linux/drivers/comedi/drivers/s626.c
Ian Abbott df0e68c1e9 comedi: Move the main COMEDI headers
Move the main COMEDI driver headers out of "drivers/comedi/" into new
directory "include/linux/comedi/".  These are "comedidev.h",
"comedilib.h", "comedi_pci.h", "comedi_pcmcia.h", and "comedi_usb.h".
Additionally, move the user-space API header "comedi.h" into
"include/uapi/linux/" and add "WITH Linux-syscall-note" to its
SPDX-License-Identifier.

Update the "COMEDI DRIVERS" section of the MAINTAINERS file to account
for these changes.

Signed-off-by: Ian Abbott <abbotti@mev.co.uk>
Link: https://lore.kernel.org/r/20211117120604.117740-2-abbotti@mev.co.uk
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-26 16:48:59 +01:00

2605 lines
75 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* comedi/drivers/s626.c
* Sensoray s626 Comedi driver
*
* COMEDI - Linux Control and Measurement Device Interface
* Copyright (C) 2000 David A. Schleef <ds@schleef.org>
*
* Based on Sensoray Model 626 Linux driver Version 0.2
* Copyright (C) 2002-2004 Sensoray Co., Inc.
*/
/*
* Driver: s626
* Description: Sensoray 626 driver
* Devices: [Sensoray] 626 (s626)
* Authors: Gianluca Palli <gpalli@deis.unibo.it>,
* Updated: Fri, 15 Feb 2008 10:28:42 +0000
* Status: experimental
* Configuration options: not applicable, uses PCI auto config
* INSN_CONFIG instructions:
* analog input:
* none
*
* analog output:
* none
*
* digital channel:
* s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
* supported configuration options:
* INSN_CONFIG_DIO_QUERY
* COMEDI_INPUT
* COMEDI_OUTPUT
*
* encoder:
* Every channel must be configured before reading.
*
* Example code
*
* insn.insn=INSN_CONFIG; //configuration instruction
* insn.n=1; //number of operation (must be 1)
* insn.data=&initialvalue; //initial value loaded into encoder
* //during configuration
* insn.subdev=5; //encoder subdevice
* insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
* //to configure
*
* comedi_do_insn(cf,&insn); //executing configuration
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/comedi/comedi_pci.h>
#include "s626.h"
struct s626_buffer_dma {
dma_addr_t physical_base;
void *logical_base;
};
/**
* struct s626_private - Working data for s626 driver.
* @ai_cmd_running: non-zero if ai_cmd is running.
* @ai_sample_timer: time between samples in units of the timer.
* @ai_convert_count: conversion counter.
* @ai_convert_timer: time between conversion in units of the timer.
* @counter_int_enabs: counter interrupt enable mask for MISC2 register.
* @adc_items: number of items in ADC poll list.
* @rps_buf: DMA buffer used to hold ADC (RPS1) program.
* @ana_buf: DMA buffer used to receive ADC data and hold DAC data.
* @dac_wbuf: pointer to logical adrs of DMA buffer used to hold DAC data.
* @dacpol: image of DAC polarity register.
* @trim_setpoint: images of TrimDAC setpoints.
* @i2c_adrs: I2C device address for onboard EEPROM (board rev dependent)
*/
struct s626_private {
u8 ai_cmd_running;
unsigned int ai_sample_timer;
int ai_convert_count;
unsigned int ai_convert_timer;
u16 counter_int_enabs;
u8 adc_items;
struct s626_buffer_dma rps_buf;
struct s626_buffer_dma ana_buf;
u32 *dac_wbuf;
u16 dacpol;
u8 trim_setpoint[12];
u32 i2c_adrs;
};
/* Counter overflow/index event flag masks for RDMISC2. */
#define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
#define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
/*
* Enable/disable a function or test status bit(s) that are accessed
* through Main Control Registers 1 or 2.
*/
static void s626_mc_enable(struct comedi_device *dev,
unsigned int cmd, unsigned int reg)
{
unsigned int val = (cmd << 16) | cmd;
writel(val, dev->mmio + reg);
}
static void s626_mc_disable(struct comedi_device *dev,
unsigned int cmd, unsigned int reg)
{
writel(cmd << 16, dev->mmio + reg);
}
static bool s626_mc_test(struct comedi_device *dev,
unsigned int cmd, unsigned int reg)
{
unsigned int val;
val = readl(dev->mmio + reg);
return (val & cmd) ? true : false;
}
#define S626_BUGFIX_STREG(REGADRS) ((REGADRS) - 4)
/* Write a time slot control record to TSL2. */
#define S626_VECTPORT(VECTNUM) (S626_P_TSL2 + ((VECTNUM) << 2))
static const struct comedi_lrange s626_range_table = {
2, {
BIP_RANGE(5),
BIP_RANGE(10)
}
};
/*
* Execute a DEBI transfer. This must be called from within a critical section.
*/
static void s626_debi_transfer(struct comedi_device *dev)
{
static const int timeout = 10000;
int i;
/* Initiate upload of shadow RAM to DEBI control register */
s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
/*
* Wait for completion of upload from shadow RAM to
* DEBI control register.
*/
for (i = 0; i < timeout; i++) {
if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
break;
udelay(1);
}
if (i == timeout)
dev_err(dev->class_dev,
"Timeout while uploading to DEBI control register\n");
/* Wait until DEBI transfer is done */
for (i = 0; i < timeout; i++) {
if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
break;
udelay(1);
}
if (i == timeout)
dev_err(dev->class_dev, "DEBI transfer timeout\n");
}
/*
* Read a value from a gate array register.
*/
static u16 s626_debi_read(struct comedi_device *dev, u16 addr)
{
/* Set up DEBI control register value in shadow RAM */
writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
/* Execute the DEBI transfer. */
s626_debi_transfer(dev);
return readl(dev->mmio + S626_P_DEBIAD);
}
/*
* Write a value to a gate array register.
*/
static void s626_debi_write(struct comedi_device *dev, u16 addr,
u16 wdata)
{
/* Set up DEBI control register value in shadow RAM */
writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
writel(wdata, dev->mmio + S626_P_DEBIAD);
/* Execute the DEBI transfer. */
s626_debi_transfer(dev);
}
/*
* Replace the specified bits in a gate array register. Imports: mask
* specifies bits that are to be preserved, wdata is new value to be
* or'd with the masked original.
*/
static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
unsigned int mask, unsigned int wdata)
{
unsigned int val;
addr &= 0xffff;
writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
s626_debi_transfer(dev);
writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
val = readl(dev->mmio + S626_P_DEBIAD);
val &= mask;
val |= wdata;
writel(val & 0xffff, dev->mmio + S626_P_DEBIAD);
s626_debi_transfer(dev);
}
/* ************** EEPROM ACCESS FUNCTIONS ************** */
static int s626_i2c_handshake_eoc(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
bool status;
status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
if (status)
return 0;
return -EBUSY;
}
static int s626_i2c_handshake(struct comedi_device *dev, u32 val)
{
unsigned int ctrl;
int ret;
/* Write I2C command to I2C Transfer Control shadow register */
writel(val, dev->mmio + S626_P_I2CCTRL);
/*
* Upload I2C shadow registers into working registers and
* wait for upload confirmation.
*/
s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
if (ret)
return ret;
/* Wait until I2C bus transfer is finished or an error occurs */
do {
ctrl = readl(dev->mmio + S626_P_I2CCTRL);
} while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
/* Return non-zero if I2C error occurred */
return ctrl & S626_I2C_ERR;
}
/* Read u8 from EEPROM. */
static u8 s626_i2c_read(struct comedi_device *dev, u8 addr)
{
struct s626_private *devpriv = dev->private;
/*
* Send EEPROM target address:
* Byte2 = I2C command: write to I2C EEPROM device.
* Byte1 = EEPROM internal target address.
* Byte0 = Not sent.
*/
if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
devpriv->i2c_adrs) |
S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
/* Abort function and declare error if handshake failed. */
return 0;
/*
* Execute EEPROM read:
* Byte2 = I2C command: read from I2C EEPROM device.
* Byte1 receives uint8_t from EEPROM.
* Byte0 = Not sent.
