftype_iscan;
uint8_t alleged_ftype;
};
/*
* Setup function for inode repair. @imap contains the ondisk inode mapping
* information so that we can correct the ondisk inode cluster buffer if
* necessary to make iget work.
*/
int
xrep_setup_inode(
struct xfs_scrub *sc,
const struct xfs_imap *imap)
{
struct xrep_inode *ri;
sc->buf = kzalloc(sizeof(struct xrep_inode), XCHK_GFP_FLAGS);
if (!sc->buf)
return -ENOMEM;
ri = sc->buf;
memcpy(&ri->imap, imap, sizeof(struct xfs_imap));
ri->sc = sc;
return 0;
}
/*
* Make sure this ondisk inode can pass the inode buffer verifier. This is
* not the same as the dinode verifier.
*/
STATIC void
xrep_dinode_buf_core(
struct xfs_scrub *sc,
struct xfs_buf *bp,
unsigned int ioffset)
{
struct xfs_dinode *dip = xfs_buf_offset(bp, ioffset);
struct xfs_trans *tp = sc->tp;
struct xfs_mount *mp = sc->mp;
xfs_agino_t agino;
bool crc_ok = false;
bool magic_ok = false;
bool unlinked_ok = false;
agino = be32_to_cpu(dip->di_next_unlinked);
if (xfs_verify_agino_or_null(bp->b_pag, agino))
unlinked_ok = true;
if (dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
xfs_dinode_good_version(mp, dip->di_version))
magic_ok = true;
if (xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
XFS_DINODE_CRC_OFF))
crc_ok = true;
if (magic_ok && unlinked_ok && crc_ok)
return;
if (!magic_ok) {
dip->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
dip->di_version = 3;
}
if (!unlinked_ok)
dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
xfs_dinode_calc_crc(mp, dip);
xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
xfs_trans_log_buf(tp, bp, ioffset,
ioffset + sizeof(struct xfs_dinode) - 1);
}
/* Make sure this inode cluster buffer can pass the inode buffer verifier. */
STATIC void
xrep_dinode_buf(
struct xfs_scrub *sc,
struct xfs_buf *bp)
{
struct xfs_mount *mp = sc->mp;
int i;
int ni;
ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
for (i = 0; i < ni; i++)
xrep_dinode_buf_core(sc, bp, i << mp->m_sb.sb_inodelog);
}
/* Reinitialize things that never change in an inode. */
STATIC void
xrep_dinode_header(
struct xfs_scrub *sc,
struct xfs_dinode *dip)
{
trace_xrep_dinode_header(sc, dip);
dip->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
if (!xfs_dinode_good_version(sc->mp, dip->di_version))
dip->di_version = 3;
dip->di_ino = cpu_to_be64(sc->sm->sm_ino);
uuid_copy(&dip->di_uuid, &sc->mp->m_sb.sb_meta_uuid);
dip->di_gen = cpu_to_be32(sc->sm->sm_gen);
}
/*
* If this directory entry points to the scrub target inode, then the directory
* we're scanning is the parent of the scrub target inode.
*/
STATIC int
xrep_dinode_findmode_dirent(
struct xfs_scrub *sc,
struct xfs_inode *dp,
xfs_dir2_dataptr_t dapos,
const struct xfs_name *name,
xfs_ino_t ino,
void *priv)
{
struct xrep_inode *ri = priv;
int error = 0;
if (xchk_should_terminate(ri->sc, &error))
return error;
if (ino != sc->sm->sm_ino)
return 0;
/* Ignore garbage directory entry names. */
if (name->len == 0 || !xfs_dir2_namecheck(name->name, name->len))
return -EFSCORRUPTED;
/* Don't pick up dot or dotdot entries; we only want child dirents. */
if (xfs_dir2_samename(name, &xfs_name_dotdot) ||
xfs_dir2_samename(name, &xfs_name_dot))
return 0;
/*
* Uhoh, more than one parent for this inode and they don't agree on
* the file type?
*/
if (ri->alleged_ftype != XFS_DIR3_FT_UNKNOWN &&
ri->alleged_ftype != name->type) {
trace_xrep_dinode_findmode_dirent_inval(ri->sc, dp, name->type,
ri->alleged_ftype);
return -EFSCORRUPTED;
}
/* We found a potential parent; remember the ftype. */
trace_xrep_dinode_findmode_dirent(ri->sc, dp, name->type);
ri->alleged_ftype = name->type;
return 0;
}
/*
* If this is a directory, walk the dirents looking for any that point to the
* scrub target inode.
*/
STATIC int
xrep_dinode_findmode_walk_directory(
struct xrep_inode *ri,
struct xfs_inode *dp)
{
struct xfs_scrub *sc = ri->sc;
unsigned int lock_mode;
int error = 0;
/*
* Scan the directory to see if there it contains an entry pointing to
* the directory that we are repairing.
*/
lock_mode = xfs_ilock_data_map_shared(dp);
/*
* If this directory is known to be sick, we cannot scan it reliably
* and must abort.
*/
if (xfs_inode_has_sickness(dp, XFS_SICK_INO_CORE |
XFS_SICK_INO_BMBTD |
XFS_SICK_INO_DIR)) {
error = -EFSCORRUPTED;
goto out_unlock;
}
/*
* We cannot complete our parent pointer scan if a directory looks as
* though it has been zapped by the inode record repair code.
*/
if (xchk_dir_looks_zapped(dp)) {
error = -EBUSY;
goto out_unlock;
}
error = xchk_dir_walk(sc, dp, xrep_dinode_findmode_dirent, ri);
if (error)
goto out_unlock;
out_unlock:
xfs_iunlock(dp, lock_mode);
return error;
}
/*
* Try to find the mode of the inode being repaired by looking for directories
* that point down to this file.
*/
STATIC int
xrep_dinode_find_mode(
struct xrep_inode *ri,
uint16_t *mode)
{
struct xfs_scrub *sc = ri->sc;
struct xfs_inode *dp;
int error;
/* No ftype means we have no other metadata to consult. */
if (!xfs_has_ftype(sc->mp)) {
*mode = S_IFREG;
return 0;
}
/*
* Scan all directories for parents that might point down to this
* inode. Skip the inode being repaired during the scan since it
* cannot be its own parent. Note that we still hold the AGI locked
* so there's a real possibility that _iscan_iter can return EBUSY.
