mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 14:11:52 +00:00
df0e68c1e9
Move the main COMEDI driver headers out of "drivers/comedi/" into new directory "include/linux/comedi/". These are "comedidev.h", "comedilib.h", "comedi_pci.h", "comedi_pcmcia.h", and "comedi_usb.h". Additionally, move the user-space API header "comedi.h" into "include/uapi/linux/" and add "WITH Linux-syscall-note" to its SPDX-License-Identifier. Update the "COMEDI DRIVERS" section of the MAINTAINERS file to account for these changes. Signed-off-by: Ian Abbott <abbotti@mev.co.uk> Link: https://lore.kernel.org/r/20211117120604.117740-2-abbotti@mev.co.uk Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2605 lines
75 KiB
C
2605 lines
75 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* comedi/drivers/s626.c
|
|
* Sensoray s626 Comedi driver
|
|
*
|
|
* COMEDI - Linux Control and Measurement Device Interface
|
|
* Copyright (C) 2000 David A. Schleef <ds@schleef.org>
|
|
*
|
|
* Based on Sensoray Model 626 Linux driver Version 0.2
|
|
* Copyright (C) 2002-2004 Sensoray Co., Inc.
|
|
*/
|
|
|
|
/*
|
|
* Driver: s626
|
|
* Description: Sensoray 626 driver
|
|
* Devices: [Sensoray] 626 (s626)
|
|
* Authors: Gianluca Palli <gpalli@deis.unibo.it>,
|
|
* Updated: Fri, 15 Feb 2008 10:28:42 +0000
|
|
* Status: experimental
|
|
|
|
* Configuration options: not applicable, uses PCI auto config
|
|
|
|
* INSN_CONFIG instructions:
|
|
* analog input:
|
|
* none
|
|
*
|
|
* analog output:
|
|
* none
|
|
*
|
|
* digital channel:
|
|
* s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
|
|
* supported configuration options:
|
|
* INSN_CONFIG_DIO_QUERY
|
|
* COMEDI_INPUT
|
|
* COMEDI_OUTPUT
|
|
*
|
|
* encoder:
|
|
* Every channel must be configured before reading.
|
|
*
|
|
* Example code
|
|
*
|
|
* insn.insn=INSN_CONFIG; //configuration instruction
|
|
* insn.n=1; //number of operation (must be 1)
|
|
* insn.data=&initialvalue; //initial value loaded into encoder
|
|
* //during configuration
|
|
* insn.subdev=5; //encoder subdevice
|
|
* insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
|
|
* //to configure
|
|
*
|
|
* comedi_do_insn(cf,&insn); //executing configuration
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/comedi/comedi_pci.h>
|
|
|
|
#include "s626.h"
|
|
|
|
struct s626_buffer_dma {
|
|
dma_addr_t physical_base;
|
|
void *logical_base;
|
|
};
|
|
|
|
/**
|
|
* struct s626_private - Working data for s626 driver.
|
|
* @ai_cmd_running: non-zero if ai_cmd is running.
|
|
* @ai_sample_timer: time between samples in units of the timer.
|
|
* @ai_convert_count: conversion counter.
|
|
* @ai_convert_timer: time between conversion in units of the timer.
|
|
* @counter_int_enabs: counter interrupt enable mask for MISC2 register.
|
|
* @adc_items: number of items in ADC poll list.
|
|
* @rps_buf: DMA buffer used to hold ADC (RPS1) program.
|
|
* @ana_buf: DMA buffer used to receive ADC data and hold DAC data.
|
|
* @dac_wbuf: pointer to logical adrs of DMA buffer used to hold DAC data.
|
|
* @dacpol: image of DAC polarity register.
|
|
* @trim_setpoint: images of TrimDAC setpoints.
|
|
* @i2c_adrs: I2C device address for onboard EEPROM (board rev dependent)
|
|
*/
|
|
struct s626_private {
|
|
u8 ai_cmd_running;
|
|
unsigned int ai_sample_timer;
|
|
int ai_convert_count;
|
|
unsigned int ai_convert_timer;
|
|
u16 counter_int_enabs;
|
|
u8 adc_items;
|
|
struct s626_buffer_dma rps_buf;
|
|
struct s626_buffer_dma ana_buf;
|
|
u32 *dac_wbuf;
|
|
u16 dacpol;
|
|
u8 trim_setpoint[12];
|
|
u32 i2c_adrs;
|
|
};
|
|
|
|
/* Counter overflow/index event flag masks for RDMISC2. */
|
|
#define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
|
|
#define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
|
|
|
|
/*
|
|
* Enable/disable a function or test status bit(s) that are accessed
|
|
* through Main Control Registers 1 or 2.
|
|
*/
|
|
static void s626_mc_enable(struct comedi_device *dev,
|
|
unsigned int cmd, unsigned int reg)
|
|
{
|
|
unsigned int val = (cmd << 16) | cmd;
|
|
|
|
writel(val, dev->mmio + reg);
|
|
}
|
|
|
|
static void s626_mc_disable(struct comedi_device *dev,
|
|
unsigned int cmd, unsigned int reg)
|
|
{
|
|
writel(cmd << 16, dev->mmio + reg);
|
|
}
|
|
|
|
static bool s626_mc_test(struct comedi_device *dev,
|
|
unsigned int cmd, unsigned int reg)
|
|
{
|
|
unsigned int val;
|
|
|
|
val = readl(dev->mmio + reg);
|
|
|
|
return (val & cmd) ? true : false;
|
|
}
|
|
|
|
#define S626_BUGFIX_STREG(REGADRS) ((REGADRS) - 4)
|
|
|
|
/* Write a time slot control record to TSL2. */
|
|
#define S626_VECTPORT(VECTNUM) (S626_P_TSL2 + ((VECTNUM) << 2))
|
|
|
|
static const struct comedi_lrange s626_range_table = {
|
|
2, {
|
|
BIP_RANGE(5),
|
|
BIP_RANGE(10)
|
|
}
|
|
};
|
|
|
|
/*
|
|
* Execute a DEBI transfer. This must be called from within a critical section.
|
|
*/
|
|
static void s626_debi_transfer(struct comedi_device *dev)
|
|
{
|
|
static const int timeout = 10000;
|
|
int i;
|
|
|
|
/* Initiate upload of shadow RAM to DEBI control register */
|
|
s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
|
|
|
|
/*
|
|
* Wait for completion of upload from shadow RAM to
|
|
* DEBI control register.