*/
if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
(devpriv->i2c_adrs | 1)) |
S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
/* Abort function and declare error if handshake failed. */
return 0;
return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
}
/* *********** DAC FUNCTIONS *********** */
/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
static const u8 s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
static const u8 s626_trimadrs[] = {
0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
};
enum {
s626_send_dac_wait_not_mc1_a2out,
s626_send_dac_wait_ssr_af2_out,
s626_send_dac_wait_fb_buffer2_msb_00,
s626_send_dac_wait_fb_buffer2_msb_ff
};
static int s626_send_dac_eoc(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
unsigned int status;
switch (context) {
case s626_send_dac_wait_not_mc1_a2out:
status = readl(dev->mmio + S626_P_MC1);
if (!(status & S626_MC1_A2OUT))
return 0;
break;
case s626_send_dac_wait_ssr_af2_out:
status = readl(dev->mmio + S626_P_SSR);
if (status & S626_SSR_AF2_OUT)
return 0;
break;
case s626_send_dac_wait_fb_buffer2_msb_00:
status = readl(dev->mmio + S626_P_FB_BUFFER2);
if (!(status & 0xff000000))
return 0;
break;
case s626_send_dac_wait_fb_buffer2_msb_ff:
status = readl(dev->mmio + S626_P_FB_BUFFER2);
if (status & 0xff000000)
return 0;
break;
default:
return -EINVAL;
}
return -EBUSY;
}
/*
* Private helper function: Transmit serial data to DAC via Audio
* channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
* dacpol contains valid target image.
*/
static int s626_send_dac(struct comedi_device *dev, u32 val)
{
struct s626_private *devpriv = dev->private;
int ret;
/* START THE SERIAL CLOCK RUNNING ------------- */
/*
* Assert DAC polarity control and enable gating of DAC serial clock
* and audio bit stream signals. At this point in time we must be
* assured of being in time slot 0. If we are not in slot 0, the
* serial clock and audio stream signals will be disabled; this is
* because the following s626_debi_write statement (which enables
* signals to be passed through the gate array) would execute before
* the trailing edge of WS1/WS3 (which turns off the signals), thus
* causing the signals to be inactive during the DAC write.
*/
s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
/* Copy DAC setpoint value to DAC's output DMA buffer. */
/* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */
*devpriv->dac_wbuf = val;
/*
* Enable the output DMA transfer. This will cause the DMAC to copy
* the DAC's data value to A2's output FIFO. The DMA transfer will
* then immediately terminate because the protection address is
* reached upon transfer of the first DWORD value.
*/
s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
/* While the DMA transfer is executing ... */
/*
* Reset Audio2 output FIFO's underflow flag (along with any
* other FIFO underflow/overflow flags). When set, this flag
* will indicate that we have emerged from slot 0.
*/
writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR);
/*
* Wait for the DMA transfer to finish so that there will be data
* available in the FIFO when time slot 1 tries to transfer a DWORD
* from the FIFO to the output buffer register. We test for DMA
* Done by polling the DMAC enable flag; this flag is automatically
* cleared when the transfer has finished.
*/
ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
s626_send_dac_wait_not_mc1_a2out);
if (ret) {
dev_err(dev->class_dev, "DMA transfer timeout\n");
return ret;
}
/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
/*
* FIFO data is now available, so we enable execution of time slots
* 1 and higher by clearing the EOS flag in slot 0. Note that SD3
* will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
* detection.
*/
writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
dev->mmio + S626_VECTPORT(0));
/*
* Wait for slot 1 to execute to ensure that the Packet will be
* transmitted. This is detected by polling the Audio2 output FIFO
* underflow flag, which will be set when slot 1 execution has
* finished transferring the DAC's data DWORD from the output FIFO
* to the output buffer register.
*/
ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
s626_send_dac_wait_ssr_af2_out);
if (ret) {
dev_err(dev->class_dev,
"TSL timeout waiting for slot 1 to execute\n");
return ret;
}
/*
* Set up to trap execution at slot 0 when the TSL sequencer cycles
* back to slot 0 after executing the EOS in slot 5. Also,
* simultaneously shift out and in the 0x00 that is ALWAYS the value
* stored in the last byte to be shifted out of the FIFO's DWORD
* buffer register.
*/
writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
dev->mmio + S626_VECTPORT(0));
/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
/*
* Wait for the TSL to finish executing all time slots before
* exiting this function. We must do this so that the next DAC
* write doesn't start, thereby enabling clock/chip select signals:
*
* 1. Before the TSL sequence cycles back to slot 0, which disables
* the clock/cs signal gating and traps slot // list execution.
* we have not yet finished slot 5 then the clock/cs signals are
* still gated and we have not finished transmitting the stream.
*
* 2. While slots 2-5 are executing due to a late slot 0 trap. In
* this case, the slot sequence is currently repeating, but with
* clock/cs signals disabled. We must wait for slot 0 to trap
* execution before setting up the next DAC setpoint DMA transfer
* and enabling the clock/cs signals. To detect the end of slot 5,
* we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
* the TSL has not yet finished executing slot 5 ...
*/
if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
/*
* The trap was set on time and we are still executing somewhere
* in slots 2-5, so we now wait for slot 0 to execute and trap
* TSL execution. This is detected when FB_BUFFER2 MSB changes
* from 0xFF to 0x00, which slot 0 causes to happen by shifting
* out/in on SD2 the 0x00 that is always referenced by slot 5.
*/
ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
s626_send_dac_wait_fb_buffer2_msb_00);
if (ret) {
dev_err(dev->class_dev,
"TSL timeout waiting for slot 0 to execute\n");
return ret;
}
}
/*
* Either (1) we were too late setting the slot 0 trap; the TSL
* sequencer restarted slot 0 before we could set the EOS trap flag,
* or (2) we were not late and execution is now trapped at slot 0.
* In either case, we must now change slot 0 so that it will store
* value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
* In order to do this, we reprogram slot 0 so that it will shift in
* SD3, which is driven only by a pull-up resistor.
*/
writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
dev->mmio + S626_VECTPORT(0));
/*
* Wait for slot 0 to execute, at which time the TSL is setup for
* the next DAC write. This is detected when FB_BUFFER2 MSB changes
* from 0x00 to 0xFF.
*/
ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
s626_send_dac_wait_fb_buffer2_msb_ff);
if (ret) {
dev_err(dev->class_dev,
"TSL timeout waiting for slot 0 to execute\n");
return ret;
}
return 0;
}
/*
* Private helper function: Write setpoint to an application DAC channel.
*/
static int s626_set_dac(struct comedi_device *dev,
u16 chan, int16_t dacdata)
{
struct s626_private *devpriv = dev->private;
u16 signmask;
u32 ws_image;
u32 val;
/*
* Adjust DAC data polarity and set up Polarity Control Register image.
*/
signmask = 1 << chan;
if (dacdata < 0) {
dacdata = -dacdata;
devpriv->dacpol |= signmask;
} else {
devpriv->dacpol &= ~signmask;
}
/* Limit DAC setpoint value to valid range. */
if ((u16)dacdata > 0x1FFF)
dacdata = 0x1FFF;
/*
* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
* and V3 transmit the setpoint to the target DAC. V4 and V5 send
* data to a non-existent TrimDac channel just to keep the clock
* running after sending data to the target DAC. This is necessary
* to eliminate the clock glitch that would otherwise occur at the
* end of the target DAC's serial data stream. When the sequence
* restarts at V0 (after executing V5), the gate array automatically
* disables gating for the DAC clock and all DAC chip selects.
*/
/* Choose DAC chip select to be asserted */
ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
/* Slot 2: Transmit high data byte to target DAC */
writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
dev->mmio + S626_VECTPORT(2));
/* Slot 3: Transmit low data byte to target DAC */
writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
dev->mmio + S626_VECTPORT(3));
/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
dev->mmio + S626_VECTPORT(4));
/* Slot 5: running after writing target DAC's low data byte */
writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
dev->mmio + S626_VECTPORT(5));
/*
* Construct and transmit target DAC's serial packet:
* (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
* and D<12:0> is the DAC setpoint. Append a WORD value (that writes
* to a non-existent TrimDac channel) that serves to keep the clock
* running after the packet has been sent to the target DAC.
*/
val = 0x0F000000; /* Continue clock after target DAC data
* (write to non-existent trimdac).
*/
val |= 0x00004000; /* Address the two main dual-DAC devices
* (TSL's chip select enables target device).
*/
val |= ((u32)(chan & 1) << 15); /* Address the DAC channel
* within the device.
*/
val |= (u32)dacdata; /* Include DAC setpoint data. */
return s626_send_dac(dev, val);
}
static int s626_write_trim_dac(struct comedi_device *dev,
u8 logical_chan, u8 dac_data)
{
struct s626_private *devpriv = dev->private;
u32 chan;
/*
* Save the new setpoint in case the application needs to read it back
* later.