*/
xchk_iscan_start(sc, 5000, 100, &ri->ftype_iscan);
ri->ftype_iscan.skip_ino = sc->sm->sm_ino;
ri->alleged_ftype = XFS_DIR3_FT_UNKNOWN;
while ((error = xchk_iscan_iter(&ri->ftype_iscan, &dp)) == 1) {
if (S_ISDIR(VFS_I(dp)->i_mode))
error = xrep_dinode_findmode_walk_directory(ri, dp);
xchk_iscan_mark_visited(&ri->ftype_iscan, dp);
xchk_irele(sc, dp);
if (error < 0)
break;
if (xchk_should_terminate(sc, &error))
break;
}
xchk_iscan_iter_finish(&ri->ftype_iscan);
xchk_iscan_teardown(&ri->ftype_iscan);
if (error == -EBUSY) {
if (ri->alleged_ftype != XFS_DIR3_FT_UNKNOWN) {
/*
* If we got an EBUSY after finding at least one
* dirent, that means the scan found an inode on the
* inactivation list and could not open it. Accept the
* alleged ftype and install a new mode below.
*/
error = 0;
} else if (!(sc->flags & XCHK_TRY_HARDER)) {
/*
* Otherwise, retry the operation one time to see if
* the reason for the delay is an inode from the same
* cluster buffer waiting on the inactivation list.
*/
error = -EDEADLOCK;
}
}
if (error)
return error;
/*
* Convert the discovered ftype into the file mode. If all else fails,
* return S_IFREG.
*/
switch (ri->alleged_ftype) {
case XFS_DIR3_FT_DIR:
*mode = S_IFDIR;
break;
case XFS_DIR3_FT_WHT:
case XFS_DIR3_FT_CHRDEV:
*mode = S_IFCHR;
break;
case XFS_DIR3_FT_BLKDEV:
*mode = S_IFBLK;
break;
case XFS_DIR3_FT_FIFO:
*mode = S_IFIFO;
break;
case XFS_DIR3_FT_SOCK:
*mode = S_IFSOCK;
break;
case XFS_DIR3_FT_SYMLINK:
*mode = S_IFLNK;
break;
default:
*mode = S_IFREG;
break;
}
return 0;
}
/* Turn di_mode into /something/ recognizable. Returns true if we succeed. */
STATIC int
xrep_dinode_mode(
struct xrep_inode *ri,
struct xfs_dinode *dip)
{
struct xfs_scrub *sc = ri->sc;
uint16_t mode = be16_to_cpu(dip->di_mode);
int error;
trace_xrep_dinode_mode(sc, dip);
if (mode == 0 || xfs_mode_to_ftype(mode) != XFS_DIR3_FT_UNKNOWN)
return 0;
/* Try to fix the mode. If we cannot, then leave everything alone. */
error = xrep_dinode_find_mode(ri, &mode);
switch (error) {
case -EINTR:
case -EBUSY:
case -EDEADLOCK:
/* temporary failure or fatal signal */
return error;
case 0:
/* found mode */
break;
default:
/* some other error, assume S_IFREG */
mode = S_IFREG;
break;
}
/* bad mode, so we set it to a file that only root can read */
dip->di_mode = cpu_to_be16(mode);
dip->di_uid = 0;
dip->di_gid = 0;
ri->zap_acls = true;
return 0;
}
/* Fix any conflicting flags that the verifiers complain about. */
STATIC void
xrep_dinode_flags(
struct xfs_scrub *sc,
struct xfs_dinode *dip,
bool isrt)
{
struct xfs_mount *mp = sc->mp;
uint64_t flags2 = be64_to_cpu(dip->di_flags2);
uint16_t flags = be16_to_cpu(dip->di_flags);
uint16_t mode = be16_to_cpu(dip->di_mode);
trace_xrep_dinode_flags(sc, dip);
if (isrt)
flags |= XFS_DIFLAG_REALTIME;
else
flags &= ~XFS_DIFLAG_REALTIME;
/*
* For regular files on a reflink filesystem, set the REFLINK flag to
* protect shared extents. A later stage will actually check those
* extents and clear the flag if possible.
*/
if (xfs_has_reflink(mp) && S_ISREG(mode))
flags2 |= XFS_DIFLAG2_REFLINK;
else
flags2 &= ~(XFS_DIFLAG2_REFLINK | XFS_DIFLAG2_COWEXTSIZE);
if (flags & XFS_DIFLAG_REALTIME)
flags2 &= ~XFS_DIFLAG2_REFLINK;
if (!xfs_has_bigtime(mp))
flags2 &= ~XFS_DIFLAG2_BIGTIME;
if (!xfs_has_large_extent_counts(mp))
flags2 &= ~XFS_DIFLAG2_NREXT64;
if (flags2 & XFS_DIFLAG2_NREXT64)
dip->di_nrext64_pad = 0;
else if (dip->di_version >= 3)
dip->di_v3_pad = 0;
dip->di_flags = cpu_to_be16(flags);
dip->di_flags2 = cpu_to_be64(flags2);
}
/*
* Blow out symlink; now it points nowhere. We don't have to worry about
* incore state because this inode is failing the verifiers.
*/
STATIC void
xrep_dinode_zap_symlink(
struct xrep_inode *ri,
struct xfs_dinode *dip)
{
struct xfs_scrub *sc = ri->sc;
char *p;
trace_xrep_dinode_zap_symlink(sc, dip);
dip->di_format = XFS_DINODE_FMT_LOCAL;
dip->di_size = cpu_to_be64(1);
p = XFS_DFORK_PTR(dip, XFS_DATA_FORK);
*p = '?';
ri->ino_sick_mask |= XFS_SICK_INO_SYMLINK_ZAPPED;
}
/*
* Blow out dir, make the parent point to the root. In the future repair will
* reconstruct this directory for us. Note that there's no in-core directory
* inode because the sf verifier tripped, so we don't have to worry about the
* dentry cache.
