linux/fs/xfs/xfs_inode_item.c
Matthew Wilcox (Oracle) 3fed24fffc xfs: Replace xfs_isilocked with xfs_assert_ilocked
To use the new rwsem_assert_held()/rwsem_assert_held_write(), we can't
use the existing ASSERT macro.  Add a new xfs_assert_ilocked() and
convert all the callers.

Fix an apparent bug in xfs_isilocked(): If the caller specifies
XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL, xfs_assert_ilocked() will check both
the IOLOCK and the ILOCK are held for write.  xfs_isilocked() only
checked that the ILOCK was held for write.

xfs_assert_ilocked() is always on, even if DEBUG or XFS_WARN aren't
defined.  It's a cheap check, so I don't think it's worth defining
it away.

Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-19 21:19:33 +05:30

1164 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_trace.h"
#include "xfs_trans_priv.h"
#include "xfs_buf_item.h"
#include "xfs_log.h"
#include "xfs_log_priv.h"
#include "xfs_error.h"
#include "xfs_rtbitmap.h"
#include <linux/iversion.h>
struct kmem_cache *xfs_ili_cache; /* inode log item */
static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_inode_log_item, ili_item);
}
static uint64_t
xfs_inode_item_sort(
struct xfs_log_item *lip)
{
return INODE_ITEM(lip)->ili_inode->i_ino;
}
/*
* Prior to finally logging the inode, we have to ensure that all the
* per-modification inode state changes are applied. This includes VFS inode
* state updates, format conversions, verifier state synchronisation and
* ensuring the inode buffer remains in memory whilst the inode is dirty.
*
* We have to be careful when we grab the inode cluster buffer due to lock
* ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
* require AGI -> inode cluster buffer lock order. The inode cluster buffer is
* not locked until ->precommit, so it happens after everything else has been
* modified.
*
* Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
* have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
* cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
* it can be called on a inode (e.g. via bumplink/droplink) before we take the
* AGF lock modifying directory blocks.
*
* Rather than force a complete rework of all the transactions to call
* xfs_trans_log_inode() once and once only at the end of every transaction, we
* move the pinning of the inode cluster buffer to a ->precommit operation. This
* matches how the xfs_iunlink_item locks the inode cluster buffer, and it
* ensures that the inode cluster buffer locking is always done last in a
* transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
* cluster buffer.
*
* If we return the inode number as the precommit sort key then we'll also
* guarantee that the order all inode cluster buffer locking is the same all the
* inodes and unlink items in the transaction.
*/
static int
xfs_inode_item_precommit(
struct xfs_trans *tp,
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
struct inode *inode = VFS_I(ip);
unsigned int flags = iip->ili_dirty_flags;
/*
* Don't bother with i_lock for the I_DIRTY_TIME check here, as races
* don't matter - we either will need an extra transaction in 24 hours
* to log the timestamps, or will clear already cleared fields in the
* worst case.
*/
if (inode->i_state & I_DIRTY_TIME) {
spin_lock(&inode->i_lock);
inode->i_state &= ~I_DIRTY_TIME;
spin_unlock(&inode->i_lock);
}
/*
* If we're updating the inode core or the timestamps and it's possible
* to upgrade this inode to bigtime format, do so now.
*/
if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
xfs_has_bigtime(ip->i_mount) &&
!xfs_inode_has_bigtime(ip)) {
ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
flags |= XFS_ILOG_CORE;
}
/*
* Inode verifiers do not check that the extent size hint is an integer
* multiple of the rt extent size on a directory with both rtinherit
* and extszinherit flags set. If we're logging a directory that is
* misconfigured in this way, clear the hint.
*/
if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
(ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) {
ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
XFS_DIFLAG_EXTSZINHERIT);
ip->i_extsize = 0;
flags |= XFS_ILOG_CORE;
}
/*
* Record the specific change for fdatasync optimisation. This allows
* fdatasync to skip log forces for inodes that are only timestamp
* dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
* to XFS_ILOG_CORE so that the actual on-disk dirty tracking
* (ili_fields) correctly tracks that the version has changed.