*/
devpriv->trim_setpoint[logical_chan] = dac_data;
/* Map logical channel number to physical channel number. */
chan = s626_trimchan[logical_chan];
/*
* Set up TSL2 records for TrimDac write operation. All slots shift
* 0xFF in from pulled-up SD3 so that the end of the slot sequence
* can be detected.
*/
/* Slot 2: Send high uint8_t to target TrimDac */
writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
dev->mmio + S626_VECTPORT(2));
/* Slot 3: Send low uint8_t to target TrimDac */
writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
dev->mmio + S626_VECTPORT(3));
/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
dev->mmio + S626_VECTPORT(4));
/* Slot 5: Send NOP low uint8_t to DAC0 */
writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
dev->mmio + S626_VECTPORT(5));
/*
* Construct and transmit target DAC's serial packet:
* (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
* DAC channel's address, and D<7:0> is the DAC setpoint. Append a
* WORD value (that writes a channel 0 NOP command to a non-existent
* main DAC channel) that serves to keep the clock running after the
* packet has been sent to the target DAC.
*/
/*
* Address the DAC channel within the trimdac device.
* Include DAC setpoint data.
*/
return s626_send_dac(dev, (chan << 8) | dac_data);
}
static int s626_load_trim_dacs(struct comedi_device *dev)
{
u8 i;
int ret;
/* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
ret = s626_write_trim_dac(dev, i,
s626_i2c_read(dev, s626_trimadrs[i]));
if (ret)
return ret;
}
return 0;
}
/* ****** COUNTER FUNCTIONS ******* */
/*
* All counter functions address a specific counter by means of the
* "Counter" argument, which is a logical counter number. The Counter
* argument may have any of the following legal values: 0=0A, 1=1A,
* 2=2A, 3=0B, 4=1B, 5=2B.
*/
/*
* Return/set a counter pair's latch trigger source. 0: On read
* access, 1: A index latches A, 2: B index latches B, 3: A overflow
* latches B.
*/
static void s626_set_latch_source(struct comedi_device *dev,
unsigned int chan, u16 value)
{
s626_debi_replace(dev, S626_LP_CRB(chan),
~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
S626_SET_CRB_LATCHSRC(value));
}
/*
* Write value into counter preload register.
*/
static void s626_preload(struct comedi_device *dev,
unsigned int chan, u32 value)
{
s626_debi_write(dev, S626_LP_CNTR(chan), value);
s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16);
}
/* ****** PRIVATE COUNTER FUNCTIONS ****** */
/*
* Reset a counter's index and overflow event capture flags.
*/
static void s626_reset_cap_flags(struct comedi_device *dev,
unsigned int chan)
{
u16 set;
set = S626_SET_CRB_INTRESETCMD(1);
if (chan < 3)
set |= S626_SET_CRB_INTRESET_A(1);
else
set |= S626_SET_CRB_INTRESET_B(1);
s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set);
}
/*
* Set the operating mode for the specified counter. The setup
* parameter is treated as a COUNTER_SETUP data type. The following
* parameters are programmable (all other parms are ignored): ClkMult,
* ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
*/
static void s626_set_mode_a(struct comedi_device *dev,
unsigned int chan, u16 setup,
u16 disable_int_src)
{
struct s626_private *devpriv = dev->private;
u16 cra;
u16 crb;
unsigned int cntsrc, clkmult, clkpol;
/* Initialize CRA and CRB images. */
/* Preload trigger is passed through. */
cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
/* IndexSrc is passed through. */
cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
/* Reset any pending CounterA event captures. */
crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
/* Clock enable is passed through. */
crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
/* Force IntSrc to Disabled if disable_int_src is asserted. */
if (!disable_int_src)
cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
/* Populate all mode-dependent attributes of CRA & CRB images. */
clkpol = S626_GET_STD_CLKPOL(setup);
switch (S626_GET_STD_ENCMODE(setup)) {
case S626_ENCMODE_EXTENDER: /* Extender Mode: */
/* Force to Timer mode (Extender valid only for B counters). */
/* Fall through to case S626_ENCMODE_TIMER: */
case S626_ENCMODE_TIMER: /* Timer Mode: */
/* CntSrcA<1> selects system clock */
cntsrc = S626_CNTSRC_SYSCLK;
/* Count direction (CntSrcA<0>) obtained from ClkPol. */
cntsrc |= clkpol;
/* ClkPolA behaves as always-on clock enable. */
clkpol = 1;
/* ClkMult must be 1x. */
clkmult = S626_CLKMULT_1X;
break;
default: /* Counter Mode: */
/* Select ENC_C and ENC_D as clock/direction inputs. */
cntsrc = S626_CNTSRC_ENCODER;
/* Clock polarity is passed through. */
/* Force multiplier to x1 if not legal, else pass through. */
clkmult = S626_GET_STD_CLKMULT(setup);
if (clkmult == S626_CLKMULT_SPECIAL)
clkmult = S626_CLKMULT_1X;
break;
}
cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
S626_SET_CRA_CLKMULT_A(clkmult);
/*
* Force positive index polarity if IndxSrc is software-driven only,
* otherwise pass it through.
*/
if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
/*
* If IntSrc has been forced to Disabled, update the MISC2 interrupt
* enable mask to indicate the counter interrupt is disabled.
*/
if (disable_int_src)
devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
S626_INDXMASK(chan));
/*
* While retaining CounterB and LatchSrc configurations, program the
* new counter operating mode.
*/
s626_debi_replace(dev, S626_LP_CRA(chan),
S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
s626_debi_replace(dev, S626_LP_CRB(chan),
~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
}
static void s626_set_mode_b(struct comedi_device *dev,
unsigned int chan, u16 setup,
u16 disable_int_src)
{
struct s626_private *devpriv = dev->private;
u16 cra;
u16 crb;
unsigned int cntsrc, clkmult, clkpol;
/* Initialize CRA and CRB images. */
/* IndexSrc is passed through. */
cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
/* Reset event captures and disable interrupts. */
crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
/* Clock enable is passed through. */
crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
/* Preload trigger source is passed through. */
crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
/* Force IntSrc to Disabled if disable_int_src is asserted. */
if (!disable_int_src)
crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
/* Populate all mode-dependent attributes of CRA & CRB images. */
clkpol = S626_GET_STD_CLKPOL(setup);
switch (S626_GET_STD_ENCMODE(setup)) {
case S626_ENCMODE_TIMER: /* Timer Mode: */
/* CntSrcB<1> selects system clock */
cntsrc = S626_CNTSRC_SYSCLK;
/* with direction (CntSrcB<0>) obtained from ClkPol. */
cntsrc |= clkpol;
/* ClkPolB behaves as always-on clock enable. */
clkpol = 1;
/* ClkMultB must be 1x. */
clkmult = S626_CLKMULT_1X;
break;
case S626_ENCMODE_EXTENDER: /* Extender Mode: */
/* CntSrcB source is OverflowA (same as "timer") */
cntsrc = S626_CNTSRC_SYSCLK;
/* with direction obtained from ClkPol. */
cntsrc |= clkpol;
/* ClkPolB controls IndexB -- always set to active. */
clkpol = 1;
/* ClkMultB selects OverflowA as the clock source. */
clkmult = S626_CLKMULT_SPECIAL;
break;
default: /* Counter Mode: */
/* Select ENC_C and ENC_D as clock/direction inputs. */
cntsrc = S626_CNTSRC_ENCODER;
/* ClkPol is passed through. */
/* Force ClkMult to x1 if not legal, otherwise pass through. */
clkmult = S626_GET_STD_CLKMULT(setup);
if (clkmult == S626_CLKMULT_SPECIAL)
clkmult = S626_CLKMULT_1X;
break;
}
cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
/*
* Force positive index polarity if IndxSrc is software-driven only,
* otherwise pass it through.
*/
if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
/*
* If IntSrc has been forced to Disabled, update the MISC2 interrupt
* enable mask to indicate the counter interrupt is disabled.
*/
if (disable_int_src)
devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
S626_INDXMASK(chan));
/*
* While retaining CounterA and LatchSrc configurations, program the
* new counter operating mode.
*/
s626_debi_replace(dev, S626_LP_CRA(chan),
~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
s626_debi_replace(dev, S626_LP_CRB(chan),
S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
}
static void s626_set_mode(struct comedi_device *dev,
unsigned int chan,
u16 setup, u16 disable_int_src)
{
if (chan < 3)
s626_set_mode_a(dev, chan, setup, disable_int_src);
else
s626_set_mode_b(dev, chan, setup, disable_int_src);
}
/*
* Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index.