*/
STATIC void
xrep_dinode_zap_dir(
struct xrep_inode *ri,
struct xfs_dinode *dip)
{
struct xfs_scrub *sc = ri->sc;
struct xfs_mount *mp = sc->mp;
struct xfs_dir2_sf_hdr *sfp;
int i8count;
trace_xrep_dinode_zap_dir(sc, dip);
dip->di_format = XFS_DINODE_FMT_LOCAL;
i8count = mp->m_sb.sb_rootino > XFS_DIR2_MAX_SHORT_INUM;
sfp = XFS_DFORK_PTR(dip, XFS_DATA_FORK);
sfp->count = 0;
sfp->i8count = i8count;
xfs_dir2_sf_put_parent_ino(sfp, mp->m_sb.sb_rootino);
dip->di_size = cpu_to_be64(xfs_dir2_sf_hdr_size(i8count));
ri->ino_sick_mask |= XFS_SICK_INO_DIR_ZAPPED;
}
/* Make sure we don't have a garbage file size. */
STATIC void
xrep_dinode_size(
struct xrep_inode *ri,
struct xfs_dinode *dip)
{
struct xfs_scrub *sc = ri->sc;
uint64_t size = be64_to_cpu(dip->di_size);
uint16_t mode = be16_to_cpu(dip->di_mode);
trace_xrep_dinode_size(sc, dip);
switch (mode & S_IFMT) {
case S_IFIFO:
case S_IFCHR:
case S_IFBLK:
case S_IFSOCK:
/* di_size can't be nonzero for special files */
dip->di_size = 0;
break;
case S_IFREG:
/* Regular files can't be larger than 2^63-1 bytes. */
dip->di_size = cpu_to_be64(size & ~(1ULL << 63));
break;
case S_IFLNK:
/*
* Truncate ridiculously oversized symlinks. If the size is
* zero, reset it to point to the current directory. Both of
* these conditions trigger dinode verifier errors, so there
* is no in-core state to reset.
*/
if (size > XFS_SYMLINK_MAXLEN)
dip->di_size = cpu_to_be64(XFS_SYMLINK_MAXLEN);
else if (size == 0)
xrep_dinode_zap_symlink(ri, dip);
break;
case S_IFDIR:
/*
* Directories can't have a size larger than 32G. If the size
* is zero, reset it to an empty directory. Both of these
* conditions trigger dinode verifier errors, so there is no
* in-core state to reset.
*/
if (size > XFS_DIR2_SPACE_SIZE)
dip->di_size = cpu_to_be64(XFS_DIR2_SPACE_SIZE);
else if (size == 0)
xrep_dinode_zap_dir(ri, dip);
break;
}
}
/* Fix extent size hints. */
STATIC void
xrep_dinode_extsize_hints(
struct xfs_scrub *sc,
struct xfs_dinode *dip)
{
struct xfs_mount *mp = sc->mp;
uint64_t flags2 = be64_to_cpu(dip->di_flags2);
uint16_t flags = be16_to_cpu(dip->di_flags);
uint16_t mode = be16_to_cpu(dip->di_mode);
xfs_failaddr_t fa;
trace_xrep_dinode_extsize_hints(sc, dip);
fa = xfs_inode_validate_extsize(mp, be32_to_cpu(dip->di_extsize),
mode, flags);
if (fa) {
dip->di_extsize = 0;
dip->di_flags &= ~cpu_to_be16(XFS_DIFLAG_EXTSIZE |
XFS_DIFLAG_EXTSZINHERIT);
}
if (dip->di_version < 3)
return;
fa = xfs_inode_validate_cowextsize(mp, be32_to_cpu(dip->di_cowextsize),
mode, flags, flags2);
if (fa) {
dip->di_cowextsize = 0;
dip->di_flags2 &= ~cpu_to_be64(XFS_DIFLAG2_COWEXTSIZE);
}
}
/* Count extents and blocks for an inode given an rmap. */
STATIC int
xrep_dinode_walk_rmap(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xrep_inode *ri = priv;
int error = 0;
if (xchk_should_terminate(ri->sc, &error))
return error;
/* We only care about this inode. */
if (rec->rm_owner != ri->sc->sm->sm_ino)
return 0;
if (rec->rm_flags & XFS_RMAP_ATTR_FORK) {
ri->attr_blocks += rec->rm_blockcount;
if (!(rec->rm_flags & XFS_RMAP_BMBT_BLOCK))
ri->attr_extents++;
return 0;
}
ri->data_blocks += rec->rm_blockcount;
if (!(rec->rm_flags & XFS_RMAP_BMBT_BLOCK))
ri->data_extents++;
return 0;
}
/* Count extents and blocks for an inode from all AG rmap data. */
STATIC int
xrep_dinode_count_ag_rmaps(
struct xrep_inode *ri,
struct xfs_perag *pag)
{
struct xfs_btree_cur *cur;
struct xfs_buf *agf;
int error;
error = xfs_alloc_read_agf(pag, ri->sc->tp, 0, &agf);
if (error)
return error;
cur = xfs_rmapbt_init_cursor(ri->sc->mp, ri->sc->tp, agf, pag);
error = xfs_rmap_query_all(cur, xrep_dinode_walk_rmap, ri);
xfs_btree_del_cursor(cur, error);
xfs_trans_brelse(ri->sc->tp, agf);
return error;
}
/* Count extents and blocks for a given inode from all rmap data. */
STATIC int
xrep_dinode_count_rmaps(
struct xrep_inode *ri)
{
struct xfs_perag *pag;
xfs_agnumber_t agno;
int error;
if (!xfs_has_rmapbt(ri->sc->mp) || xfs_has_realtime(ri->sc->mp))
return -EOPNOTSUPP;
for_each_perag(ri->sc->mp, agno, pag) {
error = xrep_dinode_count_ag_rmaps(ri, pag);
if (error) {
xfs_perag_rele(pag);
return error;
}
}
/* Can't have extents on both the rt and the data device. */
if (ri->data_extents && ri->rt_extents)
return -EFSCORRUPTED;
trace_xrep_dinode_count_rmaps(ri->sc,
ri->data_blocks, ri->rt_blocks, ri->attr_blocks,
ri->data_extents, ri->rt_extents, ri->attr_extents);
return 0;
}
/* Return true if this extents-format ifork looks like garbage. */
STATIC bool
xrep_dinode_bad_extents_fork(
struct xfs_scrub *sc,
struct xfs_dinode *dip,
unsigned int dfork_size,
int whichfork)
{
struct xfs_bmbt_irec new;
struct xfs_bmbt_rec *dp;
xfs_extnum_t nex;
bool isrt;
unsigned int i;
nex = xfs_dfork_nextents(dip, whichfork);