*/
spin_lock(&iip->ili_lock);
iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
if (flags & XFS_ILOG_IVERSION)
flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
if (!iip->ili_item.li_buf) {
struct xfs_buf *bp;
int error;
/*
* We hold the ILOCK here, so this inode is not going to be
* flushed while we are here. Further, because there is no
* buffer attached to the item, we know that there is no IO in
* progress, so nothing will clear the ili_fields while we read
* in the buffer. Hence we can safely drop the spin lock and
* read the buffer knowing that the state will not change from
* here.
*/
spin_unlock(&iip->ili_lock);
error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
if (error)
return error;
/*
* We need an explicit buffer reference for the log item but
* don't want the buffer to remain attached to the transaction.
* Hold the buffer but release the transaction reference once
* we've attached the inode log item to the buffer log item
* list.
*/
xfs_buf_hold(bp);
spin_lock(&iip->ili_lock);
iip->ili_item.li_buf = bp;
bp->b_flags |= _XBF_INODES;
list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
xfs_trans_brelse(tp, bp);
}
/*
* Always OR in the bits from the ili_last_fields field. This is to
* coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
* in the eventual clearing of the ili_fields bits. See the big comment
* in xfs_iflush() for an explanation of this coordination mechanism.
*/
iip->ili_fields |= (flags | iip->ili_last_fields);
spin_unlock(&iip->ili_lock);
/*
* We are done with the log item transaction dirty state, so clear it so
* that it doesn't pollute future transactions.
*/
iip->ili_dirty_flags = 0;
return 0;
}
/*
* The logged size of an inode fork is always the current size of the inode
* fork. This means that when an inode fork is relogged, the size of the logged
* region is determined by the current state, not the combination of the
* previously logged state + the current state. This is different relogging
* behaviour to most other log items which will retain the size of the
* previously logged changes when smaller regions are relogged.
*
* Hence operations that remove data from the inode fork (e.g. shortform
* dir/attr remove, extent form extent removal, etc), the size of the relogged
* inode gets -smaller- rather than stays the same size as the previously logged
* size and this can result in the committing transaction reducing the amount of
* space being consumed by the CIL.
*/
STATIC void
xfs_inode_item_data_fork_size(
struct xfs_inode_log_item *iip,
int *nvecs,
int *nbytes)
{
struct xfs_inode *ip = iip->ili_inode;
switch (ip->i_df.if_format) {
case XFS_DINODE_FMT_EXTENTS:
if ((iip->ili_fields & XFS_ILOG_DEXT) &&
ip->i_df.if_nextents > 0 &&
ip->i_df.if_bytes > 0) {
/* worst case, doesn't subtract delalloc extents */
*nbytes += xfs_inode_data_fork_size(ip);
*nvecs += 1;
}
break;
case XFS_DINODE_FMT_BTREE:
if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
ip->i_df.if_broot_bytes > 0) {
*nbytes += ip->i_df.if_broot_bytes;
*nvecs += 1;
}
break;
case XFS_DINODE_FMT_LOCAL:
if ((iip->ili_fields & XFS_ILOG_DDATA) &&
ip->i_df.if_bytes > 0) {
*nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
*nvecs += 1;
}
break;
case XFS_DINODE_FMT_DEV:
break;
default:
ASSERT(0);
break;
}
}
STATIC void
xfs_inode_item_attr_fork_size(
struct xfs_inode_log_item *iip,
int *nvecs,
int *nbytes)
{
struct xfs_inode *ip = iip->ili_inode;
switch (ip->i_af.if_format) {
case XFS_DINODE_FMT_EXTENTS:
if ((iip->ili_fields & XFS_ILOG_AEXT) &&
ip->i_af.if_nextents > 0 &&
ip->i_af.if_bytes > 0) {
/* worst case, doesn't subtract unused space */
*nbytes += xfs_inode_attr_fork_size(ip);
*nvecs += 1;
}
break;
case XFS_DINODE_FMT_BTREE:
if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
ip->i_af.if_broot_bytes > 0) {
*nbytes += ip->i_af.if_broot_bytes;
*nvecs += 1;
}
break;
case XFS_DINODE_FMT_LOCAL:
if ((iip->ili_fields & XFS_ILOG_ADATA) &&
ip->i_af.if_bytes > 0) {
*nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
*nvecs += 1;
}
break;
default:
ASSERT(0);
break;
}
}
/*
* This returns the number of iovecs needed to log the given inode item.