|
|
*/
|
|
for (i = 0; i < timeout; i++) {
|
|
if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
|
|
break;
|
|
udelay(1);
|
|
}
|
|
if (i == timeout)
|
|
dev_err(dev->class_dev,
|
|
"Timeout while uploading to DEBI control register\n");
|
|
|
|
/* Wait until DEBI transfer is done */
|
|
for (i = 0; i < timeout; i++) {
|
|
if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
|
|
break;
|
|
udelay(1);
|
|
}
|
|
if (i == timeout)
|
|
dev_err(dev->class_dev, "DEBI transfer timeout\n");
|
|
}
|
|
|
|
/*
|
|
* Read a value from a gate array register.
|
|
*/
|
|
static u16 s626_debi_read(struct comedi_device *dev, u16 addr)
|
|
{
|
|
/* Set up DEBI control register value in shadow RAM */
|
|
writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
|
|
|
|
/* Execute the DEBI transfer. */
|
|
s626_debi_transfer(dev);
|
|
|
|
return readl(dev->mmio + S626_P_DEBIAD);
|
|
}
|
|
|
|
/*
|
|
* Write a value to a gate array register.
|
|
*/
|
|
static void s626_debi_write(struct comedi_device *dev, u16 addr,
|
|
u16 wdata)
|
|
{
|
|
/* Set up DEBI control register value in shadow RAM */
|
|
writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
|
|
writel(wdata, dev->mmio + S626_P_DEBIAD);
|
|
|
|
/* Execute the DEBI transfer. */
|
|
s626_debi_transfer(dev);
|
|
}
|
|
|
|
/*
|
|
* Replace the specified bits in a gate array register. Imports: mask
|
|
* specifies bits that are to be preserved, wdata is new value to be
|
|
* or'd with the masked original.
|
|
*/
|
|
static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
|
|
unsigned int mask, unsigned int wdata)
|
|
{
|
|
unsigned int val;
|
|
|
|
addr &= 0xffff;
|
|
writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
|
|
s626_debi_transfer(dev);
|
|
|
|
writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
|
|
val = readl(dev->mmio + S626_P_DEBIAD);
|
|
val &= mask;
|
|
val |= wdata;
|
|
writel(val & 0xffff, dev->mmio + S626_P_DEBIAD);
|
|
s626_debi_transfer(dev);
|
|
}
|
|
|
|
/* ************** EEPROM ACCESS FUNCTIONS ************** */
|
|
|
|
static int s626_i2c_handshake_eoc(struct comedi_device *dev,
|
|
struct comedi_subdevice *s,
|
|
struct comedi_insn *insn,
|
|
unsigned long context)
|
|
{
|
|
bool status;
|
|
|
|
status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
|
|
if (status)
|
|
return 0;
|
|
return -EBUSY;
|
|
}
|
|
|
|
static int s626_i2c_handshake(struct comedi_device *dev, u32 val)
|
|
{
|
|
unsigned int ctrl;
|
|
int ret;
|
|
|
|
/* Write I2C command to I2C Transfer Control shadow register */
|
|
writel(val, dev->mmio + S626_P_I2CCTRL);
|
|
|
|
/*
|
|
* Upload I2C shadow registers into working registers and
|
|
* wait for upload confirmation.
|
|
*/
|
|
s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
|
|
ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Wait until I2C bus transfer is finished or an error occurs */
|
|
do {
|
|
ctrl = readl(dev->mmio + S626_P_I2CCTRL);
|
|
} while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
|
|
|
|
/* Return non-zero if I2C error occurred */
|
|
return ctrl & S626_I2C_ERR;
|
|
}
|
|
|
|
/* Read u8 from EEPROM. */
|
|
static u8 s626_i2c_read(struct comedi_device *dev, u8 addr)
|
|
{
|
|
struct s626_private *devpriv = dev->private;
|
|
|
|
/*
|
|
* Send EEPROM target address:
|
|
* Byte2 = I2C command: write to I2C EEPROM device.
|
|
* Byte1 = EEPROM internal target address.
|
|
* Byte0 = Not sent.
|
|
*/
|
|
if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
|
|
devpriv->i2c_adrs) |
|
|
S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
|
|
S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
|
|
/* Abort function and declare error if handshake failed. */
|
|
return 0;
|
|
|
|
/*
|
|
* Execute EEPROM read:
|
|
* Byte2 = I2C command: read from I2C EEPROM device.
|
|
* Byte1 receives uint8_t from EEPROM.
|
|
* Byte0 = Not sent.
|
|
*/
|
|
if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
|
|
(devpriv->i2c_adrs | 1)) |
|
|
S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
|
|
S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
|
|
/* Abort function and declare error if handshake failed. */
|
|
return 0;
|
|
|
|
return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
|
|
}
|
|
|
|
/* *********** DAC FUNCTIONS *********** */
|
|
|
|
/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
|
|
static const u8 s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
|
|
|
|
/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
|
|
static const u8 s626_trimadrs[] = {
|
|
0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
|
|
};
|
|
|
|
enum {
|
|
s626_send_dac_wait_not_mc1_a2out,
|
|
s626_send_dac_wait_ssr_af2_out,
|
|
s626_send_dac_wait_fb_buffer2_msb_00,
|
|
s626_send_dac_wait_fb_buffer2_msb_ff
|
|
};
|
|
|
|
static int s626_send_dac_eoc(struct comedi_device *dev,
|
|
struct comedi_subdevice *s,
|
|
struct comedi_insn *insn,
|
|
unsigned long context)
|
|
{
|
|
unsigned int status;
|
|
|
|
switch (context) {
|
|
case s626_send_dac_wait_not_mc1_a2out:
|
|
status = readl(dev->mmio + S626_P_MC1);
|
|
if (!(status & S626_MC1_A2OUT))
|
|
return 0;
|
|
break;
|
|
case s626_send_dac_wait_ssr_af2_out:
|
|
status = readl(dev->mmio + S626_P_SSR);
|
|
if (status & S626_SSR_AF2_OUT)
|
|
return 0;
|
|
break;
|
|
case s626_send_dac_wait_fb_buffer2_msb_00:
|
|
status = readl(dev->mmio + S626_P_FB_BUFFER2);
|
|
if (!(status & 0xff000000))
|
|
return 0;
|
|
break;
|
|
case s626_send_dac_wait_fb_buffer2_msb_ff:
|
|
status = readl(dev->mmio + S626_P_FB_BUFFER2);
|
|
if (status & 0xff000000)
|
|
return 0;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Private helper function: Transmit serial data to DAC via Audio
|
|
* channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
|
|
* dacpol contains valid target image.