if (nex > dfork_size / sizeof(struct xfs_bmbt_rec))
return true;
dp = XFS_DFORK_PTR(dip, whichfork);
isrt = dip->di_flags & cpu_to_be16(XFS_DIFLAG_REALTIME);
for (i = 0; i < nex; i++, dp++) {
xfs_failaddr_t fa;
xfs_bmbt_disk_get_all(dp, &new);
fa = xfs_bmap_validate_extent_raw(sc->mp, isrt, whichfork,
&new);
if (fa)
return true;
}
return false;
}
/* Return true if this btree-format ifork looks like garbage. */
STATIC bool
xrep_dinode_bad_bmbt_fork(
struct xfs_scrub *sc,
struct xfs_dinode *dip,
unsigned int dfork_size,
int whichfork)
{
struct xfs_bmdr_block *dfp;
xfs_extnum_t nex;
unsigned int i;
unsigned int dmxr;
unsigned int nrecs;
unsigned int level;
nex = xfs_dfork_nextents(dip, whichfork);
if (nex <= dfork_size / sizeof(struct xfs_bmbt_rec))
return true;
if (dfork_size < sizeof(struct xfs_bmdr_block))
return true;
dfp = XFS_DFORK_PTR(dip, whichfork);
nrecs = be16_to_cpu(dfp->bb_numrecs);
level = be16_to_cpu(dfp->bb_level);
if (nrecs == 0 || XFS_BMDR_SPACE_CALC(nrecs) > dfork_size)
return true;
if (level == 0 || level >= XFS_BM_MAXLEVELS(sc->mp, whichfork))
return true;
dmxr = xfs_bmdr_maxrecs(dfork_size, 0);
for (i = 1; i <= nrecs; i++) {
struct xfs_bmbt_key *fkp;
xfs_bmbt_ptr_t *fpp;
xfs_fileoff_t fileoff;
xfs_fsblock_t fsbno;
fkp = XFS_BMDR_KEY_ADDR(dfp, i);
fileoff = be64_to_cpu(fkp->br_startoff);
if (!xfs_verify_fileoff(sc->mp, fileoff))
return true;
fpp = XFS_BMDR_PTR_ADDR(dfp, i, dmxr);
fsbno = be64_to_cpu(*fpp);
if (!xfs_verify_fsbno(sc->mp, fsbno))
return true;
}
return false;
}
/*
* Check the data fork for things that will fail the ifork verifiers or the
* ifork formatters.
*/
STATIC bool
xrep_dinode_check_dfork(
struct xfs_scrub *sc,
struct xfs_dinode *dip,
uint16_t mode)
{
void *dfork_ptr;
int64_t data_size;
unsigned int fmt;
unsigned int dfork_size;
/*
* Verifier functions take signed int64_t, so check for bogus negative
* values first.
*/
data_size = be64_to_cpu(dip->di_size);
if (data_size < 0)
return true;
fmt = XFS_DFORK_FORMAT(dip, XFS_DATA_FORK);
switch (mode & S_IFMT) {
case S_IFIFO:
case S_IFCHR:
case S_IFBLK:
case S_IFSOCK:
if (fmt != XFS_DINODE_FMT_DEV)
return true;
break;
case S_IFREG:
if (fmt == XFS_DINODE_FMT_LOCAL)
return true;
fallthrough;
case S_IFLNK:
case S_IFDIR:
switch (fmt) {
case XFS_DINODE_FMT_LOCAL:
case XFS_DINODE_FMT_EXTENTS:
case XFS_DINODE_FMT_BTREE:
break;
default:
return true;
}
break;
default:
return true;
}
dfork_size = XFS_DFORK_SIZE(dip, sc->mp, XFS_DATA_FORK);
dfork_ptr = XFS_DFORK_PTR(dip, XFS_DATA_FORK);
switch (fmt) {
case XFS_DINODE_FMT_DEV:
break;
case XFS_DINODE_FMT_LOCAL:
/* dir/symlink structure cannot be larger than the fork */
if (data_size > dfork_size)
return true;
/* directory structure must pass verification. */
if (S_ISDIR(mode) &&
xfs_dir2_sf_verify(sc->mp, dfork_ptr, data_size) != NULL)
return true;
/* symlink structure must pass verification. */
if (S_ISLNK(mode) &&
xfs_symlink_shortform_verify(dfork_ptr, data_size) != NULL)
return true;
break;
case XFS_DINODE_FMT_EXTENTS:
if (xrep_dinode_bad_extents_fork(sc, dip, dfork_size,
XFS_DATA_FORK))
return true;
break;
case XFS_DINODE_FMT_BTREE:
if (xrep_dinode_bad_bmbt_fork(sc, dip, dfork_size,
XFS_DATA_FORK))
return true;
break;
default:
return true;
}
return false;
}
static void
xrep_dinode_set_data_nextents(
struct xfs_dinode *dip,
xfs_extnum_t nextents)
{
if (xfs_dinode_has_large_extent_counts(dip))
dip->di_big_nextents = cpu_to_be64(nextents);
else
dip->di_nextents = cpu_to_be32(nextents);
}
static void
xrep_dinode_set_attr_nextents(
struct xfs_dinode *dip,
xfs_extnum_t nextents)
{
if (xfs_dinode_has_large_extent_counts(dip))
dip->di_big_anextents = cpu_to_be32(nextents);
else
dip->di_anextents = cpu_to_be16(nextents);
}
/* Reset the data fork to something sane. */
STATIC void
xrep_dinode_zap_dfork(
struct xrep_inode *ri,
struct xfs_dinode *dip,
uint16_t mode)
{
struct xfs_scrub *sc = ri->sc;
trace_xrep_dinode_zap_dfork(sc, dip);
ri->ino_sick_mask |= XFS_SICK_INO_BMBTD_ZAPPED;
xrep_dinode_set_data_nextents(dip, 0);
ri->data_blocks = 0;
ri->rt_blocks = 0;
/* Special files always get reset to DEV */
switch (mode & S_IFMT) {
case S_IFIFO:
case S_IFCHR:
case S_IFBLK:
case S_IFSOCK:
dip->di_format = XFS_DINODE_FMT_DEV;
dip->di_size = 0;
return;
}
/*
* If we have data extents, reset to an empty map and hope the user
* will run the bmapbtd checker next.
*/
if (ri->data_extents || ri->rt_extents || S_ISREG(mode)) {
dip->di_format = XFS_DINODE_FMT_EXTENTS;
return;
}
/* Otherwise, reset the local format to the minimum. */
switch (mode & S_IFMT) {
case S_IFLNK:
xrep_dinode_zap_symlink(ri, dip);
break;
case S_IFDIR:
xrep_dinode_zap_dir(ri, dip);
break;
}
}
/*
* Check the attr fork for things that will fail the ifork verifiers or the
* ifork formatters.