*
* We need one iovec for the inode log format structure, one for the
* inode core, and possibly one for the inode data/extents/b-tree root
* and one for the inode attribute data/extents/b-tree root.
*/
STATIC void
xfs_inode_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
*nvecs += 2;
*nbytes += sizeof(struct xfs_inode_log_format) +
xfs_log_dinode_size(ip->i_mount);
xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
if (xfs_inode_has_attr_fork(ip))
xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
}
STATIC void
xfs_inode_item_format_data_fork(
struct xfs_inode_log_item *iip,
struct xfs_inode_log_format *ilf,
struct xfs_log_vec *lv,
struct xfs_log_iovec **vecp)
{
struct xfs_inode *ip = iip->ili_inode;
size_t data_bytes;
switch (ip->i_df.if_format) {
case XFS_DINODE_FMT_EXTENTS:
iip->ili_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
if ((iip->ili_fields & XFS_ILOG_DEXT) &&
ip->i_df.if_nextents > 0 &&
ip->i_df.if_bytes > 0) {
struct xfs_bmbt_rec *p;
ASSERT(xfs_iext_count(&ip->i_df) > 0);
p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
xlog_finish_iovec(lv, *vecp, data_bytes);
ASSERT(data_bytes <= ip->i_df.if_bytes);
ilf->ilf_dsize = data_bytes;
ilf->ilf_size++;
} else {
iip->ili_fields &= ~XFS_ILOG_DEXT;
}
break;
case XFS_DINODE_FMT_BTREE:
iip->ili_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
ip->i_df.if_broot_bytes > 0) {
ASSERT(ip->i_df.if_broot != NULL);
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
ip->i_df.if_broot,
ip->i_df.if_broot_bytes);
ilf->ilf_dsize = ip->i_df.if_broot_bytes;
ilf->ilf_size++;
} else {
ASSERT(!(iip->ili_fields &
XFS_ILOG_DBROOT));
iip->ili_fields &= ~XFS_ILOG_DBROOT;
}
break;
case XFS_DINODE_FMT_LOCAL:
iip->ili_fields &=
~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
if ((iip->ili_fields & XFS_ILOG_DDATA) &&
ip->i_df.if_bytes > 0) {
ASSERT(ip->i_df.if_data != NULL);
ASSERT(ip->i_disk_size > 0);
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
ip->i_df.if_data, ip->i_df.if_bytes);
ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
ilf->ilf_size++;
} else {
iip->ili_fields &= ~XFS_ILOG_DDATA;
}
break;
case XFS_DINODE_FMT_DEV:
iip->ili_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
if (iip->ili_fields & XFS_ILOG_DEV)
ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
break;
default:
ASSERT(0);
break;
}
}
STATIC void
xfs_inode_item_format_attr_fork(
struct xfs_inode_log_item *iip,
struct xfs_inode_log_format *ilf,
struct xfs_log_vec *lv,
struct xfs_log_iovec **vecp)
{
struct xfs_inode *ip = iip->ili_inode;
size_t data_bytes;
switch (ip->i_af.if_format) {
case XFS_DINODE_FMT_EXTENTS:
iip->ili_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
if ((iip->ili_fields & XFS_ILOG_AEXT) &&
ip->i_af.if_nextents > 0 &&
ip->i_af.if_bytes > 0) {
struct xfs_bmbt_rec *p;
ASSERT(xfs_iext_count(&ip->i_af) ==
ip->i_af.if_nextents);
p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
xlog_finish_iovec(lv, *vecp, data_bytes);
ilf->ilf_asize = data_bytes;
ilf->ilf_size++;
} else {
iip->ili_fields &= ~XFS_ILOG_AEXT;
}
break;
case XFS_DINODE_FMT_BTREE:
iip->ili_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
ip->i_af.if_broot_bytes > 0) {
ASSERT(ip->i_af.if_broot != NULL);
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
ip->i_af.if_broot,
ip->i_af.if_broot_bytes);
ilf->ilf_asize = ip->i_af.if_broot_bytes;
ilf->ilf_size++;
} else {
iip->ili_fields &= ~XFS_ILOG_ABROOT;
}
break;
case XFS_DINODE_FMT_LOCAL:
iip->ili_fields &=
~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
if ((iip->ili_fields & XFS_ILOG_ADATA) &&
ip->i_af.if_bytes > 0) {
ASSERT(ip->i_af.if_data != NULL);
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
ip->i_af.if_data, ip->i_af.if_bytes);
ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
ilf->ilf_size++;
} else {
iip->ili_fields &= ~XFS_ILOG_ADATA;
}
break;
default:
ASSERT(0);
break;
}
}
/*
* Convert an incore timestamp to a log timestamp. Note that the log format
* specifies host endian format!