|
|
*/
|
|
static int s626_send_dac(struct comedi_device *dev, u32 val)
|
|
{
|
|
struct s626_private *devpriv = dev->private;
|
|
int ret;
|
|
|
|
/* START THE SERIAL CLOCK RUNNING ------------- */
|
|
|
|
/*
|
|
* Assert DAC polarity control and enable gating of DAC serial clock
|
|
* and audio bit stream signals. At this point in time we must be
|
|
* assured of being in time slot 0. If we are not in slot 0, the
|
|
* serial clock and audio stream signals will be disabled; this is
|
|
* because the following s626_debi_write statement (which enables
|
|
* signals to be passed through the gate array) would execute before
|
|
* the trailing edge of WS1/WS3 (which turns off the signals), thus
|
|
* causing the signals to be inactive during the DAC write.
|
|
*/
|
|
s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
|
|
|
|
/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
|
|
|
|
/* Copy DAC setpoint value to DAC's output DMA buffer. */
|
|
/* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */
|
|
*devpriv->dac_wbuf = val;
|
|
|
|
/*
|
|
* Enable the output DMA transfer. This will cause the DMAC to copy
|
|
* the DAC's data value to A2's output FIFO. The DMA transfer will
|
|
* then immediately terminate because the protection address is
|
|
* reached upon transfer of the first DWORD value.
|
|
*/
|
|
s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
|
|
|
|
/* While the DMA transfer is executing ... */
|
|
|
|
/*
|
|
* Reset Audio2 output FIFO's underflow flag (along with any
|
|
* other FIFO underflow/overflow flags). When set, this flag
|
|
* will indicate that we have emerged from slot 0.
|
|
*/
|
|
writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR);
|
|
|
|
/*
|
|
* Wait for the DMA transfer to finish so that there will be data
|
|
* available in the FIFO when time slot 1 tries to transfer a DWORD
|
|
* from the FIFO to the output buffer register. We test for DMA
|
|
* Done by polling the DMAC enable flag; this flag is automatically
|
|
* cleared when the transfer has finished.
|
|
*/
|
|
ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
|
|
s626_send_dac_wait_not_mc1_a2out);
|
|
if (ret) {
|
|
dev_err(dev->class_dev, "DMA transfer timeout\n");
|
|
return ret;
|
|
}
|
|
|
|
/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
|
|
|
|
/*
|
|
* FIFO data is now available, so we enable execution of time slots
|
|
* 1 and higher by clearing the EOS flag in slot 0. Note that SD3
|
|
* will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
|
|
* detection.
|
|
*/
|
|
writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
|
|
dev->mmio + S626_VECTPORT(0));
|
|
|
|
/*
|
|
* Wait for slot 1 to execute to ensure that the Packet will be
|
|
* transmitted. This is detected by polling the Audio2 output FIFO
|
|
* underflow flag, which will be set when slot 1 execution has
|
|
* finished transferring the DAC's data DWORD from the output FIFO
|
|
* to the output buffer register.
|
|
*/
|
|
ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
|
|
s626_send_dac_wait_ssr_af2_out);
|
|
if (ret) {
|
|
dev_err(dev->class_dev,
|
|
"TSL timeout waiting for slot 1 to execute\n");
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Set up to trap execution at slot 0 when the TSL sequencer cycles
|
|
* back to slot 0 after executing the EOS in slot 5. Also,
|
|
* simultaneously shift out and in the 0x00 that is ALWAYS the value
|
|
* stored in the last byte to be shifted out of the FIFO's DWORD
|
|
* buffer register.
|
|
*/
|
|
writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
|
|
dev->mmio + S626_VECTPORT(0));
|
|
|
|
/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
|
|
|
|
/*
|
|
* Wait for the TSL to finish executing all time slots before
|
|
* exiting this function. We must do this so that the next DAC
|
|
* write doesn't start, thereby enabling clock/chip select signals:
|
|
*
|
|
* 1. Before the TSL sequence cycles back to slot 0, which disables
|
|
* the clock/cs signal gating and traps slot // list execution.
|
|
* we have not yet finished slot 5 then the clock/cs signals are
|
|
* still gated and we have not finished transmitting the stream.
|
|
*
|
|
* 2. While slots 2-5 are executing due to a late slot 0 trap. In
|
|
* this case, the slot sequence is currently repeating, but with
|
|
* clock/cs signals disabled. We must wait for slot 0 to trap
|
|
* execution before setting up the next DAC setpoint DMA transfer
|
|
* and enabling the clock/cs signals. To detect the end of slot 5,
|
|
* we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
|
|
* the TSL has not yet finished executing slot 5 ...
|
|
*/
|
|
if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
|
|
/*
|
|
* The trap was set on time and we are still executing somewhere
|
|
* in slots 2-5, so we now wait for slot 0 to execute and trap
|
|
* TSL execution. This is detected when FB_BUFFER2 MSB changes
|
|
* from 0xFF to 0x00, which slot 0 causes to happen by shifting
|
|
* out/in on SD2 the 0x00 that is always referenced by slot 5.
|
|
*/
|
|
ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
|
|
s626_send_dac_wait_fb_buffer2_msb_00);
|
|
if (ret) {
|
|
dev_err(dev->class_dev,
|
|
"TSL timeout waiting for slot 0 to execute\n");
|
|
return ret;
|
|
}
|
|
}
|
|
/*
|
|
* Either (1) we were too late setting the slot 0 trap; the TSL
|
|
* sequencer restarted slot 0 before we could set the EOS trap flag,
|
|
* or (2) we were not late and execution is now trapped at slot 0.
|
|
* In either case, we must now change slot 0 so that it will store
|
|
* value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
|
|
* In order to do this, we reprogram slot 0 so that it will shift in
|
|
* SD3, which is driven only by a pull-up resistor.
|
|
*/
|
|
writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
|
|
dev->mmio + S626_VECTPORT(0));
|
|
|
|
/*
|
|
* Wait for slot 0 to execute, at which time the TSL is setup for
|
|
* the next DAC write. This is detected when FB_BUFFER2 MSB changes
|
|
* from 0x00 to 0xFF.
|
|
*/
|
|
ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
|
|
s626_send_dac_wait_fb_buffer2_msb_ff);
|
|
if (ret) {
|
|
dev_err(dev->class_dev,
|
|
"TSL timeout waiting for slot 0 to execute\n");
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Private helper function: Write setpoint to an application DAC channel.
|
|
*/
|
|
static int s626_set_dac(struct comedi_device *dev,
|
|
u16 chan, int16_t dacdata)
|
|
{
|
|
struct s626_private *devpriv = dev->private;
|
|
u16 signmask;
|
|
u32 ws_image;
|
|
u32 val;
|
|
|
|
/*
|
|
* Adjust DAC data polarity and set up Polarity Control Register image.