*/
static void s626_set_enable(struct comedi_device *dev,
unsigned int chan, u16 enab)
{
unsigned int mask = S626_CRBMSK_INTCTRL;
unsigned int set;
if (chan < 3) {
mask |= S626_CRBMSK_CLKENAB_A;
set = S626_SET_CRB_CLKENAB_A(enab);
} else {
mask |= S626_CRBMSK_CLKENAB_B;
set = S626_SET_CRB_CLKENAB_B(enab);
}
s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set);
}
/*
* Return/set the event that will trigger transfer of the preload
* register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
* 2=OverflowA (B counters only), 3=disabled.
*/
static void s626_set_load_trig(struct comedi_device *dev,
unsigned int chan, u16 trig)
{
u16 reg;
u16 mask;
u16 set;
if (chan < 3) {
reg = S626_LP_CRA(chan);
mask = S626_CRAMSK_LOADSRC_A;
set = S626_SET_CRA_LOADSRC_A(trig);
} else {
reg = S626_LP_CRB(chan);
mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL;
set = S626_SET_CRB_LOADSRC_B(trig);
}
s626_debi_replace(dev, reg, ~mask, set);
}
/*
* Return/set counter interrupt source and clear any captured
* index/overflow events. int_source: 0=Disabled, 1=OverflowOnly,
* 2=IndexOnly, 3=IndexAndOverflow.
*/
static void s626_set_int_src(struct comedi_device *dev,
unsigned int chan, u16 int_source)
{
struct s626_private *devpriv = dev->private;
u16 cra_reg = S626_LP_CRA(chan);
u16 crb_reg = S626_LP_CRB(chan);
if (chan < 3) {
/* Reset any pending counter overflow or index captures */
s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL,
S626_SET_CRB_INTRESETCMD(1) |
S626_SET_CRB_INTRESET_A(1));
/* Program counter interrupt source */
s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A,
S626_SET_CRA_INTSRC_A(int_source));
} else {
u16 crb;
/* Cache writeable CRB register image */
crb = s626_debi_read(dev, crb_reg);
crb &= ~S626_CRBMSK_INTCTRL;
/* Reset any pending counter overflow or index captures */
s626_debi_write(dev, crb_reg,
crb | S626_SET_CRB_INTRESETCMD(1) |
S626_SET_CRB_INTRESET_B(1));
/* Program counter interrupt source */
s626_debi_write(dev, crb_reg,
(crb & ~S626_CRBMSK_INTSRC_B) |
S626_SET_CRB_INTSRC_B(int_source));
}
/* Update MISC2 interrupt enable mask. */
devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
S626_INDXMASK(chan));
switch (int_source) {
case 0:
default:
break;
case 1:
devpriv->counter_int_enabs |= S626_OVERMASK(chan);
break;
case 2:
devpriv->counter_int_enabs |= S626_INDXMASK(chan);
break;
case 3:
devpriv->counter_int_enabs |= (S626_OVERMASK(chan) |
S626_INDXMASK(chan));
break;
}
}
/*
* Generate an index pulse.
*/
static void s626_pulse_index(struct comedi_device *dev,
unsigned int chan)
{
if (chan < 3) {
u16 cra;
cra = s626_debi_read(dev, S626_LP_CRA(chan));
/* Pulse index */
s626_debi_write(dev, S626_LP_CRA(chan),
(cra ^ S626_CRAMSK_INDXPOL_A));
s626_debi_write(dev, S626_LP_CRA(chan), cra);
} else {
u16 crb;
crb = s626_debi_read(dev, S626_LP_CRB(chan));
crb &= ~S626_CRBMSK_INTCTRL;
/* Pulse index */
s626_debi_write(dev, S626_LP_CRB(chan),
(crb ^ S626_CRBMSK_INDXPOL_B));
s626_debi_write(dev, S626_LP_CRB(chan), crb);
}
}
static unsigned int s626_ai_reg_to_uint(unsigned int data)
{
return ((data >> 18) & 0x3fff) ^ 0x2000;
}
static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
{
unsigned int group = chan / 16;
unsigned int mask = 1 << (chan - (16 * group));
unsigned int status;
/* set channel to capture positive edge */
status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
/* enable interrupt on selected channel */
status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
/* enable edge capture write command */
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
/* enable edge capture on selected channel */
status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
return 0;
}
static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
unsigned int mask)
{
/* disable edge capture write command */
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
/* enable edge capture on selected channel */
s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
return 0;
}
static int s626_dio_clear_irq(struct comedi_device *dev)
{
unsigned int group;
/* disable edge capture write command */
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
/* clear all dio pending events and interrupt */
for (group = 0; group < S626_DIO_BANKS; group++)
s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
return 0;
}
static void s626_handle_dio_interrupt(struct comedi_device *dev,
u16 irqbit, u8 group)
{
struct s626_private *devpriv = dev->private;
struct comedi_subdevice *s = dev->read_subdev;
struct comedi_cmd *cmd = &s->async->cmd;
s626_dio_reset_irq(dev, group, irqbit);
if (devpriv->ai_cmd_running) {
/* check if interrupt is an ai acquisition start trigger */
if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
cmd->start_src == TRIG_EXT) {
/* Start executing the RPS program */
s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
if (cmd->scan_begin_src == TRIG_EXT)
s626_dio_set_irq(dev, cmd->scan_begin_arg);
}
if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
cmd->scan_begin_src == TRIG_EXT) {
/* Trigger ADC scan loop start */
s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
if (cmd->convert_src == TRIG_EXT) {
devpriv->ai_convert_count = cmd->chanlist_len;
s626_dio_set_irq(dev, cmd->convert_arg);
}
if (cmd->convert_src == TRIG_TIMER) {
devpriv->ai_convert_count = cmd->chanlist_len;
s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
}
}
if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
cmd->convert_src == TRIG_EXT) {
/* Trigger ADC scan loop start */
s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
devpriv->ai_convert_count--;
if (devpriv->ai_convert_count > 0)
s626_dio_set_irq(dev, cmd->convert_arg);
}
}
}
static void s626_check_dio_interrupts(struct comedi_device *dev)
{
u16 irqbit;
u8 group;
for (group = 0; group < S626_DIO_BANKS; group++) {
/* read interrupt type */
irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
/* check if interrupt is generated from dio channels */
if (irqbit) {
s626_handle_dio_interrupt(dev, irqbit, group);
return;
}
}
}
static void s626_check_counter_interrupts(struct comedi_device *dev)
{
struct s626_private *devpriv = dev->private;
struct comedi_subdevice *s = dev->read_subdev;
struct comedi_async *async = s->async;
struct comedi_cmd *cmd = &async->cmd;
u16 irqbit;
/* read interrupt type */
irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
/* check interrupt on counters */
if (irqbit & S626_IRQ_COINT1A) {
/* clear interrupt capture flag */
s626_reset_cap_flags(dev, 0);
}
if (irqbit & S626_IRQ_COINT2A) {
/* clear interrupt capture flag */
s626_reset_cap_flags(dev, 1);
}
if (irqbit & S626_IRQ_COINT3A) {
/* clear interrupt capture flag */
s626_reset_cap_flags(dev, 2);
}
if (irqbit & S626_IRQ_COINT1B) {
/* clear interrupt capture flag */
s626_reset_cap_flags(dev, 3);
}
if (irqbit & S626_IRQ_COINT2B) {
/* clear interrupt capture flag */
s626_reset_cap_flags(dev, 4);
if (devpriv->ai_convert_count > 0) {
devpriv->ai_convert_count--;
if (devpriv->ai_convert_count == 0)
s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
if (cmd->convert_src == TRIG_TIMER) {
/* Trigger ADC scan loop start */
s626_mc_enable(dev, S626_MC2_ADC_RPS,
S626_P_MC2);
}
}
}
if (irqbit & S626_IRQ_COINT3B) {
/* clear interrupt capture flag */
s626_reset_cap_flags(dev, 5);
if (cmd->scan_begin_src == TRIG_TIMER) {
/* Trigger ADC scan loop start */
s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
}
if (cmd->convert_src == TRIG_TIMER) {
devpriv->ai_convert_count = cmd->chanlist_len;
s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS);
}
}
}
static bool s626_handle_eos_interrupt(struct comedi_device *dev)
{
struct s626_private *devpriv = dev->private;
struct comedi_subdevice *s = dev->read_subdev;
struct comedi_async *async = s->async;
struct comedi_cmd *cmd = &async->cmd;
/*
* Init ptr to DMA buffer that holds new ADC data. We skip the
* first uint16_t in the buffer because it contains junk data
* from the final ADC of the previous poll list scan.