*/
static inline xfs_log_timestamp_t
xfs_inode_to_log_dinode_ts(
struct xfs_inode *ip,
const struct timespec64 tv)
{
struct xfs_log_legacy_timestamp *lits;
xfs_log_timestamp_t its;
if (xfs_inode_has_bigtime(ip))
return xfs_inode_encode_bigtime(tv);
lits = (struct xfs_log_legacy_timestamp *)&its;
lits->t_sec = tv.tv_sec;
lits->t_nsec = tv.tv_nsec;
return its;
}
/*
* The legacy DMAPI fields are only present in the on-disk and in-log inodes,
* but not in the in-memory one. But we are guaranteed to have an inode buffer
* in memory when logging an inode, so we can just copy it from the on-disk
* inode to the in-log inode here so that recovery of file system with these
* fields set to non-zero values doesn't lose them. For all other cases we zero
* the fields.
*/
static void
xfs_copy_dm_fields_to_log_dinode(
struct xfs_inode *ip,
struct xfs_log_dinode *to)
{
struct xfs_dinode *dip;
dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
ip->i_imap.im_boffset);
if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
to->di_dmstate = be16_to_cpu(dip->di_dmstate);
} else {
to->di_dmevmask = 0;
to->di_dmstate = 0;
}
}
static inline void
xfs_inode_to_log_dinode_iext_counters(
struct xfs_inode *ip,
struct xfs_log_dinode *to)
{
if (xfs_inode_has_large_extent_counts(ip)) {
to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
to->di_nrext64_pad = 0;
} else {
to->di_nextents = xfs_ifork_nextents(&ip->i_df);
to->di_anextents = xfs_ifork_nextents(&ip->i_af);
}
}
static void
xfs_inode_to_log_dinode(
struct xfs_inode *ip,
struct xfs_log_dinode *to,
xfs_lsn_t lsn)
{
struct inode *inode = VFS_I(ip);
to->di_magic = XFS_DINODE_MAGIC;
to->di_format = xfs_ifork_format(&ip->i_df);
to->di_uid = i_uid_read(inode);
to->di_gid = i_gid_read(inode);
to->di_projid_lo = ip->i_projid & 0xffff;
to->di_projid_hi = ip->i_projid >> 16;
memset(to->di_pad3, 0, sizeof(to->di_pad3));
to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode));
to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode));
to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
to->di_nlink = inode->i_nlink;
to->di_gen = inode->i_generation;
to->di_mode = inode->i_mode;
to->di_size = ip->i_disk_size;
to->di_nblocks = ip->i_nblocks;
to->di_extsize = ip->i_extsize;
to->di_forkoff = ip->i_forkoff;
to->di_aformat = xfs_ifork_format(&ip->i_af);
to->di_flags = ip->i_diflags;
xfs_copy_dm_fields_to_log_dinode(ip, to);
/* log a dummy value to ensure log structure is fully initialised */
to->di_next_unlinked = NULLAGINO;
if (xfs_has_v3inodes(ip->i_mount)) {
to->di_version = 3;
to->di_changecount = inode_peek_iversion(inode);
to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
to->di_flags2 = ip->i_diflags2;
to->di_cowextsize = ip->i_cowextsize;
to->di_ino = ip->i_ino;
to->di_lsn = lsn;
memset(to->di_pad2, 0, sizeof(to->di_pad2));
uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
to->di_v3_pad = 0;
/* dummy value for initialisation */
to->di_crc = 0;
} else {
to->di_version = 2;
to->di_flushiter = ip->i_flushiter;
memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
}
xfs_inode_to_log_dinode_iext_counters(ip, to);
}
/*
* Format the inode core. Current timestamp data is only in the VFS inode
* fields, so we need to grab them from there. Hence rather than just copying
* the XFS inode core structure, format the fields directly into the iovec.