|
|
*/
|
|
signmask = 1 << chan;
|
|
if (dacdata < 0) {
|
|
dacdata = -dacdata;
|
|
devpriv->dacpol |= signmask;
|
|
} else {
|
|
devpriv->dacpol &= ~signmask;
|
|
}
|
|
|
|
/* Limit DAC setpoint value to valid range. */
|
|
if ((u16)dacdata > 0x1FFF)
|
|
dacdata = 0x1FFF;
|
|
|
|
/*
|
|
* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
|
|
* and V3 transmit the setpoint to the target DAC. V4 and V5 send
|
|
* data to a non-existent TrimDac channel just to keep the clock
|
|
* running after sending data to the target DAC. This is necessary
|
|
* to eliminate the clock glitch that would otherwise occur at the
|
|
* end of the target DAC's serial data stream. When the sequence
|
|
* restarts at V0 (after executing V5), the gate array automatically
|
|
* disables gating for the DAC clock and all DAC chip selects.
|
|
*/
|
|
|
|
/* Choose DAC chip select to be asserted */
|
|
ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
|
|
/* Slot 2: Transmit high data byte to target DAC */
|
|
writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
|
|
dev->mmio + S626_VECTPORT(2));
|
|
/* Slot 3: Transmit low data byte to target DAC */
|
|
writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
|
|
dev->mmio + S626_VECTPORT(3));
|
|
/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
|
|
writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
|
|
dev->mmio + S626_VECTPORT(4));
|
|
/* Slot 5: running after writing target DAC's low data byte */
|
|
writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
|
|
dev->mmio + S626_VECTPORT(5));
|
|
|
|
/*
|
|
* Construct and transmit target DAC's serial packet:
|
|
* (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
|
|
* and D<12:0> is the DAC setpoint. Append a WORD value (that writes
|
|
* to a non-existent TrimDac channel) that serves to keep the clock
|
|
* running after the packet has been sent to the target DAC.
|
|
*/
|
|
val = 0x0F000000; /* Continue clock after target DAC data
|
|
* (write to non-existent trimdac).
|
|
*/
|
|
val |= 0x00004000; /* Address the two main dual-DAC devices
|
|
* (TSL's chip select enables target device).
|
|
*/
|
|
val |= ((u32)(chan & 1) << 15); /* Address the DAC channel
|
|
* within the device.
|
|
*/
|
|
val |= (u32)dacdata; /* Include DAC setpoint data. */
|
|
return s626_send_dac(dev, val);
|
|
}
|
|
|
|
static int s626_write_trim_dac(struct comedi_device *dev,
|
|
u8 logical_chan, u8 dac_data)
|
|
{
|
|
struct s626_private *devpriv = dev->private;
|
|
u32 chan;
|
|
|
|
/*
|
|
* Save the new setpoint in case the application needs to read it back
|
|
* later.
|
|
*/
|
|
devpriv->trim_setpoint[logical_chan] = dac_data;
|
|
|
|
/* Map logical channel number to physical channel number. */
|
|
chan = s626_trimchan[logical_chan];
|
|
|
|
/*
|
|
* Set up TSL2 records for TrimDac write operation. All slots shift
|
|
* 0xFF in from pulled-up SD3 so that the end of the slot sequence
|
|
* can be detected.
|
|
*/
|
|
|
|
/* Slot 2: Send high uint8_t to target TrimDac */
|
|
writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
|
|
dev->mmio + S626_VECTPORT(2));
|
|
/* Slot 3: Send low uint8_t to target TrimDac */
|
|
writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
|
|
dev->mmio + S626_VECTPORT(3));
|
|
/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
|
|
writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
|
|
dev->mmio + S626_VECTPORT(4));
|
|
/* Slot 5: Send NOP low uint8_t to DAC0 */
|
|
writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
|
|
dev->mmio + S626_VECTPORT(5));
|
|
|
|
/*
|
|
* Construct and transmit target DAC's serial packet:
|
|
* (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
|
|
* DAC channel's address, and D<7:0> is the DAC setpoint. Append a
|
|
* WORD value (that writes a channel 0 NOP command to a non-existent
|
|
* main DAC channel) that serves to keep the clock running after the
|
|
* packet has been sent to the target DAC.
|
|
*/
|
|
|
|
/*
|
|
* Address the DAC channel within the trimdac device.
|
|
* Include DAC setpoint data.
|
|
*/
|
|
return s626_send_dac(dev, (chan << 8) | dac_data);
|
|
}
|
|
|
|
static int s626_load_trim_dacs(struct comedi_device *dev)
|
|
{
|
|
u8 i;
|
|
int ret;
|
|
|
|
/* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
|
|
for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
|
|
ret = s626_write_trim_dac(dev, i,
|
|
s626_i2c_read(dev, s626_trimadrs[i]));
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* ****** COUNTER FUNCTIONS ******* */
|
|
|
|
/*
|
|
* All counter functions address a specific counter by means of the
|
|
* "Counter" argument, which is a logical counter number. The Counter
|
|
* argument may have any of the following legal values: 0=0A, 1=1A,
|
|
* 2=2A, 3=0B, 4=1B, 5=2B.
|
|
*/
|
|
|
|
/*
|
|
* Return/set a counter pair's latch trigger source. 0: On read
|
|
* access, 1: A index latches A, 2: B index latches B, 3: A overflow
|
|
* latches B.
|
|
*/
|
|
static void s626_set_latch_source(struct comedi_device *dev,
|
|
unsigned int chan, u16 value)
|
|
{
|
|
s626_debi_replace(dev, S626_LP_CRB(chan),
|
|
~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
|
|
S626_SET_CRB_LATCHSRC(value));
|
|
}
|
|
|
|
/*
|
|
* Write value into counter preload register.
|
|
*/
|
|
static void s626_preload(struct comedi_device *dev,
|
|
unsigned int chan, u32 value)
|
|
{
|
|
s626_debi_write(dev, S626_LP_CNTR(chan), value);
|
|
s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16);
|
|
}
|
|
|
|
/* ****** PRIVATE COUNTER FUNCTIONS ****** */
|
|
|
|
/*
|
|
* Reset a counter's index and overflow event capture flags.