*/
u32 *readaddr = (u32 *)devpriv->ana_buf.logical_base + 1;
int i;
/* get the data and hand it over to comedi */
for (i = 0; i < cmd->chanlist_len; i++) {
unsigned short tempdata;
/*
* Convert ADC data to 16-bit integer values and copy
* to application buffer.
*/
tempdata = s626_ai_reg_to_uint(*readaddr);
readaddr++;
comedi_buf_write_samples(s, &tempdata, 1);
}
if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg)
async->events |= COMEDI_CB_EOA;
if (async->events & COMEDI_CB_CANCEL_MASK)
devpriv->ai_cmd_running = 0;
if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
s626_dio_set_irq(dev, cmd->scan_begin_arg);
comedi_handle_events(dev, s);
return !devpriv->ai_cmd_running;
}
static irqreturn_t s626_irq_handler(int irq, void *d)
{
struct comedi_device *dev = d;
unsigned long flags;
u32 irqtype, irqstatus;
if (!dev->attached)
return IRQ_NONE;
/* lock to avoid race with comedi_poll */
spin_lock_irqsave(&dev->spinlock, flags);
/* save interrupt enable register state */
irqstatus = readl(dev->mmio + S626_P_IER);
/* read interrupt type */
irqtype = readl(dev->mmio + S626_P_ISR);
/* disable master interrupt */
writel(0, dev->mmio + S626_P_IER);
/* clear interrupt */
writel(irqtype, dev->mmio + S626_P_ISR);
switch (irqtype) {
case S626_IRQ_RPS1: /* end_of_scan occurs */
if (s626_handle_eos_interrupt(dev))
irqstatus = 0;
break;
case S626_IRQ_GPIO3: /* check dio and counter interrupt */
/* s626_dio_clear_irq(dev); */
s626_check_dio_interrupts(dev);
s626_check_counter_interrupts(dev);
break;
}
/* enable interrupt */
writel(irqstatus, dev->mmio + S626_P_IER);
spin_unlock_irqrestore(&dev->spinlock, flags);
return IRQ_HANDLED;
}
/*
* This function builds the RPS program for hardware driven acquisition.
*/
static void s626_reset_adc(struct comedi_device *dev, u8 *ppl)
{
struct s626_private *devpriv = dev->private;
struct comedi_subdevice *s = dev->read_subdev;
struct comedi_cmd *cmd = &s->async->cmd;
u32 *rps;
u32 jmp_adrs;
u16 i;
u16 n;
u32 local_ppl;
/* Stop RPS program in case it is currently running */
s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
/* Set starting logical address to write RPS commands. */
rps = (u32 *)devpriv->rps_buf.logical_base;
/* Initialize RPS instruction pointer */
writel((u32)devpriv->rps_buf.physical_base,
dev->mmio + S626_P_RPSADDR1);
/* Construct RPS program in rps_buf DMA buffer */
if (cmd->scan_begin_src != TRIG_FOLLOW) {
/* Wait for Start trigger. */
*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
}
/*
* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
* because the first RPS DEBI Write following a non-RPS DEBI write
* seems to always fail. If we don't do this dummy write, the ADC
* gain might not be set to the value required for the first slot in
* the poll list; the ADC gain would instead remain unchanged from
* the previously programmed value.
*/
/* Write DEBI Write command and address to shadow RAM. */
*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
/* Write DEBI immediate data to shadow RAM: */
*rps++ = S626_GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
/* Reset "shadow RAM uploaded" flag. */
/* Invoke shadow RAM upload. */
*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
/* Wait for shadow upload to finish. */
*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
/*
* Digitize all slots in the poll list. This is implemented as a
* for loop to limit the slot count to 16 in case the application
* forgot to set the S626_EOPL flag in the final slot.
*/
for (devpriv->adc_items = 0; devpriv->adc_items < 16;
devpriv->adc_items++) {
/*
* Convert application's poll list item to private board class
* format. Each app poll list item is an uint8_t with form
* (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
* +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
*/
local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
S626_GSEL_BIPOLAR10V);
/* Switch ADC analog gain. */
/* Write DEBI command and address to shadow RAM. */
*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
/* Write DEBI immediate data to shadow RAM. */
*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
*rps++ = local_ppl;
/* Reset "shadow RAM uploaded" flag. */
*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
/* Invoke shadow RAM upload. */
*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
/* Wait for shadow upload to finish. */
*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
/* Select ADC analog input channel. */
*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
/* Write DEBI command and address to shadow RAM. */
*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
/* Write DEBI immediate data to shadow RAM. */
*rps++ = local_ppl;
/* Reset "shadow RAM uploaded" flag. */
*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
/* Invoke shadow RAM upload. */
*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
/* Wait for shadow upload to finish. */
*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
/*
* Delay at least 10 microseconds for analog input settling.
* Instead of padding with NOPs, we use S626_RPS_JUMP
* instructions here; this allows us to produce a longer delay
* than is possible with NOPs because each S626_RPS_JUMP
* flushes the RPS' instruction prefetch pipeline.
*/
jmp_adrs =
(u32)devpriv->rps_buf.physical_base +
(u32)((unsigned long)rps -
(unsigned long)devpriv->rps_buf.logical_base);
for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
jmp_adrs += 8; /* Repeat to implement time delay: */
/* Jump to next RPS instruction. */
*rps++ = S626_RPS_JUMP;
*rps++ = jmp_adrs;
}
if (cmd->convert_src != TRIG_NOW) {
/* Wait for Start trigger. */
*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
}
/* Start ADC by pulsing GPIO1. */
/* Begin ADC Start pulse. */
*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
*rps++ = S626_RPS_NOP;
/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
/* End ADC Start pulse. */
*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
/*
* Wait for ADC to complete (GPIO2 is asserted high when ADC not
* busy) and for data from previous conversion to shift into FB
* BUFFER 1 register.
*/
/* Wait for ADC done. */
*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
/* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
*rps++ = S626_RPS_STREG |
(S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
*rps++ = (u32)devpriv->ana_buf.physical_base +
(devpriv->adc_items << 2);
/*
* If this slot's EndOfPollList flag is set, all channels have
* now been processed.
*/
if (*ppl++ & S626_EOPL) {
devpriv->adc_items++; /* Adjust poll list item count. */
break; /* Exit poll list processing loop. */
}
}
/*
* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
* ADC to stabilize for 2 microseconds before starting the final
* (dummy) conversion. This delay is necessary to allow sufficient
* time between last conversion finished and the start of the dummy
* conversion. Without this delay, the last conversion's data value
* is sometimes set to the previous conversion's data value.
*/
for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
*rps++ = S626_RPS_NOP;
/*
* Start a dummy conversion to cause the data from the last
* conversion of interest to be shifted in.
*/
/* Begin ADC Start pulse. */
*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
*rps++ = S626_RPS_NOP;
/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
/*
* Wait for the data from the last conversion of interest to arrive
* in FB BUFFER 1 register.
*/
*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; /* Wait for ADC done. */
/* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
*rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
*rps++ = (u32)devpriv->ana_buf.physical_base +
(devpriv->adc_items << 2);
/* Indicate ADC scan loop is finished. */
/* Signal ReadADC() that scan is done. */
/* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
/* invoke interrupt */
if (devpriv->ai_cmd_running == 1)
*rps++ = S626_RPS_IRQ;
/* Restart RPS program at its beginning. */
*rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */
*rps++ = (u32)devpriv->rps_buf.physical_base;
/* End of RPS program build */
}
static int s626_ai_eoc(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
unsigned int status;
status = readl(dev->mmio + S626_P_PSR);
if (status & S626_PSR_GPIO2)
return 0;
return -EBUSY;
}
static int s626_ai_insn_read(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
u16 chan = CR_CHAN(insn->chanspec);
u16 range = CR_RANGE(insn->chanspec);
u16 adc_spec = 0;
u32 gpio_image;
u32 tmp;
int ret;
int n;
/*
* Convert application's ADC specification into form
* appropriate for register programming.
*/
if (range == 0)
adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
else
adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
/* Switch ADC analog gain. */
s626_debi_write(dev, S626_LP_GSEL, adc_spec); /* Set gain. */
/* Select ADC analog input channel. */
s626_debi_write(dev, S626_LP_ISEL, adc_spec); /* Select channel. */
for (n = 0; n < insn->n; n++) {
/* Delay 10 microseconds for analog input settling. */
usleep_range(10, 20);
/* Start ADC by pulsing GPIO1 low */
gpio_image = readl(dev->mmio + S626_P_GPIO);
/* Assert ADC Start command */
writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
/* and stretch it out */
writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
/* Negate ADC Start command */
writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
/*
* Wait for ADC to complete (GPIO2 is asserted high when
* ADC not busy) and for data from previous conversion to
* shift into FB BUFFER 1 register.