*/
static void
xfs_inode_item_format_core(
struct xfs_inode *ip,
struct xfs_log_vec *lv,
struct xfs_log_iovec **vecp)
{
struct xfs_log_dinode *dic;
dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
}
/*
* This is called to fill in the vector of log iovecs for the given inode
* log item. It fills the first item with an inode log format structure,
* the second with the on-disk inode structure, and a possible third and/or
* fourth with the inode data/extents/b-tree root and inode attributes
* data/extents/b-tree root.
*
* Note: Always use the 64 bit inode log format structure so we don't
* leave an uninitialised hole in the format item on 64 bit systems. Log
* recovery on 32 bit systems handles this just fine, so there's no reason
* for not using an initialising the properly padded structure all the time.
*/
STATIC void
xfs_inode_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
struct xfs_log_iovec *vecp = NULL;
struct xfs_inode_log_format *ilf;
ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
ilf->ilf_type = XFS_LI_INODE;
ilf->ilf_ino = ip->i_ino;
ilf->ilf_blkno = ip->i_imap.im_blkno;
ilf->ilf_len = ip->i_imap.im_len;
ilf->ilf_boffset = ip->i_imap.im_boffset;
ilf->ilf_fields = XFS_ILOG_CORE;
ilf->ilf_size = 2; /* format + core */
/*
* make sure we don't leak uninitialised data into the log in the case
* when we don't log every field in the inode.
*/
ilf->ilf_dsize = 0;
ilf->ilf_asize = 0;
ilf->ilf_pad = 0;
memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
xlog_finish_iovec(lv, vecp, sizeof(*ilf));
xfs_inode_item_format_core(ip, lv, &vecp);
xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
if (xfs_inode_has_attr_fork(ip)) {
xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
} else {
iip->ili_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
}
/* update the format with the exact fields we actually logged */
ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
}
/*
* This is called to pin the inode associated with the inode log
* item in memory so it cannot be written out.
*/
STATIC void
xfs_inode_item_pin(
struct xfs_log_item *lip)
{
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
ASSERT(lip->li_buf);
trace_xfs_inode_pin(ip, _RET_IP_);
atomic_inc(&ip->i_pincount);
}
/*
* This is called to unpin the inode associated with the inode log
* item which was previously pinned with a call to xfs_inode_item_pin().
*
* Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
*
* Note that unpin can race with inode cluster buffer freeing marking the buffer
* stale. In that case, flush completions are run from the buffer unpin call,
* which may happen before the inode is unpinned. If we lose the race, there
* will be no buffer attached to the log item, but the inode will be marked
* XFS_ISTALE.
*/
STATIC void
xfs_inode_item_unpin(
struct xfs_log_item *lip,
int remove)
{
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
trace_xfs_inode_unpin(ip, _RET_IP_);
ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
ASSERT(atomic_read(&ip->i_pincount) > 0);
if (atomic_dec_and_test(&ip->i_pincount))
wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
}
STATIC uint
xfs_inode_item_push(
struct xfs_log_item *lip,
struct list_head *buffer_list)
__releases(&lip->li_ailp->ail_lock)
__acquires(&lip->li_ailp->ail_lock)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
struct xfs_buf *bp = lip->li_buf;
uint rval = XFS_ITEM_SUCCESS;
int error;
if (!bp || (ip->i_flags & XFS_ISTALE)) {
/*
* Inode item/buffer is being aborted due to cluster
* buffer deletion. Trigger a log force to have that operation
* completed and items removed from the AIL before the next push
* attempt.
*/
return XFS_ITEM_PINNED;
}
if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
return XFS_ITEM_PINNED;
if (xfs_iflags_test(ip, XFS_IFLUSHING))
return XFS_ITEM_FLUSHING;
if (!xfs_buf_trylock(bp))
return XFS_ITEM_LOCKED;
spin_unlock(&lip->li_ailp->ail_lock);
/*
* We need to hold a reference for flushing the cluster buffer as it may
* fail the buffer without IO submission. In which case, we better get a
* reference for that completion because otherwise we don't get a
* reference for IO until we queue the buffer for delwri submission.