|
|
*/
|
|
static void s626_reset_cap_flags(struct comedi_device *dev,
|
|
unsigned int chan)
|
|
{
|
|
u16 set;
|
|
|
|
set = S626_SET_CRB_INTRESETCMD(1);
|
|
if (chan < 3)
|
|
set |= S626_SET_CRB_INTRESET_A(1);
|
|
else
|
|
set |= S626_SET_CRB_INTRESET_B(1);
|
|
|
|
s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set);
|
|
}
|
|
|
|
/*
|
|
* Set the operating mode for the specified counter. The setup
|
|
* parameter is treated as a COUNTER_SETUP data type. The following
|
|
* parameters are programmable (all other parms are ignored): ClkMult,
|
|
* ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
|
|
*/
|
|
static void s626_set_mode_a(struct comedi_device *dev,
|
|
unsigned int chan, u16 setup,
|
|
u16 disable_int_src)
|
|
{
|
|
struct s626_private *devpriv = dev->private;
|
|
u16 cra;
|
|
u16 crb;
|
|
unsigned int cntsrc, clkmult, clkpol;
|
|
|
|
/* Initialize CRA and CRB images. */
|
|
/* Preload trigger is passed through. */
|
|
cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
|
|
/* IndexSrc is passed through. */
|
|
cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
|
|
|
|
/* Reset any pending CounterA event captures. */
|
|
crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
|
|
/* Clock enable is passed through. */
|
|
crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
|
|
|
|
/* Force IntSrc to Disabled if disable_int_src is asserted. */
|
|
if (!disable_int_src)
|
|
cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
|
|
|
|
/* Populate all mode-dependent attributes of CRA & CRB images. */
|
|
clkpol = S626_GET_STD_CLKPOL(setup);
|
|
switch (S626_GET_STD_ENCMODE(setup)) {
|
|
case S626_ENCMODE_EXTENDER: /* Extender Mode: */
|
|
/* Force to Timer mode (Extender valid only for B counters). */
|
|
/* Fall through to case S626_ENCMODE_TIMER: */
|
|
case S626_ENCMODE_TIMER: /* Timer Mode: */
|
|
/* CntSrcA<1> selects system clock */
|
|
cntsrc = S626_CNTSRC_SYSCLK;
|
|
/* Count direction (CntSrcA<0>) obtained from ClkPol. */
|
|
cntsrc |= clkpol;
|
|
/* ClkPolA behaves as always-on clock enable. */
|
|
clkpol = 1;
|
|
/* ClkMult must be 1x. */
|
|
clkmult = S626_CLKMULT_1X;
|
|
break;
|
|
default: /* Counter Mode: */
|
|
/* Select ENC_C and ENC_D as clock/direction inputs. */
|
|
cntsrc = S626_CNTSRC_ENCODER;
|
|
/* Clock polarity is passed through. */
|
|
/* Force multiplier to x1 if not legal, else pass through. */
|
|
clkmult = S626_GET_STD_CLKMULT(setup);
|
|
if (clkmult == S626_CLKMULT_SPECIAL)
|
|
clkmult = S626_CLKMULT_1X;
|
|
break;
|
|
}
|
|
cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
|
|
S626_SET_CRA_CLKMULT_A(clkmult);
|
|
|
|
/*
|
|
* Force positive index polarity if IndxSrc is software-driven only,
|
|
* otherwise pass it through.
|
|
*/
|
|
if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
|
|
cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
|
|
|
|
/*
|
|
* If IntSrc has been forced to Disabled, update the MISC2 interrupt
|
|
* enable mask to indicate the counter interrupt is disabled.
|
|
*/
|
|
if (disable_int_src)
|
|
devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
|
|
S626_INDXMASK(chan));
|
|
|
|
/*
|
|
* While retaining CounterB and LatchSrc configurations, program the
|
|
* new counter operating mode.
|
|
*/
|
|
s626_debi_replace(dev, S626_LP_CRA(chan),
|
|
S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
|
|
s626_debi_replace(dev, S626_LP_CRB(chan),
|
|
~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
|
|
}
|
|
|
|
static void s626_set_mode_b(struct comedi_device *dev,
|
|
unsigned int chan, u16 setup,
|
|
u16 disable_int_src)
|
|
{
|
|
struct s626_private *devpriv = dev->private;
|
|
u16 cra;
|
|
u16 crb;
|
|
unsigned int cntsrc, clkmult, clkpol;
|
|
|
|
/* Initialize CRA and CRB images. */
|
|
/* IndexSrc is passed through. */
|
|
cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
|
|
|
|
/* Reset event captures and disable interrupts. */
|
|
crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
|
|
/* Clock enable is passed through. */
|
|
crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
|
|
/* Preload trigger source is passed through. */
|
|
crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
|
|
|
|
/* Force IntSrc to Disabled if disable_int_src is asserted. */
|
|
if (!disable_int_src)
|
|
crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
|
|
|
|
/* Populate all mode-dependent attributes of CRA & CRB images. */
|
|
clkpol = S626_GET_STD_CLKPOL(setup);
|
|
switch (S626_GET_STD_ENCMODE(setup)) {
|
|
case S626_ENCMODE_TIMER: /* Timer Mode: */
|
|
/* CntSrcB<1> selects system clock */
|
|
cntsrc = S626_CNTSRC_SYSCLK;
|
|
/* with direction (CntSrcB<0>) obtained from ClkPol. */
|
|
cntsrc |= clkpol;
|
|
/* ClkPolB behaves as always-on clock enable. */
|
|
clkpol = 1;
|
|
/* ClkMultB must be 1x. */
|
|
clkmult = S626_CLKMULT_1X;
|
|
break;
|
|
case S626_ENCMODE_EXTENDER: /* Extender Mode: */
|
|
/* CntSrcB source is OverflowA (same as "timer") */
|
|
cntsrc = S626_CNTSRC_SYSCLK;
|
|
/* with direction obtained from ClkPol. */
|
|
cntsrc |= clkpol;
|
|
/* ClkPolB controls IndexB -- always set to active. */
|
|
clkpol = 1;
|
|
/* ClkMultB selects OverflowA as the clock source. */
|
|
clkmult = S626_CLKMULT_SPECIAL;
|
|
break;
|
|
default: /* Counter Mode: */
|
|
/* Select ENC_C and ENC_D as clock/direction inputs. */
|
|
cntsrc = S626_CNTSRC_ENCODER;
|
|
/* ClkPol is passed through. */
|
|
/* Force ClkMult to x1 if not legal, otherwise pass through. */
|
|
clkmult = S626_GET_STD_CLKMULT(setup);
|
|
if (clkmult == S626_CLKMULT_SPECIAL)
|
|
clkmult = S626_CLKMULT_1X;
|
|
break;
|
|
}
|
|
cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
|
|
crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
|
|
|
|
/*
|
|
* Force positive index polarity if IndxSrc is software-driven only,
|
|
* otherwise pass it through.
|
|
*/
|
|
if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
|
|
crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
|
|
|
|
/*
|
|
* If IntSrc has been forced to Disabled, update the MISC2 interrupt
|
|
* enable mask to indicate the counter interrupt is disabled.