*/
STATIC bool
xrep_dinode_check_afork(
struct xfs_scrub *sc,
struct xfs_dinode *dip)
{
struct xfs_attr_sf_hdr *afork_ptr;
size_t attr_size;
unsigned int afork_size;
if (XFS_DFORK_BOFF(dip) == 0)
return dip->di_aformat != XFS_DINODE_FMT_EXTENTS ||
xfs_dfork_attr_extents(dip) != 0;
afork_size = XFS_DFORK_SIZE(dip, sc->mp, XFS_ATTR_FORK);
afork_ptr = XFS_DFORK_PTR(dip, XFS_ATTR_FORK);
switch (XFS_DFORK_FORMAT(dip, XFS_ATTR_FORK)) {
case XFS_DINODE_FMT_LOCAL:
/* Fork has to be large enough to extract the xattr size. */
if (afork_size < sizeof(struct xfs_attr_sf_hdr))
return true;
/* xattr structure cannot be larger than the fork */
attr_size = be16_to_cpu(afork_ptr->totsize);
if (attr_size > afork_size)
return true;
/* xattr structure must pass verification. */
return xfs_attr_shortform_verify(afork_ptr, attr_size) != NULL;
case XFS_DINODE_FMT_EXTENTS:
if (xrep_dinode_bad_extents_fork(sc, dip, afork_size,
XFS_ATTR_FORK))
return true;
break;
case XFS_DINODE_FMT_BTREE:
if (xrep_dinode_bad_bmbt_fork(sc, dip, afork_size,
XFS_ATTR_FORK))
return true;
break;
default:
return true;
}
return false;
}
/*
* Reset the attr fork to empty. Since the attr fork could have contained
* ACLs, make the file readable only by root.
*/
STATIC void
xrep_dinode_zap_afork(
struct xrep_inode *ri,
struct xfs_dinode *dip,
uint16_t mode)
{
struct xfs_scrub *sc = ri->sc;
trace_xrep_dinode_zap_afork(sc, dip);
ri->ino_sick_mask |= XFS_SICK_INO_BMBTA_ZAPPED;
dip->di_aformat = XFS_DINODE_FMT_EXTENTS;
xrep_dinode_set_attr_nextents(dip, 0);
ri->attr_blocks = 0;
/*
* If the data fork is in btree format, removing the attr fork entirely
* might cause verifier failures if the next level down in the bmbt
* could now fit in the data fork area.
*/
if (dip->di_format != XFS_DINODE_FMT_BTREE)
dip->di_forkoff = 0;
dip->di_mode = cpu_to_be16(mode & ~0777);
dip->di_uid = 0;
dip->di_gid = 0;
}
/* Make sure the fork offset is a sensible value. */
STATIC void
xrep_dinode_ensure_forkoff(
struct xrep_inode *ri,
struct xfs_dinode *dip,
uint16_t mode)
{
struct xfs_bmdr_block *bmdr;
struct xfs_scrub *sc = ri->sc;
xfs_extnum_t attr_extents, data_extents;
size_t bmdr_minsz = XFS_BMDR_SPACE_CALC(1);
unsigned int lit_sz = XFS_LITINO(sc->mp);
unsigned int afork_min, dfork_min;
trace_xrep_dinode_ensure_forkoff(sc, dip);
/*
* Before calling this function, xrep_dinode_core ensured that both
* forks actually fit inside their respective literal areas. If this
* was not the case, the fork was reset to FMT_EXTENTS with zero
* records. If the rmapbt scan found attr or data fork blocks, this
* will be noted in the dinode_stats, and we must leave enough room
* for the bmap repair code to reconstruct the mapping structure.
*
* First, compute the minimum space required for the attr fork.
*/
switch (dip->di_aformat) {
case XFS_DINODE_FMT_LOCAL:
/*
* If we still have a shortform xattr structure at all, that
* means the attr fork area was exactly large enough to fit
* the sf structure.
*/
afork_min = XFS_DFORK_SIZE(dip, sc->mp, XFS_ATTR_FORK);
break;
case XFS_DINODE_FMT_EXTENTS:
attr_extents = xfs_dfork_attr_extents(dip);
if (attr_extents) {
/*
* We must maintain sufficient space to hold the entire
* extent map array in the data fork. Note that we
* previously zapped the fork if it had no chance of
* fitting in the inode.
*/
afork_min = sizeof(struct xfs_bmbt_rec) * attr_extents;
} else if (ri->attr_extents > 0) {
/*
* The attr fork thinks it has zero extents, but we
* found some xattr extents. We need to leave enough
* empty space here so that the incore attr fork will
* get created (and hence trigger the attr fork bmap
* repairer).
*/
afork_min = bmdr_minsz;
} else {
/* No extents on disk or found in rmapbt. */
afork_min = 0;
}
break;
case XFS_DINODE_FMT_BTREE:
/* Must have space for btree header and key/pointers. */
bmdr = XFS_DFORK_PTR(dip, XFS_ATTR_FORK);
afork_min = XFS_BMAP_BROOT_SPACE(sc->mp, bmdr);
break;
default:
/* We should never see any other formats. */
afork_min = 0;
break;
}
/* Compute the minimum space required for the data fork. */
switch (dip->di_format) {
case XFS_DINODE_FMT_DEV:
dfork_min = sizeof(__be32);
break;
case XFS_DINODE_FMT_UUID:
dfork_min = sizeof(uuid_t);
break;
case XFS_DINODE_FMT_LOCAL:
/*
* If we still have a shortform data fork at all, that means
* the data fork area was large enough to fit whatever was in
* there.
*/
dfork_min = be64_to_cpu(dip->di_size);
break;
case XFS_DINODE_FMT_EXTENTS:
data_extents = xfs_dfork_data_extents(dip);
if (data_extents) {
/*
* We must maintain sufficient space to hold the entire
* extent map array in the data fork. Note that we
* previously zapped the fork if it had no chance of
* fitting in the inode.
*/
dfork_min = sizeof(struct xfs_bmbt_rec) * data_extents;
} else if (ri->data_extents > 0 || ri->rt_extents > 0) {
/*
* The data fork thinks it has zero extents, but we
* found some data extents. We need to leave enough
* empty space here so that the data fork bmap repair
* will recover the mappings.