*/
xfs_buf_hold(bp);
error = xfs_iflush_cluster(bp);
if (!error) {
if (!xfs_buf_delwri_queue(bp, buffer_list))
rval = XFS_ITEM_FLUSHING;
xfs_buf_relse(bp);
} else {
/*
* Release the buffer if we were unable to flush anything. On
* any other error, the buffer has already been released.
*/
if (error == -EAGAIN)
xfs_buf_relse(bp);
rval = XFS_ITEM_LOCKED;
}
spin_lock(&lip->li_ailp->ail_lock);
return rval;
}
/*
* Unlock the inode associated with the inode log item.
*/
STATIC void
xfs_inode_item_release(
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
unsigned short lock_flags;
ASSERT(ip->i_itemp != NULL);
xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
lock_flags = iip->ili_lock_flags;
iip->ili_lock_flags = 0;
if (lock_flags)
xfs_iunlock(ip, lock_flags);
}
/*
* This is called to find out where the oldest active copy of the inode log
* item in the on disk log resides now that the last log write of it completed
* at the given lsn. Since we always re-log all dirty data in an inode, the
* latest copy in the on disk log is the only one that matters. Therefore,
* simply return the given lsn.
*
* If the inode has been marked stale because the cluster is being freed, we
* don't want to (re-)insert this inode into the AIL. There is a race condition
* where the cluster buffer may be unpinned before the inode is inserted into
* the AIL during transaction committed processing. If the buffer is unpinned
* before the inode item has been committed and inserted, then it is possible
* for the buffer to be written and IO completes before the inode is inserted
* into the AIL. In that case, we'd be inserting a clean, stale inode into the
* AIL which will never get removed. It will, however, get reclaimed which
* triggers an assert in xfs_inode_free() complaining about freein an inode
* still in the AIL.
*
* To avoid this, just unpin the inode directly and return a LSN of -1 so the
* transaction committed code knows that it does not need to do any further
* processing on the item.
*/
STATIC xfs_lsn_t
xfs_inode_item_committed(
struct xfs_log_item *lip,
xfs_lsn_t lsn)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
if (xfs_iflags_test(ip, XFS_ISTALE)) {
xfs_inode_item_unpin(lip, 0);
return -1;
}
return lsn;
}
STATIC void
xfs_inode_item_committing(
struct xfs_log_item *lip,
xfs_csn_t seq)
{
INODE_ITEM(lip)->ili_commit_seq = seq;
return xfs_inode_item_release(lip);
}
static const struct xfs_item_ops xfs_inode_item_ops = {
.iop_sort = xfs_inode_item_sort,
.iop_precommit = xfs_inode_item_precommit,
.iop_size = xfs_inode_item_size,
.iop_format = xfs_inode_item_format,
.iop_pin = xfs_inode_item_pin,
.iop_unpin = xfs_inode_item_unpin,
.iop_release = xfs_inode_item_release,
.iop_committed = xfs_inode_item_committed,
.iop_push = xfs_inode_item_push,
.iop_committing = xfs_inode_item_committing,
};
/*
* Initialize the inode log item for a newly allocated (in-core) inode.
*/
void
xfs_inode_item_init(
struct xfs_inode *ip,
struct xfs_mount *mp)
{
struct xfs_inode_log_item *iip;
ASSERT(ip->i_itemp == NULL);
iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
GFP_KERNEL | __GFP_NOFAIL);
iip->ili_inode = ip;
spin_lock_init(&iip->ili_lock);
xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
&xfs_inode_item_ops);
}
/*
* Free the inode log item and any memory hanging off of it.
*/
void
xfs_inode_item_destroy(
struct xfs_inode *ip)
{
struct xfs_inode_log_item *iip = ip->i_itemp;
ASSERT(iip->ili_item.li_buf == NULL);
ip->i_itemp = NULL;
kvfree(iip->ili_item.li_lv_shadow);
kmem_cache_free(xfs_ili_cache, iip);
}
/*
* We only want to pull the item from the AIL if it is actually there
* and its location in the log has not changed since we started the
* flush. Thus, we only bother if the inode's lsn has not changed.