|
|
*/
|
|
if (disable_int_src)
|
|
devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
|
|
S626_INDXMASK(chan));
|
|
|
|
/*
|
|
* While retaining CounterA and LatchSrc configurations, program the
|
|
* new counter operating mode.
|
|
*/
|
|
s626_debi_replace(dev, S626_LP_CRA(chan),
|
|
~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
|
|
s626_debi_replace(dev, S626_LP_CRB(chan),
|
|
S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
|
|
}
|
|
|
|
static void s626_set_mode(struct comedi_device *dev,
|
|
unsigned int chan,
|
|
u16 setup, u16 disable_int_src)
|
|
{
|
|
if (chan < 3)
|
|
s626_set_mode_a(dev, chan, setup, disable_int_src);
|
|
else
|
|
s626_set_mode_b(dev, chan, setup, disable_int_src);
|
|
}
|
|
|
|
/*
|
|
* Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index.
|
|
*/
|
|
static void s626_set_enable(struct comedi_device *dev,
|
|
unsigned int chan, u16 enab)
|
|
{
|
|
unsigned int mask = S626_CRBMSK_INTCTRL;
|
|
unsigned int set;
|
|
|
|
if (chan < 3) {
|
|
mask |= S626_CRBMSK_CLKENAB_A;
|
|
set = S626_SET_CRB_CLKENAB_A(enab);
|
|
} else {
|
|
mask |= S626_CRBMSK_CLKENAB_B;
|
|
set = S626_SET_CRB_CLKENAB_B(enab);
|
|
}
|
|
s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set);
|
|
}
|
|
|
|
/*
|
|
* Return/set the event that will trigger transfer of the preload
|
|
* register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
|
|
* 2=OverflowA (B counters only), 3=disabled.
|
|
*/
|
|
static void s626_set_load_trig(struct comedi_device *dev,
|
|
unsigned int chan, u16 trig)
|
|
{
|
|
u16 reg;
|
|
u16 mask;
|
|
u16 set;
|
|
|
|
if (chan < 3) {
|
|
reg = S626_LP_CRA(chan);
|
|
mask = S626_CRAMSK_LOADSRC_A;
|
|
set = S626_SET_CRA_LOADSRC_A(trig);
|
|
} else {
|
|
reg = S626_LP_CRB(chan);
|
|
mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL;
|
|
set = S626_SET_CRB_LOADSRC_B(trig);
|
|
}
|
|
s626_debi_replace(dev, reg, ~mask, set);
|
|
}
|
|
|
|
/*
|
|
* Return/set counter interrupt source and clear any captured
|
|
* index/overflow events. int_source: 0=Disabled, 1=OverflowOnly,
|
|
* 2=IndexOnly, 3=IndexAndOverflow.
|
|
*/
|
|
static void s626_set_int_src(struct comedi_device *dev,
|
|
unsigned int chan, u16 int_source)
|
|
{
|
|
struct s626_private *devpriv = dev->private;
|
|
u16 cra_reg = S626_LP_CRA(chan);
|
|
u16 crb_reg = S626_LP_CRB(chan);
|
|
|
|
if (chan < 3) {
|
|
/* Reset any pending counter overflow or index captures */
|
|
s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL,
|
|
S626_SET_CRB_INTRESETCMD(1) |
|
|
S626_SET_CRB_INTRESET_A(1));
|
|
|
|
/* Program counter interrupt source */
|
|
s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A,
|
|
S626_SET_CRA_INTSRC_A(int_source));
|
|
} else {
|
|
u16 crb;
|
|
|
|
/* Cache writeable CRB register image */
|
|
crb = s626_debi_read(dev, crb_reg);
|
|
crb &= ~S626_CRBMSK_INTCTRL;
|
|
|
|
/* Reset any pending counter overflow or index captures */
|
|
s626_debi_write(dev, crb_reg,
|
|
crb | S626_SET_CRB_INTRESETCMD(1) |
|
|
S626_SET_CRB_INTRESET_B(1));
|
|
|
|
/* Program counter interrupt source */
|
|
s626_debi_write(dev, crb_reg,
|
|
(crb & ~S626_CRBMSK_INTSRC_B) |
|
|
S626_SET_CRB_INTSRC_B(int_source));
|
|
}
|
|
|
|
/* Update MISC2 interrupt enable mask. */
|
|
devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
|
|
S626_INDXMASK(chan));
|
|
switch (int_source) {
|
|
case 0:
|
|
default:
|
|
break;
|
|
case 1:
|
|
devpriv->counter_int_enabs |= S626_OVERMASK(chan);
|
|
break;
|
|
case 2:
|
|
devpriv->counter_int_enabs |= S626_INDXMASK(chan);
|
|
break;
|
|
case 3:
|
|
devpriv->counter_int_enabs |= (S626_OVERMASK(chan) |
|
|
S626_INDXMASK(chan));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate an index pulse.