*/
dfork_min = bmdr_minsz;
} else {
/* No extents on disk or found in rmapbt. */
dfork_min = 0;
}
break;
case XFS_DINODE_FMT_BTREE:
/* Must have space for btree header and key/pointers. */
bmdr = XFS_DFORK_PTR(dip, XFS_DATA_FORK);
dfork_min = XFS_BMAP_BROOT_SPACE(sc->mp, bmdr);
break;
default:
dfork_min = 0;
break;
}
/*
* Round all values up to the nearest 8 bytes, because that is the
* precision of di_forkoff.
*/
afork_min = roundup(afork_min, 8);
dfork_min = roundup(dfork_min, 8);
bmdr_minsz = roundup(bmdr_minsz, 8);
ASSERT(dfork_min <= lit_sz);
ASSERT(afork_min <= lit_sz);
/*
* If the data fork was zapped and we don't have enough space for the
* recovery fork, move the attr fork up.
*/
if (dip->di_format == XFS_DINODE_FMT_EXTENTS &&
xfs_dfork_data_extents(dip) == 0 &&
(ri->data_extents > 0 || ri->rt_extents > 0) &&
bmdr_minsz > XFS_DFORK_DSIZE(dip, sc->mp)) {
if (bmdr_minsz + afork_min > lit_sz) {
/*
* The attr for and the stub fork we need to recover
* the data fork won't both fit. Zap the attr fork.
*/
xrep_dinode_zap_afork(ri, dip, mode);
afork_min = bmdr_minsz;
} else {
void *before, *after;
/* Otherwise, just slide the attr fork up. */
before = XFS_DFORK_APTR(dip);
dip->di_forkoff = bmdr_minsz >> 3;
after = XFS_DFORK_APTR(dip);
memmove(after, before, XFS_DFORK_ASIZE(dip, sc->mp));
}
}
/*
* If the attr fork was zapped and we don't have enough space for the
* recovery fork, move the attr fork down.
*/
if (dip->di_aformat == XFS_DINODE_FMT_EXTENTS &&
xfs_dfork_attr_extents(dip) == 0 &&
ri->attr_extents > 0 &&
bmdr_minsz > XFS_DFORK_ASIZE(dip, sc->mp)) {
if (dip->di_format == XFS_DINODE_FMT_BTREE) {
/*
* If the data fork is in btree format then we can't
* adjust forkoff because that runs the risk of
* violating the extents/btree format transition rules.
*/
} else if (bmdr_minsz + dfork_min > lit_sz) {
/*
* If we can't move the attr fork, too bad, we lose the
* attr fork and leak its blocks.
*/
xrep_dinode_zap_afork(ri, dip, mode);
} else {
/*
* Otherwise, just slide the attr fork down. The attr
* fork is empty, so we don't have any old contents to
* move here.
*/
dip->di_forkoff = (lit_sz - bmdr_minsz) >> 3;
}
}
}
/*
* Zap the data/attr forks if we spot anything that isn't going to pass the
* ifork verifiers or the ifork formatters, because we need to get the inode
* into good enough shape that the higher level repair functions can run.
*/
STATIC void
xrep_dinode_zap_forks(
struct xrep_inode *ri,
struct xfs_dinode *dip)
{
struct xfs_scrub *sc = ri->sc;
xfs_extnum_t data_extents;
xfs_extnum_t attr_extents;
xfs_filblks_t nblocks;
uint16_t mode;
bool zap_datafork = false;
bool zap_attrfork = ri->zap_acls;
trace_xrep_dinode_zap_forks(sc, dip);
mode = be16_to_cpu(dip->di_mode);
data_extents = xfs_dfork_data_extents(dip);
attr_extents = xfs_dfork_attr_extents(dip);
nblocks = be64_to_cpu(dip->di_nblocks);
/* Inode counters don't make sense? */
if (data_extents > nblocks)
zap_datafork = true;
if (attr_extents > nblocks)
zap_attrfork = true;
if (data_extents + attr_extents > nblocks)
zap_datafork = zap_attrfork = true;
if (!zap_datafork)
zap_datafork = xrep_dinode_check_dfork(sc, dip, mode);
if (!zap_attrfork)
zap_attrfork = xrep_dinode_check_afork(sc, dip);
/* Zap whatever's bad. */
if (zap_attrfork)
xrep_dinode_zap_afork(ri, dip, mode);
if (zap_datafork)
xrep_dinode_zap_dfork(ri, dip, mode);
xrep_dinode_ensure_forkoff(ri, dip, mode);
/*
* Zero di_nblocks if we don't have any extents at all to satisfy the
* buffer verifier.
*/
data_extents = xfs_dfork_data_extents(dip);
attr_extents = xfs_dfork_attr_extents(dip);
if (data_extents + attr_extents == 0)
dip->di_nblocks = 0;
}
/* Inode didn't pass dinode verifiers, so fix the raw buffer and retry iget. */
STATIC int
xrep_dinode_core(
struct xrep_inode *ri)
{
struct xfs_scrub *sc = ri->sc;
struct xfs_buf *bp;
struct xfs_dinode *dip;
xfs_ino_t ino = sc->sm->sm_ino;
int error;
int iget_error;
/* Figure out what this inode had mapped in both forks. */
error = xrep_dinode_count_rmaps(ri);
if (error)
return error;
/* Read the inode cluster buffer. */
error = xfs_trans_read_buf(sc->mp, sc->tp, sc->mp->m_ddev_targp,
ri->imap.im_blkno, ri->imap.im_len, XBF_UNMAPPED, &bp,
NULL);
if (error)
return error;
/* Make sure we can pass the inode buffer verifier. */
xrep_dinode_buf(sc, bp);
bp->b_ops = &xfs_inode_buf_ops;
/* Fix everything the verifier will complain about. */
dip = xfs_buf_offset(bp, ri->imap.im_boffset);
xrep_dinode_header(sc, dip);
iget_error = xrep_dinode_mode(ri, dip);
if (iget_error)
goto write;
xrep_dinode_flags(sc, dip, ri->rt_extents > 0);
xrep_dinode_size(ri, dip);
xrep_dinode_extsize_hints(sc, dip);
xrep_dinode_zap_forks(ri, dip);
write:
/* Write out the inode. */
trace_xrep_dinode_fixed(sc, dip);
xfs_dinode_calc_crc(sc->mp, dip);
xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_DINO_BUF);
xfs_trans_log_buf(sc->tp, bp, ri->imap.im_boffset,
ri->imap.im_boffset + sc->mp->m_sb.sb_inodesize - 1);
/*
* In theory, we've fixed the ondisk inode record enough that we should
* be able to load the inode into the cache. Try to iget that inode
* now while we hold the AGI and the inode cluster buffer and take the
* IOLOCK so that we can continue with repairs without anyone else
* accessing the inode. If iget fails, we still need to commit the
* changes.