*/
/* Wait for ADC done */
ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
if (ret)
return ret;
/* Fetch ADC data */
if (n != 0) {
tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
data[n - 1] = s626_ai_reg_to_uint(tmp);
}
/*
* Allow the ADC to stabilize for 4 microseconds before
* starting the next (final) conversion. This delay is
* necessary to allow sufficient time between last
* conversion finished and the start of the next
* conversion. Without this delay, the last conversion's
* data value is sometimes set to the previous
* conversion's data value.
*/
udelay(4);
}
/*
* Start a dummy conversion to cause the data from the
* previous conversion to be shifted in.
*/
gpio_image = readl(dev->mmio + S626_P_GPIO);
/* Assert ADC Start command */
writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
/* and stretch it out */
writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
/* Negate ADC Start command */
writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
/* Wait for the data to arrive in FB BUFFER 1 register. */
/* Wait for ADC done */
ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
if (ret)
return ret;
/* Fetch ADC data from audio interface's input shift register. */
/* Fetch ADC data */
if (n != 0) {
tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
data[n - 1] = s626_ai_reg_to_uint(tmp);
}
return n;
}
static int s626_ai_load_polllist(u8 *ppl, struct comedi_cmd *cmd)
{
int n;
for (n = 0; n < cmd->chanlist_len; n++) {
if (CR_RANGE(cmd->chanlist[n]) == 0)
ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
else
ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
}
if (n != 0)
ppl[n - 1] |= S626_EOPL;
return n;
}
static int s626_ai_inttrig(struct comedi_device *dev,
struct comedi_subdevice *s,
unsigned int trig_num)
{
struct comedi_cmd *cmd = &s->async->cmd;
if (trig_num != cmd->start_arg)
return -EINVAL;
/* Start executing the RPS program */
s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
s->async->inttrig = NULL;
return 1;
}
/*
* This function doesn't require a particular form, this is just what
* happens to be used in some of the drivers. It should convert ns
* nanoseconds to a counter value suitable for programming the device.
* Also, it should adjust ns so that it cooresponds to the actual time
* that the device will use.
*/
static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags)
{
int divider, base;
base = 500; /* 2MHz internal clock */
switch (flags & CMDF_ROUND_MASK) {
case CMDF_ROUND_NEAREST:
default:
divider = DIV_ROUND_CLOSEST(*nanosec, base);
break;
case CMDF_ROUND_DOWN:
divider = (*nanosec) / base;
break;
case CMDF_ROUND_UP:
divider = DIV_ROUND_UP(*nanosec, base);
break;
}
*nanosec = base * divider;
return divider - 1;
}
static void s626_timer_load(struct comedi_device *dev,
unsigned int chan, int tick)
{
u16 setup =
/* Preload upon index. */
S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
/* Disable hardware index. */
S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
/* Operating mode is Timer. */
S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
/* Count direction is Down. */
S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
/* Clock multiplier is 1x. */
S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
/* Enabled by index */
S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
u16 value_latchsrc = S626_LATCHSRC_A_INDXA;
/* uint16_t enab = S626_CLKENAB_ALWAYS; */
s626_set_mode(dev, chan, setup, false);
/* Set the preload register */
s626_preload(dev, chan, tick);
/*
* Software index pulse forces the preload register to load
* into the counter
*/
s626_set_load_trig(dev, chan, 0);
s626_pulse_index(dev, chan);
/* set reload on counter overflow */
s626_set_load_trig(dev, chan, 1);
/* set interrupt on overflow */
s626_set_int_src(dev, chan, S626_INTSRC_OVER);
s626_set_latch_source(dev, chan, value_latchsrc);
/* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */
}
/* TO COMPLETE */
static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct s626_private *devpriv = dev->private;
u8 ppl[16];
struct comedi_cmd *cmd = &s->async->cmd;
int tick;
if (devpriv->ai_cmd_running) {
dev_err(dev->class_dev,
"%s: Another ai_cmd is running\n", __func__);
return -EBUSY;
}
/* disable interrupt */
writel(0, dev->mmio + S626_P_IER);
/* clear interrupt request */
writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR);
/* clear any pending interrupt */
s626_dio_clear_irq(dev);
/* s626_enc_clear_irq(dev); */
/* reset ai_cmd_running flag */
devpriv->ai_cmd_running = 0;
s626_ai_load_polllist(ppl, cmd);
devpriv->ai_cmd_running = 1;
devpriv->ai_convert_count = 0;
switch (cmd->scan_begin_src) {
case TRIG_FOLLOW:
break;
case TRIG_TIMER:
/*
* set a counter to generate adc trigger at scan_begin_arg
* interval
*/
tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags);
/* load timer value and enable interrupt */
s626_timer_load(dev, 5, tick);
s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
break;
case TRIG_EXT:
/* set the digital line and interrupt for scan trigger */
if (cmd->start_src != TRIG_EXT)
s626_dio_set_irq(dev, cmd->scan_begin_arg);
break;
}
switch (cmd->convert_src) {
case TRIG_NOW:
break;
case TRIG_TIMER:
/*
* set a counter to generate adc trigger at convert_arg
* interval
*/
tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags);
/* load timer value and enable interrupt */
s626_timer_load(dev, 4, tick);
s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
break;
case TRIG_EXT:
/* set the digital line and interrupt for convert trigger */
if (cmd->scan_begin_src != TRIG_EXT &&
cmd->start_src == TRIG_EXT)
s626_dio_set_irq(dev, cmd->convert_arg);
break;
}
s626_reset_adc(dev, ppl);
switch (cmd->start_src) {
case TRIG_NOW:
/* Trigger ADC scan loop start */
/* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
/* Start executing the RPS program */
s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
s->async->inttrig = NULL;
break;
case TRIG_EXT:
/* configure DIO channel for acquisition trigger */
s626_dio_set_irq(dev, cmd->start_arg);
s->async->inttrig = NULL;
break;
case TRIG_INT:
s->async->inttrig = s626_ai_inttrig;
break;
}
/* enable interrupt */
writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER);
return 0;
}
static int s626_ai_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_cmd *cmd)
{
int err = 0;
unsigned int arg;
/* Step 1 : check if triggers are trivially valid */
err |= comedi_check_trigger_src(&cmd->start_src,
TRIG_NOW | TRIG_INT | TRIG_EXT);
err |= comedi_check_trigger_src(&cmd->scan_begin_src,
TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
err |= comedi_check_trigger_src(&cmd->convert_src,
TRIG_TIMER | TRIG_EXT | TRIG_NOW);
err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
if (err)
return 1;
/* Step 2a : make sure trigger sources are unique */
err |= comedi_check_trigger_is_unique(cmd->start_src);
err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
err |= comedi_check_trigger_is_unique(cmd->convert_src);
err |= comedi_check_trigger_is_unique(cmd->stop_src);
/* Step 2b : and mutually compatible */
if (err)
return 2;
/* Step 3: check if arguments are trivially valid */
switch (cmd->start_src) {
case TRIG_NOW:
case TRIG_INT:
err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
break;
case TRIG_EXT:
err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39);
break;
}
if (cmd->scan_begin_src == TRIG_EXT)
err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
if (cmd->convert_src == TRIG_EXT)
err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39);
#define S626_MAX_SPEED 200000 /* in nanoseconds */
#define S626_MIN_SPEED 2000000000 /* in nanoseconds */
if (cmd->scan_begin_src == TRIG_TIMER) {
err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
S626_MAX_SPEED);
err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
S626_MIN_SPEED);
} else {
/*
* external trigger
* should be level/edge, hi/lo specification here
* should specify multiple external triggers
* err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
*/
}
if (cmd->convert_src == TRIG_TIMER) {
err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
S626_MAX_SPEED);
err |= comedi_check_trigger_arg_max(&cmd->convert_arg,
S626_MIN_SPEED);
} else {
/*
* external trigger - see above
* err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
*/
}
err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
cmd->chanlist_len);
if (cmd->stop_src == TRIG_COUNT)
err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
else /* TRIG_NONE */
err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
if (err)
return 3;
/* step 4: fix up any arguments */
if (cmd->scan_begin_src == TRIG_TIMER) {
arg = cmd->scan_begin_arg;
s626_ns_to_timer(&arg, cmd->flags);
err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
}
if (cmd->convert_src == TRIG_TIMER) {
arg = cmd->convert_arg;
s626_ns_to_timer(&arg, cmd->flags);
err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
if (cmd->scan_begin_src == TRIG_TIMER) {
arg = cmd->convert_arg * cmd->scan_end_arg;
err |= comedi_check_trigger_arg_min(
&cmd->scan_begin_arg, arg);
}
}
if (err)
return 4;
return 0;
}
static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct s626_private *devpriv = dev->private;
/* Stop RPS program in case it is currently running */
s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
/* disable master interrupt */
writel(0, dev->mmio + S626_P_IER);
devpriv->ai_cmd_running = 0;
return 0;
}
static int s626_ao_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
unsigned int chan = CR_CHAN(insn->chanspec);
int i;
for (i = 0; i < insn->n; i++) {
s16 dacdata = (s16)data[i];
int ret;
dacdata -= (0x1fff);
ret = s626_set_dac(dev, chan, dacdata);
if (ret)
return ret;
s->readback[chan] = data[i];
}
return insn->n;
}
/* *************** DIGITAL I/O FUNCTIONS *************** */
/*
* All DIO functions address a group of DIO channels by means of
* "group" argument. group may be 0, 1 or 2, which correspond to DIO
* ports A, B and C, respectively.