|
|
*/
|
|
static void s626_pulse_index(struct comedi_device *dev,
|
|
unsigned int chan)
|
|
{
|
|
if (chan < 3) {
|
|
u16 cra;
|
|
|
|
cra = s626_debi_read(dev, S626_LP_CRA(chan));
|
|
|
|
/* Pulse index */
|
|
s626_debi_write(dev, S626_LP_CRA(chan),
|
|
(cra ^ S626_CRAMSK_INDXPOL_A));
|
|
s626_debi_write(dev, S626_LP_CRA(chan), cra);
|
|
} else {
|
|
u16 crb;
|
|
|
|
crb = s626_debi_read(dev, S626_LP_CRB(chan));
|
|
crb &= ~S626_CRBMSK_INTCTRL;
|
|
|
|
/* Pulse index */
|
|
s626_debi_write(dev, S626_LP_CRB(chan),
|
|
(crb ^ S626_CRBMSK_INDXPOL_B));
|
|
s626_debi_write(dev, S626_LP_CRB(chan), crb);
|
|
}
|
|
}
|
|
|
|
static unsigned int s626_ai_reg_to_uint(unsigned int data)
|
|
{
|
|
return ((data >> 18) & 0x3fff) ^ 0x2000;
|
|
}
|
|
|
|
static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
|
|
{
|
|
unsigned int group = chan / 16;
|
|
unsigned int mask = 1 << (chan - (16 * group));
|
|
unsigned int status;
|
|
|
|
/* set channel to capture positive edge */
|
|
status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
|
|
s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
|
|
|
|
/* enable interrupt on selected channel */
|
|
status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
|
|
s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
|
|
|
|
/* enable edge capture write command */
|
|
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
|
|
|
|
/* enable edge capture on selected channel */
|
|
status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
|
|
s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
|
|
unsigned int mask)
|
|
{
|
|
/* disable edge capture write command */
|
|
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
|
|
|
|
/* enable edge capture on selected channel */
|
|
s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int s626_dio_clear_irq(struct comedi_device *dev)
|
|
{
|
|
unsigned int group;
|
|
|
|
/* disable edge capture write command */
|
|
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
|
|
|
|
/* clear all dio pending events and interrupt */
|
|
for (group = 0; group < S626_DIO_BANKS; group++)
|
|
s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void s626_handle_dio_interrupt(struct comedi_device *dev,
|
|
u16 irqbit, u8 group)
|
|
{
|
|
struct s626_private *devpriv = dev->private;
|
|
struct comedi_subdevice *s = dev->read_subdev;
|
|
struct comedi_cmd *cmd = &s->async->cmd;
|
|
|
|
s626_dio_reset_irq(dev, group, irqbit);
|
|
|
|
if (devpriv->ai_cmd_running) {
|
|
/* check if interrupt is an ai acquisition start trigger */
|
|
if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
|
|
cmd->start_src == TRIG_EXT) {
|
|
/* Start executing the RPS program */
|
|
s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
|
|
|
|
if (cmd->scan_begin_src == TRIG_EXT)
|
|
s626_dio_set_irq(dev, cmd->scan_begin_arg);
|
|
}
|
|
if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
|
|
cmd->scan_begin_src == TRIG_EXT) {
|
|
/* Trigger ADC scan loop start */
|
|
s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
|
|
|
|
if (cmd->convert_src == TRIG_EXT) {
|
|
devpriv->ai_convert_count = cmd->chanlist_len;
|
|
|
|
s626_dio_set_irq(dev, cmd->convert_arg);
|
|
}
|
|
|
|
if (cmd->convert_src == TRIG_TIMER) {
|
|
devpriv->ai_convert_count = cmd->chanlist_len;
|
|
s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
|
|
}
|
|
}
|
|
if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
|
|
cmd->convert_src == TRIG_EXT) {
|
|
/* Trigger ADC scan loop start */
|
|
s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
|
|
|
|
devpriv->ai_convert_count--;
|
|
if (devpriv->ai_convert_count > 0)
|
|
s626_dio_set_irq(dev, cmd->convert_arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void s626_check_dio_interrupts(struct comedi_device *dev)
|
|
{
|
|
u16 irqbit;
|
|
u8 group;
|
|
|
|
for (group = 0; group < S626_DIO_BANKS; group++) {
|
|
/* read interrupt type */
|
|
irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
|
|
|
|
/* check if interrupt is generated from dio channels */
|
|
if (irqbit) {
|
|
s626_handle_dio_interrupt(dev, irqbit, group);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void s626_check_counter_interrupts(struct comedi_device *dev)
|
|
{
|
|
struct s626_private *devpriv = dev->private;
|
|
struct comedi_subdevice *s = dev->read_subdev;
|
|
struct comedi_async *async = s->async;
|
|
struct comedi_cmd *cmd = &async->cmd;
|
|
u16 irqbit;
|
|
|
|
/* read interrupt type */
|
|
irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
|
|
|
|
/* check interrupt on counters */
|
|
if (irqbit & S626_IRQ_COINT1A) {
|
|
/* clear interrupt capture flag */
|
|
s626_reset_cap_flags(dev, 0);
|
|
}
|
|
if (irqbit & S626_IRQ_COINT2A) {
|
|
/* clear interrupt capture flag */
|
|
s626_reset_cap_flags(dev, 1);
|
|
}
|
|
if (irqbit & S626_IRQ_COINT3A) {
|
|
/* clear interrupt capture flag */
|
|
s626_reset_cap_flags(dev, 2);
|
|
}
|
|
if (irqbit & S626_IRQ_COINT1B) {
|
|
/* clear interrupt capture flag */
|
|
s626_reset_cap_flags(dev, 3);
|
|
}
|
|
if (irqbit & S626_IRQ_COINT2B) {
|
|
/* clear interrupt capture flag */
|
|
s626_reset_cap_flags(dev, 4);
|
|
|
|
if (devpriv->ai_convert_count > 0) {
|
|
devpriv->ai_convert_count--;
|
|
if (devpriv->ai_convert_count == 0)
|
|
s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
|
|
|
|
if (cmd->convert_src == TRIG_TIMER) {
|
|
/* Trigger ADC scan loop start */
|
|
s626_mc_enable(dev, S626_MC2_ADC_RPS,
|
|
S626_P_MC2);
|
|
}
|
|
}
|
|
}
|
|
if (irqbit & S626_IRQ_COINT3B) {
|
|
/* clear interrupt capture flag */
|
|
s626_reset_cap_flags(dev, 5);
|
|
|
|
if (cmd->scan_begin_src == TRIG_TIMER) {
|
|
/* Trigger ADC scan loop start */
|
|
s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
|
|
}
|
|
|
|
if (cmd->convert_src == TRIG_TIMER) {
|
|
devpriv->ai_convert_count = cmd->chanlist_len;
|
|
s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool s626_handle_eos_interrupt(struct comedi_device *dev)
|
|
{
|
|
struct s626_private *devpriv = dev->private;
|
|
struct comedi_subdevice *s = dev->read_subdev;
|
|
struct comedi_async *async = s->async;
|
|
struct comedi_cmd *cmd = &async->cmd;
|
|
/*
|
|
* Init ptr to DMA buffer that holds new ADC data. We skip the
|
|
* first uint16_t in the buffer because it contains junk data
|
|
* from the final ADC of the previous poll list scan.
|
|
*/
|
|
u32 *readaddr = (u32 *)devpriv->ana_buf.logical_base + 1;
|
|
int i;
|
|
|
|
/* get the data and hand it over to comedi */
|
|
for (i = 0; i < cmd->chanlist_len; i++) {
|
|
unsigned short tempdata;
|
|
|
|
/*
|
|
* Convert ADC data to 16-bit integer values and copy
|
|
* to application buffer.