*/
if (!iget_error)
iget_error = xchk_iget(sc, ino, &sc->ip);
if (!iget_error)
xchk_ilock(sc, XFS_IOLOCK_EXCL);
/*
* Commit the inode cluster buffer updates and drop the AGI buffer that
* we've been holding since scrub setup. From here on out, repairs
* deal only with the cached inode.
*/
error = xrep_trans_commit(sc);
if (error)
return error;
if (iget_error)
return iget_error;
error = xchk_trans_alloc(sc, 0);
if (error)
return error;
error = xrep_ino_dqattach(sc);
if (error)
return error;
xchk_ilock(sc, XFS_ILOCK_EXCL);
if (ri->ino_sick_mask)
xfs_inode_mark_sick(sc->ip, ri->ino_sick_mask);
return 0;
}
/* Fix everything xfs_dinode_verify cares about. */
STATIC int
xrep_dinode_problems(
struct xrep_inode *ri)
{
struct xfs_scrub *sc = ri->sc;
int error;
error = xrep_dinode_core(ri);
if (error)
return error;
/* We had to fix a totally busted inode, schedule quotacheck. */
if (XFS_IS_UQUOTA_ON(sc->mp))
xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
if (XFS_IS_GQUOTA_ON(sc->mp))
xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
if (XFS_IS_PQUOTA_ON(sc->mp))
xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
return 0;
}
/*
* Fix problems that the verifiers don't care about. In general these are
* errors that don't cause problems elsewhere in the kernel that we can easily
* detect, so we don't check them all that rigorously.
*/
/* Make sure block and extent counts are ok. */
STATIC int
xrep_inode_blockcounts(
struct xfs_scrub *sc)
{
struct xfs_ifork *ifp;
xfs_filblks_t count;
xfs_filblks_t acount;
xfs_extnum_t nextents;
int error;
trace_xrep_inode_blockcounts(sc);
/* Set data fork counters from the data fork mappings. */
error = xfs_bmap_count_blocks(sc->tp, sc->ip, XFS_DATA_FORK,
&nextents, &count);
if (error)
return error;
if (xfs_is_reflink_inode(sc->ip)) {
/*
* data fork blockcount can exceed physical storage if a user
* reflinks the same block over and over again.
*/
;
} else if (XFS_IS_REALTIME_INODE(sc->ip)) {
if (count >= sc->mp->m_sb.sb_rblocks)
return -EFSCORRUPTED;
} else {
if (count >= sc->mp->m_sb.sb_dblocks)
return -EFSCORRUPTED;
}
error = xrep_ino_ensure_extent_count(sc, XFS_DATA_FORK, nextents);
if (error)
return error;
sc->ip->i_df.if_nextents = nextents;
/* Set attr fork counters from the attr fork mappings. */
ifp = xfs_ifork_ptr(sc->ip, XFS_ATTR_FORK);
if (ifp) {
error = xfs_bmap_count_blocks(sc->tp, sc->ip, XFS_ATTR_FORK,
&nextents, &acount);
if (error)
return error;
if (count >= sc->mp->m_sb.sb_dblocks)
return -EFSCORRUPTED;
error = xrep_ino_ensure_extent_count(sc, XFS_ATTR_FORK,
nextents);
if (error)
return error;
ifp->if_nextents = nextents;
} else {
acount = 0;
}
sc->ip->i_nblocks = count + acount;
return 0;
}
/* Check for invalid uid/gid/prid. */
STATIC void
xrep_inode_ids(
struct xfs_scrub *sc)
{
bool dirty = false;
trace_xrep_inode_ids(sc);
if (!uid_valid(VFS_I(sc->ip)->i_uid)) {
i_uid_write(VFS_I(sc->ip), 0);
dirty = true;
if (XFS_IS_UQUOTA_ON(sc->mp))
xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
}
if (!gid_valid(VFS_I(sc->ip)->i_gid)) {
i_gid_write(VFS_I(sc->ip), 0);
dirty = true;
if (XFS_IS_GQUOTA_ON(sc->mp))
xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
}
if (sc->ip->i_projid == -1U) {
sc->ip->i_projid = 0;
dirty = true;
if (XFS_IS_PQUOTA_ON(sc->mp))
xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
}
/* strip setuid/setgid if we touched any of the ids */
if (dirty)
VFS_I(sc->ip)->i_mode &= ~(S_ISUID | S_ISGID);
}
static inline void
xrep_clamp_timestamp(
struct xfs_inode *ip,
struct timespec64 *ts)
{
ts->tv_nsec = clamp_t(long, ts->tv_nsec, 0, NSEC_PER_SEC);
*ts = timestamp_truncate(*ts, VFS_I(ip));
}
/* Nanosecond counters can't have more than 1 billion. */
STATIC void
xrep_inode_timestamps(
struct xfs_inode *ip)
{
struct timespec64 tstamp;
struct inode *inode = VFS_I(ip);
tstamp = inode_get_atime(inode);
xrep_clamp_timestamp(ip, &tstamp);
inode_set_atime_to_ts(inode, tstamp);
tstamp = inode_get_mtime(inode);
xrep_clamp_timestamp(ip, &tstamp);
inode_set_mtime_to_ts(inode, tstamp);
tstamp = inode_get_ctime(inode);
xrep_clamp_timestamp(ip, &tstamp);
inode_set_ctime_to_ts(inode, tstamp);
xrep_clamp_timestamp(ip, &ip->i_crtime);
}
/* Fix inode flags that don't make sense together. */
STATIC void
xrep_inode_flags(
struct xfs_scrub *sc)
{
uint16_t mode;
trace_xrep_inode_flags(sc);
mode = VFS_I(sc->ip)->i_mode;
/* Clear junk flags */
if (sc->ip->i_diflags & ~XFS_DIFLAG_ANY)
sc->ip->i_diflags &= ~XFS_DIFLAG_ANY;
/* NEWRTBM only applies to realtime bitmaps */
if (sc->ip->i_ino == sc->mp->m_sb.sb_rbmino)
sc->ip->i_diflags |= XFS_DIFLAG_NEWRTBM;
else
sc->ip->i_diflags &= ~XFS_DIFLAG_NEWRTBM;
/* These only make sense for directories. */
if (!S_ISDIR(mode))