*/
static void s626_dio_init(struct comedi_device *dev)
{
u16 group;
/* Prepare to treat writes to WRCapSel as capture disables. */
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
/* For each group of sixteen channels ... */
for (group = 0; group < S626_DIO_BANKS; group++) {
/* Disable all interrupts */
s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
/* Disable all event captures */
s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
/* Init all DIOs to default edge polarity */
s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
/* Program all outputs to inactive state */
s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
}
}
static int s626_dio_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
unsigned long group = (unsigned long)s->private;
if (comedi_dio_update_state(s, data))
s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
return insn->n;
}
static int s626_dio_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
unsigned long group = (unsigned long)s->private;
int ret;
ret = comedi_dio_insn_config(dev, s, insn, data, 0);
if (ret)
return ret;
s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
return insn->n;
}
/*
* Now this function initializes the value of the counter (data[0])
* and set the subdevice. To complete with trigger and interrupt
* configuration.
*
* FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
* what is being configured, but this function appears to be using data[0]
* as a variable.
*/
static int s626_enc_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
unsigned int chan = CR_CHAN(insn->chanspec);
u16 setup =
/* Preload upon index. */
S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
/* Disable hardware index. */
S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
/* Operating mode is Counter. */
S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
/* Active high clock. */
S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
/* Clock multiplier is 1x. */
S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
/* Enabled by index */
S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
/* uint16_t disable_int_src = true; */
/* uint32_t Preloadvalue; //Counter initial value */
u16 value_latchsrc = S626_LATCHSRC_AB_READ;
u16 enab = S626_CLKENAB_ALWAYS;
/* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
s626_set_mode(dev, chan, setup, true);
s626_preload(dev, chan, data[0]);
s626_pulse_index(dev, chan);
s626_set_latch_source(dev, chan, value_latchsrc);
s626_set_enable(dev, chan, (enab != 0));
return insn->n;
}
static int s626_enc_insn_read(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
unsigned int chan = CR_CHAN(insn->chanspec);
u16 cntr_latch_reg = S626_LP_CNTR(chan);
int i;
for (i = 0; i < insn->n; i++) {
unsigned int val;
/*
* Read the counter's output latch LSW/MSW.
* Latches on LSW read.
*/
val = s626_debi_read(dev, cntr_latch_reg);
val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16);
data[i] = val;
}
return insn->n;
}
static int s626_enc_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
unsigned int chan = CR_CHAN(insn->chanspec);
/* Set the preload register */
s626_preload(dev, chan, data[0]);
/*
* Software index pulse forces the preload register to load
* into the counter
*/
s626_set_load_trig(dev, chan, 0);
s626_pulse_index(dev, chan);
s626_set_load_trig(dev, chan, 2);
return 1;
}
static void s626_write_misc2(struct comedi_device *dev, u16 new_image)
{
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
s626_debi_write(dev, S626_LP_WRMISC2, new_image);
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
}
static void s626_counters_init(struct comedi_device *dev)
{
int chan;
u16 setup =
/* Preload upon index. */
S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
/* Disable hardware index. */
S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
/* Operating mode is counter. */
S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
/* Active high clock. */
S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
/* Clock multiplier is 1x. */
S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
/* Enabled by index */
S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
/*
* Disable all counter interrupts and clear any captured counter events.
*/
for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
s626_set_mode(dev, chan, setup, true);
s626_set_int_src(dev, chan, 0);
s626_reset_cap_flags(dev, chan);
s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS);
}
}
static int s626_allocate_dma_buffers(struct comedi_device *dev)
{
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
struct s626_private *devpriv = dev->private;
void *addr;
dma_addr_t appdma;
addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma,
GFP_KERNEL);
if (!addr)
return -ENOMEM;
devpriv->ana_buf.logical_base = addr;
devpriv->ana_buf.physical_base = appdma;
addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma,
GFP_KERNEL);
if (!addr)
return -ENOMEM;
devpriv->rps_buf.logical_base = addr;
devpriv->rps_buf.physical_base = appdma;
return 0;
}
static void s626_free_dma_buffers(struct comedi_device *dev)
{
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
struct s626_private *devpriv = dev->private;
if (!devpriv)
return;
if (devpriv->rps_buf.logical_base)
dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE,
devpriv->rps_buf.logical_base,
devpriv->rps_buf.physical_base);
if (devpriv->ana_buf.logical_base)
dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE,
devpriv->ana_buf.logical_base,
devpriv->ana_buf.physical_base);
}
static int s626_initialize(struct comedi_device *dev)
{
struct s626_private *devpriv = dev->private;
dma_addr_t phys_buf;
u16 chan;
int i;
int ret;
/* Enable DEBI and audio pins, enable I2C interface */
s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
S626_P_MC1);
/*
* Configure DEBI operating mode
*
* Local bus is 16 bits wide
* Declare DEBI transfer timeout interval
* Set up byte lane steering
* Intel-compatible local bus (DEBI never times out)
*/
writel(S626_DEBI_CFG_SLAVE16 |
(S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG);
/* Disable MMU paging */
writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE);
/* Init GPIO so that ADC Start* is negated */
writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
/* I2C device address for onboard eeprom (revb) */
devpriv->i2c_adrs = 0xA0;
/*
* Issue an I2C ABORT command to halt any I2C
* operation in progress and reset BUSY flag.
*/
writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
dev->mmio + S626_P_I2CSTAT);
s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
if (ret)
return ret;
/*
* Per SAA7146 data sheet, write to STATUS
* reg twice to reset all I2C error flags.
*/
for (i = 0; i < 2; i++) {
writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT);
s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
ret = comedi_timeout(dev, NULL,
NULL, s626_i2c_handshake_eoc, 0);
if (ret)
return ret;
}
/*
* Init audio interface functional attributes: set DAC/ADC
* serial clock rates, invert DAC serial clock so that
* DAC data setup times are satisfied, enable DAC serial
* clock out.
*/
writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2);
/*
* Set up TSL1 slot list, which is used to control the
* accumulation of ADC data: S626_RSD1 = shift data in on SD1.
* S626_SIB_A1 = store data uint8_t at next available location
* in FB BUFFER1 register.
*/
writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1);
writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
dev->mmio + S626_P_TSL1 + 4);
/* Enable TSL1 slot list so that it executes all the time */
writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1);
/*
* Initialize RPS registers used for ADC
*/
/* Physical start of RPS program */
writel((u32)devpriv->rps_buf.physical_base,
dev->mmio + S626_P_RPSADDR1);
/* RPS program performs no explicit mem writes */
writel(0, dev->mmio + S626_P_RPSPAGE1);
/* Disable RPS timeouts */
writel(0, dev->mmio + S626_P_RPS1_TOUT);
#if 0
/*
* SAA7146 BUG WORKAROUND
*
* Initialize SAA7146 ADC interface to a known state by
* invoking ADCs until FB BUFFER 1 register shows that it
* is correctly receiving ADC data. This is necessary
* because the SAA7146 ADC interface does not start up in
* a defined state after a PCI reset.
*/
{
struct comedi_subdevice *s = dev->read_subdev;
u8 poll_list;
u16 adc_data;
u16 start_val;
u16 index;
unsigned int data[16];
/* Create a simple polling list for analog input channel 0 */
poll_list = S626_EOPL;
s626_reset_adc(dev, &poll_list);
/* Get initial ADC value */
s626_ai_rinsn(dev, s, NULL, data);
start_val = data[0];
/*
* VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
* EXECUTION.