*/
static void
xfs_iflush_ail_updates(
struct xfs_ail *ailp,
struct list_head *list)
{
struct xfs_log_item *lip;
xfs_lsn_t tail_lsn = 0;
/* this is an opencoded batch version of xfs_trans_ail_delete */
spin_lock(&ailp->ail_lock);
list_for_each_entry(lip, list, li_bio_list) {
xfs_lsn_t lsn;
clear_bit(XFS_LI_FAILED, &lip->li_flags);
if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
continue;
/*
* dgc: Not sure how this happens, but it happens very
* occassionaly via generic/388. xfs_iflush_abort() also
* silently handles this same "under writeback but not in AIL at
* shutdown" condition via xfs_trans_ail_delete().
*/
if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
ASSERT(xlog_is_shutdown(lip->li_log));
continue;
}
lsn = xfs_ail_delete_one(ailp, lip);
if (!tail_lsn && lsn)
tail_lsn = lsn;
}
xfs_ail_update_finish(ailp, tail_lsn);
}
/*
* Walk the list of inodes that have completed their IOs. If they are clean
* remove them from the list and dissociate them from the buffer. Buffers that
* are still dirty remain linked to the buffer and on the list. Caller must
* handle them appropriately.
*/
static void
xfs_iflush_finish(
struct xfs_buf *bp,
struct list_head *list)
{
struct xfs_log_item *lip, *n;
list_for_each_entry_safe(lip, n, list, li_bio_list) {
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
bool drop_buffer = false;
spin_lock(&iip->ili_lock);
/*
* Remove the reference to the cluster buffer if the inode is
* clean in memory and drop the buffer reference once we've
* dropped the locks we hold.
*/
ASSERT(iip->ili_item.li_buf == bp);
if (!iip->ili_fields) {
iip->ili_item.li_buf = NULL;
list_del_init(&lip->li_bio_list);
drop_buffer = true;
}
iip->ili_last_fields = 0;
iip->ili_flush_lsn = 0;
spin_unlock(&iip->ili_lock);
xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
if (drop_buffer)
xfs_buf_rele(bp);
}
}
/*
* Inode buffer IO completion routine. It is responsible for removing inodes
* attached to the buffer from the AIL if they have not been re-logged and
* completing the inode flush.
*/
void
xfs_buf_inode_iodone(
struct xfs_buf *bp)
{
struct xfs_log_item *lip, *n;
LIST_HEAD(flushed_inodes);
LIST_HEAD(ail_updates);
/*
* Pull the attached inodes from the buffer one at a time and take the
* appropriate action on them.
*/
list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
xfs_iflush_abort(iip->ili_inode);
continue;
}
if (!iip->ili_last_fields)
continue;
/* Do an unlocked check for needing the AIL lock. */
if (iip->ili_flush_lsn == lip->li_lsn ||
test_bit(XFS_LI_FAILED, &lip->li_flags))
list_move_tail(&lip->li_bio_list, &ail_updates);
else
list_move_tail(&lip->li_bio_list, &flushed_inodes);
}
if (!list_empty(&ail_updates)) {
xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
list_splice_tail(&ail_updates, &flushed_inodes);
}
xfs_iflush_finish(bp, &flushed_inodes);
if (!list_empty(&flushed_inodes))
list_splice_tail(&flushed_inodes, &bp->b_li_list);
}
void
xfs_buf_inode_io_fail(
struct xfs_buf *bp)
{
struct xfs_log_item *lip;
list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
set_bit(XFS_LI_FAILED, &lip->li_flags);
}
/*
* Clear the inode logging fields so no more flushes are attempted. If we are
* on a buffer list, it is now safe to remove it because the buffer is
* guaranteed to be locked. The caller will drop the reference to the buffer
* the log item held.
*/
static void
xfs_iflush_abort_clean(
struct xfs_inode_log_item *iip)
{
iip->ili_last_fields = 0;
iip->ili_fields = 0;
iip->ili_fsync_fields = 0;
iip->ili_flush_lsn = 0;
iip->ili_item.li_buf = NULL;
list_del_init(&iip->ili_item.li_bio_list);
}
/*
* Abort flushing the inode from a context holding the cluster buffer locked.
*
* This is the normal runtime method of aborting writeback of an inode that is
* attached to a cluster buffer. It occurs when the inode and the backing
* cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
* flushing or buffer IO completion encounters a log shutdown situation.
*
* If we need to abort inode writeback and we don't already hold the buffer
* locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
* necessary in a shutdown situation.