sc->ip->i_diflags &= ~(XFS_DIFLAG_RTINHERIT |
XFS_DIFLAG_EXTSZINHERIT |
XFS_DIFLAG_PROJINHERIT |
XFS_DIFLAG_NOSYMLINKS);
/* These only make sense for files. */
if (!S_ISREG(mode))
sc->ip->i_diflags &= ~(XFS_DIFLAG_REALTIME |
XFS_DIFLAG_EXTSIZE);
/* These only make sense for non-rt files. */
if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME)
sc->ip->i_diflags &= ~XFS_DIFLAG_FILESTREAM;
/* Immutable and append only? Drop the append. */
if ((sc->ip->i_diflags & XFS_DIFLAG_IMMUTABLE) &&
(sc->ip->i_diflags & XFS_DIFLAG_APPEND))
sc->ip->i_diflags &= ~XFS_DIFLAG_APPEND;
/* Clear junk flags. */
if (sc->ip->i_diflags2 & ~XFS_DIFLAG2_ANY)
sc->ip->i_diflags2 &= ~XFS_DIFLAG2_ANY;
/* No reflink flag unless we support it and it's a file. */
if (!xfs_has_reflink(sc->mp) || !S_ISREG(mode))
sc->ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
/* DAX only applies to files and dirs. */
if (!(S_ISREG(mode) || S_ISDIR(mode)))
sc->ip->i_diflags2 &= ~XFS_DIFLAG2_DAX;
/* No reflink files on the realtime device. */
if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME)
sc->ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
}
/*
* Fix size problems with block/node format directories. If we fail to find
* the extent list, just bail out and let the bmapbtd repair functions clean
* up that mess.
*/
STATIC void
xrep_inode_blockdir_size(
struct xfs_scrub *sc)
{
struct xfs_iext_cursor icur;
struct xfs_bmbt_irec got;
struct xfs_ifork *ifp;
xfs_fileoff_t off;
int error;
trace_xrep_inode_blockdir_size(sc);
error = xfs_iread_extents(sc->tp, sc->ip, XFS_DATA_FORK);
if (error)
return;
/* Find the last block before 32G; this is the dir size. */
ifp = xfs_ifork_ptr(sc->ip, XFS_DATA_FORK);
off = XFS_B_TO_FSB(sc->mp, XFS_DIR2_SPACE_SIZE);
if (!xfs_iext_lookup_extent_before(sc->ip, ifp, &off, &icur, &got)) {
/* zero-extents directory? */
return;
}
off = got.br_startoff + got.br_blockcount;
sc->ip->i_disk_size = min_t(loff_t, XFS_DIR2_SPACE_SIZE,
XFS_FSB_TO_B(sc->mp, off));
}
/* Fix size problems with short format directories. */
STATIC void
xrep_inode_sfdir_size(
struct xfs_scrub *sc)
{
struct xfs_ifork *ifp;
trace_xrep_inode_sfdir_size(sc);
ifp = xfs_ifork_ptr(sc->ip, XFS_DATA_FORK);
sc->ip->i_disk_size = ifp->if_bytes;
}
/*
* Fix any irregularities in a directory inode's size now that we can iterate
* extent maps and access other regular inode data.
*/
STATIC void
xrep_inode_dir_size(
struct xfs_scrub *sc)
{
trace_xrep_inode_dir_size(sc);
switch (sc->ip->i_df.if_format) {
case XFS_DINODE_FMT_EXTENTS:
case XFS_DINODE_FMT_BTREE:
xrep_inode_blockdir_size(sc);
break;
case XFS_DINODE_FMT_LOCAL:
xrep_inode_sfdir_size(sc);
break;
}
}
/* Fix extent size hint problems. */
STATIC void
xrep_inode_extsize(
struct xfs_scrub *sc)
{
/* Fix misaligned extent size hints on a directory. */
if ((sc->ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
(sc->ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
xfs_extlen_to_rtxmod(sc->mp, sc->ip->i_extsize) > 0) {
sc->ip->i_extsize = 0;
sc->ip->i_diflags &= ~XFS_DIFLAG_EXTSZINHERIT;
}
}
/* Fix any irregularities in an inode that the verifiers don't catch. */
STATIC int
xrep_inode_problems(
struct xfs_scrub *sc)
{
int error;
error = xrep_inode_blockcounts(sc);
if (error)
return error;
xrep_inode_timestamps(sc->ip);
xrep_inode_flags(sc);
xrep_inode_ids(sc);
/*
* We can now do a better job fixing the size of a directory now that
* we can scan the data fork extents than we could in xrep_dinode_size.
*/
if (S_ISDIR(VFS_I(sc->ip)->i_mode))
xrep_inode_dir_size(sc);
xrep_inode_extsize(sc);
trace_xrep_inode_fixed(sc);
xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE);
return xrep_roll_trans(sc);
}
/* Repair an inode's fields. */
int
xrep_inode(
struct xfs_scrub *sc)
{
int error = 0;
/*
* No inode? That means we failed the _iget verifiers. Repair all
* the things that the inode verifiers care about, then retry _iget.
*/
if (!sc->ip) {
struct xrep_inode *ri = sc->buf;
ASSERT(ri != NULL);
error = xrep_dinode_problems(ri);
if (error == -EBUSY) {
/*
* Directory scan to recover inode mode encountered a
* busy inode, so we did not continue repairing things.
*/
return 0;
}
if (error)
return error;
/* By this point we had better have a working incore inode. */
if (!sc->ip)
return -EFSCORRUPTED;
}
xfs_trans_ijoin(sc->tp, sc->ip, 0);
/* If we found corruption of any kind, try to fix it. */
if ((sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT) ||
(sc->sm->sm_flags & XFS_SCRUB_OFLAG_XCORRUPT)) {
error = xrep_inode_problems(sc);
if (error)
return error;
}
/* See if we can clear the reflink flag. */
if (xfs_is_reflink_inode(sc->ip)) {
error = xfs_reflink_clear_inode_flag(sc->ip, &sc->tp);
if (error)
return error;
}
return xrep_defer_finish(sc);
}