*
* Invoke ADCs until the new ADC value differs from the initial
* value or a timeout occurs. The timeout protects against the
* possibility that the driver is restarting and the ADC data is
* a fixed value resulting from the applied ADC analog input
* being unusually quiet or at the rail.
*/
for (index = 0; index < 500; index++) {
s626_ai_rinsn(dev, s, NULL, data);
adc_data = data[0];
if (adc_data != start_val)
break;
}
}
#endif /* SAA7146 BUG WORKAROUND */
/*
* Initialize the DAC interface
*/
/*
* Init Audio2's output DMAC attributes:
* burst length = 1 DWORD
* threshold = 1 DWORD.
*/
writel(0, dev->mmio + S626_P_PCI_BT_A);
/*
* Init Audio2's output DMA physical addresses. The protection
* address is set to 1 DWORD past the base address so that a
* single DWORD will be transferred each time a DMA transfer is
* enabled.
*/
phys_buf = devpriv->ana_buf.physical_base +
(S626_DAC_WDMABUF_OS * sizeof(u32));
writel((u32)phys_buf, dev->mmio + S626_P_BASEA2_OUT);
writel((u32)(phys_buf + sizeof(u32)),
dev->mmio + S626_P_PROTA2_OUT);
/*
* Cache Audio2's output DMA buffer logical address. This is
* where DAC data is buffered for A2 output DMA transfers.
*/
devpriv->dac_wbuf = (u32 *)devpriv->ana_buf.logical_base +
S626_DAC_WDMABUF_OS;
/*
* Audio2's output channels does not use paging. The
* protection violation handling bit is set so that the
* DMAC will automatically halt and its PCI address pointer
* will be reset when the protection address is reached.
*/
writel(8, dev->mmio + S626_P_PAGEA2_OUT);
/*
* Initialize time slot list 2 (TSL2), which is used to control
* the clock generation for and serialization of data to be sent
* to the DAC devices. Slot 0 is a NOP that is used to trap TSL
* execution; this permits other slots to be safely modified
* without first turning off the TSL sequencer (which is
* apparently impossible to do). Also, SD3 (which is driven by a
* pull-up resistor) is shifted in and stored to the MSB of
* FB_BUFFER2 to be used as evidence that the slot sequence has
* not yet finished executing.
*/
/* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
dev->mmio + S626_VECTPORT(0));
/*
* Initialize slot 1, which is constant. Slot 1 causes a
* DWORD to be transferred from audio channel 2's output FIFO
* to the FIFO's output buffer so that it can be serialized
* and sent to the DAC during subsequent slots. All remaining
* slots are dynamically populated as required by the target
* DAC device.
*/
/* Slot 1: Fetch DWORD from Audio2's output FIFO */
writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1));
/* Start DAC's audio interface (TSL2) running */
writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1);
/*
* Init Trim DACs to calibrated values. Do it twice because the
* SAA7146 audio channel does not always reset properly and
* sometimes causes the first few TrimDAC writes to malfunction.
*/
s626_load_trim_dacs(dev);
ret = s626_load_trim_dacs(dev);
if (ret)
return ret;
/*
* Manually init all gate array hardware in case this is a soft
* reset (we have no way of determining whether this is a warm
* or cold start). This is necessary because the gate array will
* reset only in response to a PCI hard reset; there is no soft
* reset function.
*/
/*
* Init all DAC outputs to 0V and init all DAC setpoint and
* polarity images.
*/
for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
ret = s626_set_dac(dev, chan, 0);
if (ret)
return ret;
}
/* Init counters */
s626_counters_init(dev);
/*
* Without modifying the state of the Battery Backup enab, disable
* the watchdog timer, set DIO channels 0-5 to operate in the
* standard DIO (vs. counter overflow) mode, disable the battery
* charger, and reset the watchdog interval selector to zero.
*/
s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
S626_MISC2_BATT_ENABLE));
/* Initialize the digital I/O subsystem */
s626_dio_init(dev);
return 0;
}
static int s626_auto_attach(struct comedi_device *dev,
unsigned long context_unused)
{
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
struct s626_private *devpriv;
struct comedi_subdevice *s;
int ret;
devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
if (!devpriv)
return -ENOMEM;
ret = comedi_pci_enable(dev);
if (ret)
return ret;
dev->mmio = pci_ioremap_bar(pcidev, 0);
if (!dev->mmio)
return -ENOMEM;
/* disable master interrupt */
writel(0, dev->mmio + S626_P_IER);
/* soft reset */
writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1);
/* DMA FIXME DMA// */
ret = s626_allocate_dma_buffers(dev);
if (ret)
return ret;
if (pcidev->irq) {
ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
dev->board_name, dev);
if (ret == 0)
dev->irq = pcidev->irq;
}
ret = comedi_alloc_subdevices(dev, 6);
if (ret)
return ret;
s = &dev->subdevices[0];
/* analog input subdevice */
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_DIFF;
s->n_chan = S626_ADC_CHANNELS;
s->maxdata = 0x3fff;
s->range_table = &s626_range_table;
s->len_chanlist = S626_ADC_CHANNELS;
s->insn_read = s626_ai_insn_read;
if (dev->irq) {
dev->read_subdev = s;
s->subdev_flags |= SDF_CMD_READ;
s->do_cmd = s626_ai_cmd;
s->do_cmdtest = s626_ai_cmdtest;
s->cancel = s626_ai_cancel;
}
s = &dev->subdevices[1];
/* analog output subdevice */
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = S626_DAC_CHANNELS;
s->maxdata = 0x3fff;
s->range_table = &range_bipolar10;
s->insn_write = s626_ao_insn_write;
ret = comedi_alloc_subdev_readback(s);
if (ret)
return ret;
s = &dev->subdevices[2];
/* digital I/O subdevice */
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = 16;
s->maxdata = 1;
s->io_bits = 0xffff;
s->private = (void *)0; /* DIO group 0 */
s->range_table = &range_digital;
s->insn_config = s626_dio_insn_config;
s->insn_bits = s626_dio_insn_bits;
s = &dev->subdevices[3];
/* digital I/O subdevice */
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = 16;
s->maxdata = 1;
s->io_bits = 0xffff;
s->private = (void *)1; /* DIO group 1 */
s->range_table = &range_digital;
s->insn_config = s626_dio_insn_config;
s->insn_bits = s626_dio_insn_bits;
s = &dev->subdevices[4];
/* digital I/O subdevice */
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = 16;
s->maxdata = 1;
s->io_bits = 0xffff;
s->private = (void *)2; /* DIO group 2 */
s->range_table = &range_digital;
s->insn_config = s626_dio_insn_config;
s->insn_bits = s626_dio_insn_bits;
s = &dev->subdevices[5];
/* encoder (counter) subdevice */
s->type = COMEDI_SUBD_COUNTER;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
s->n_chan = S626_ENCODER_CHANNELS;
s->maxdata = 0xffffff;
s->range_table = &range_unknown;
s->insn_config = s626_enc_insn_config;
s->insn_read = s626_enc_insn_read;
s->insn_write = s626_enc_insn_write;
return s626_initialize(dev);
}
static void s626_detach(struct comedi_device *dev)
{
struct s626_private *devpriv = dev->private;
if (devpriv) {
/* stop ai_command */
devpriv->ai_cmd_running = 0;
if (dev->mmio) {
/* interrupt mask */
/* Disable master interrupt */
writel(0, dev->mmio + S626_P_IER);
/* Clear board's IRQ status flag */
writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
dev->mmio + S626_P_ISR);
/* Disable the watchdog timer and battery charger. */
s626_write_misc2(dev, 0);
/* Close all interfaces on 7146 device */
writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1);
writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1);
}
}
comedi_pci_detach(dev);
s626_free_dma_buffers(dev);
}
static struct comedi_driver s626_driver = {
.driver_name = "s626",
.module = THIS_MODULE,
.auto_attach = s626_auto_attach,
.detach = s626_detach,
};
static int s626_pci_probe(struct pci_dev *dev,
const struct pci_device_id *id)
{
return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
}
/*
* For devices with vendor:device id == 0x1131:0x7146 you must specify
* also subvendor:subdevice ids, because otherwise it will conflict with
* Philips SAA7146 media/dvb based cards.
*/
static const struct pci_device_id s626_pci_table[] = {
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
0x6000, 0x0272) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, s626_pci_table);
static struct pci_driver s626_pci_driver = {
.name = "s626",
.id_table = s626_pci_table,
.probe = s626_pci_probe,
.remove = comedi_pci_auto_unconfig,
};
module_comedi_pci_driver(s626_driver, s626_pci_driver);
MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
MODULE_LICENSE("GPL");