*/
void
xfs_iflush_abort(
struct xfs_inode *ip)
{
struct xfs_inode_log_item *iip = ip->i_itemp;
struct xfs_buf *bp;
if (!iip) {
/* clean inode, nothing to do */
xfs_iflags_clear(ip, XFS_IFLUSHING);
return;
}
/*
* Remove the inode item from the AIL before we clear its internal
* state. Whilst the inode is in the AIL, it should have a valid buffer
* pointer for push operations to access - it is only safe to remove the
* inode from the buffer once it has been removed from the AIL.
*
* We also clear the failed bit before removing the item from the AIL
* as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
* references the inode item owns and needs to hold until we've fully
* aborted the inode log item and detached it from the buffer.
*/
clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
xfs_trans_ail_delete(&iip->ili_item, 0);
/*
* Grab the inode buffer so can we release the reference the inode log
* item holds on it.
*/
spin_lock(&iip->ili_lock);
bp = iip->ili_item.li_buf;
xfs_iflush_abort_clean(iip);
spin_unlock(&iip->ili_lock);
xfs_iflags_clear(ip, XFS_IFLUSHING);
if (bp)
xfs_buf_rele(bp);
}
/*
* Abort an inode flush in the case of a shutdown filesystem. This can be called
* from anywhere with just an inode reference and does not require holding the
* inode cluster buffer locked. If the inode is attached to a cluster buffer,
* it will grab and lock it safely, then abort the inode flush.
*/
void
xfs_iflush_shutdown_abort(
struct xfs_inode *ip)
{
struct xfs_inode_log_item *iip = ip->i_itemp;
struct xfs_buf *bp;
if (!iip) {
/* clean inode, nothing to do */
xfs_iflags_clear(ip, XFS_IFLUSHING);
return;
}
spin_lock(&iip->ili_lock);
bp = iip->ili_item.li_buf;
if (!bp) {
spin_unlock(&iip->ili_lock);
xfs_iflush_abort(ip);
return;
}
/*
* We have to take a reference to the buffer so that it doesn't get
* freed when we drop the ili_lock and then wait to lock the buffer.
* We'll clean up the extra reference after we pick up the ili_lock
* again.
*/
xfs_buf_hold(bp);
spin_unlock(&iip->ili_lock);
xfs_buf_lock(bp);
spin_lock(&iip->ili_lock);
if (!iip->ili_item.li_buf) {
/*
* Raced with another removal, hold the only reference
* to bp now. Inode should not be in the AIL now, so just clean
* up and return;
*/
ASSERT(list_empty(&iip->ili_item.li_bio_list));
ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
xfs_iflush_abort_clean(iip);
spin_unlock(&iip->ili_lock);
xfs_iflags_clear(ip, XFS_IFLUSHING);
xfs_buf_relse(bp);
return;
}
/*
* Got two references to bp. The first will get dropped by
* xfs_iflush_abort() when the item is removed from the buffer list, but
* we can't drop our reference until _abort() returns because we have to
* unlock the buffer as well. Hence we abort and then unlock and release
* our reference to the buffer.
*/
ASSERT(iip->ili_item.li_buf == bp);
spin_unlock(&iip->ili_lock);
xfs_iflush_abort(ip);
xfs_buf_relse(bp);
}
/*
* convert an xfs_inode_log_format struct from the old 32 bit version
* (which can have different field alignments) to the native 64 bit version
*/
int
xfs_inode_item_format_convert(
struct xfs_log_iovec *buf,
struct xfs_inode_log_format *in_f)
{
struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
if (buf->i_len != sizeof(*in_f32)) {
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
return -EFSCORRUPTED;
}
in_f->ilf_type = in_f32->ilf_type;
in_f->ilf_size = in_f32->ilf_size;
in_f->ilf_fields = in_f32->ilf_fields;
in_f->ilf_asize = in_f32->ilf_asize;
in_f->ilf_dsize = in_f32->ilf_dsize;
in_f->ilf_ino = in_f32->ilf_ino;
memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
in_f->ilf_blkno = in_f32->ilf_blkno;
in_f->ilf_len = in_f32->ilf_len;
in_f->ilf_boffset = in_f32->ilf_boffset;
return 0;
}