|
|
*/
|
|
tempdata = s626_ai_reg_to_uint(*readaddr);
|
|
readaddr++;
|
|
|
|
comedi_buf_write_samples(s, &tempdata, 1);
|
|
}
|
|
|
|
if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg)
|
|
async->events |= COMEDI_CB_EOA;
|
|
|
|
if (async->events & COMEDI_CB_CANCEL_MASK)
|
|
devpriv->ai_cmd_running = 0;
|
|
|
|
if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
|
|
s626_dio_set_irq(dev, cmd->scan_begin_arg);
|
|
|
|
comedi_handle_events(dev, s);
|
|
|
|
return !devpriv->ai_cmd_running;
|
|
}
|
|
|
|
static irqreturn_t s626_irq_handler(int irq, void *d)
|
|
{
|
|
struct comedi_device *dev = d;
|
|
unsigned long flags;
|
|
u32 irqtype, irqstatus;
|
|
|
|
if (!dev->attached)
|
|
return IRQ_NONE;
|
|
/* lock to avoid race with comedi_poll */
|
|
spin_lock_irqsave(&dev->spinlock, flags);
|
|
|
|
/* save interrupt enable register state */
|
|
irqstatus = readl(dev->mmio + S626_P_IER);
|
|
|
|
/* read interrupt type */
|
|
irqtype = readl(dev->mmio + S626_P_ISR);
|
|
|
|
/* disable master interrupt */
|
|
writel(0, dev->mmio + S626_P_IER);
|
|
|
|
/* clear interrupt */
|
|
writel(irqtype, dev->mmio + S626_P_ISR);
|
|
|
|
switch (irqtype) {
|
|
case S626_IRQ_RPS1: /* end_of_scan occurs */
|
|
if (s626_handle_eos_interrupt(dev))
|
|
irqstatus = 0;
|
|
break;
|
|
case S626_IRQ_GPIO3: /* check dio and counter interrupt */
|
|
/* s626_dio_clear_irq(dev); */
|
|
s626_check_dio_interrupts(dev);
|
|
s626_check_counter_interrupts(dev);
|
|
break;
|
|
}
|
|
|
|
/* enable interrupt */
|
|
writel(irqstatus, dev->mmio + S626_P_IER);
|
|
|
|
spin_unlock_irqrestore(&dev->spinlock, flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* This function builds the RPS program for hardware driven acquisition.
|
|
*/
|
|
static void s626_reset_adc(struct comedi_device *dev, u8 *ppl)
|
|
{
|
|
struct s626_private *devpriv = dev->private;
|
|
struct comedi_subdevice *s = dev->read_subdev;
|
|
struct comedi_cmd *cmd = &s->async->cmd;
|
|
u32 *rps;
|
|
u32 jmp_adrs;
|
|
u16 i;
|
|
u16 n;
|
|
u32 local_ppl;
|
|
|
|
/* Stop RPS program in case it is currently running */
|
|
s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
|
|
|
|
/* Set starting logical address to write RPS commands. */
|
|
rps = (u32 *)devpriv->rps_buf.logical_base;
|
|
|
|
/* Initialize RPS instruction pointer */
|
|
writel((u32)devpriv->rps_buf.physical_base,
|
|
dev->mmio + S626_P_RPSADDR1);
|
|
|
|
/* Construct RPS program in rps_buf DMA buffer */
|
|
if (cmd->scan_begin_src != TRIG_FOLLOW) {
|
|
/* Wait for Start trigger. */
|
|
*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
|
|
*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
|
|
}
|
|
|
|
/*
|
|
* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
|
|
* because the first RPS DEBI Write following a non-RPS DEBI write
|
|
* seems to always fail. If we don't do this dummy write, the ADC
|
|
* gain might not be set to the value required for the first slot in
|
|
* the poll list; the ADC gain would instead remain unchanged from
|
|
* the previously programmed value.
|
|
*/
|
|
/* Write DEBI Write command and address to shadow RAM. */
|
|
*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
|
|
*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
|
|
*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
|
|
/* Write DEBI immediate data to shadow RAM: */
|
|
*rps++ = S626_GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
|
|
*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
|
|
/* Reset "shadow RAM uploaded" flag. */
|
|
/* Invoke shadow RAM upload. */
|
|
*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
|
|
/* Wait for shadow upload to finish. */
|
|
*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
|
|
|
|
/*
|
|
* Digitize all slots in the poll list. This is implemented as a
|
|
* for loop to limit the slot count to 16 in case the application
|
|
* forgot to set the S626_EOPL flag in the final slot.
|
|
*/
|
|
for (devpriv->adc_items = 0; devpriv->adc_items < 16;
|
|
devpriv->adc_items++) {
|
|
/*
|
|
* Convert application's poll list item to private board class
|
|
* format. Each app poll list item is an uint8_t with form
|
|
* (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
|
|
* +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
|
|
*/
|
|
local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
|
|
S626_GSEL_BIPOLAR10V);
|
|
|
|
/* Switch ADC analog gain. */
|
|
/* Write DEBI command and address to shadow RAM. */
|
|
*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
|
|
*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
|
|
/* Write DEBI immediate data to shadow RAM. */
|
|
*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
|
|
*rps++ = local_ppl;
|
|
/* Reset "shadow RAM uploaded" flag. */
|
|
*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
|
|
/* Invoke shadow RAM upload. */
|
|
*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
|
|
/* Wait for shadow upload to finish. */
|
|
*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
|
|
/* Select ADC analog input channel. */
|
|
*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
|
|
/* Write DEBI command and address to shadow RAM. */
|
|
*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
|
|
*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
|
|
/* Write DEBI immediate data to shadow RAM. */
|
|
*rps++ = local_ppl;
|
|
/* Reset "shadow RAM uploaded" flag. */
|
|
*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
|
|
/* Invoke shadow RAM upload. */
|
|
*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
|
|
/* Wait for shadow upload to finish. */
|
|
*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
|
|
|
|
/*
|
|
* Delay at least 10 microseconds for analog input settling.
|
|
* Instead of padding with NOPs, we use S626_RPS_JUMP
|
|
* instructions here; this allows us to produce a longer delay
|
|
* than is possible with NOPs because each S626_RPS_JUMP
|
|
* flushes the RPS' instruction prefetch pipeline.
|
|
*/
|
|
jmp_adrs =
|
|
(u32)devpriv->rps_buf.physical_base +
|
|
(u32)((unsigned long)rps -
|
|
(unsigned long)devpriv->rps_buf.logical_base);
|
|
for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
|
|
jmp_adrs += 8; /* Repeat to implement time delay: */
|
|
/* Jump to next RPS instruction. */
|
|
*rps++ = S626_RPS_JUMP;
|
|
*rps++ = jmp_adrs;
|
|
}
|
|
|
|
if (cmd->convert_src != TRIG_NOW) {
|
|
/* Wait for Start trigger. */
|
|
*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
|
|
*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
|
|
}
|
|
/* Start ADC by pulsing GPIO1. */
|
|
/* Begin ADC Start pulse. */
|
|
*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
|
|
*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
|
|
*rps++ = S626_RPS_NOP;
|
|
/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
|
|
/* End ADC Start pulse. */
|
|
*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
|
|
*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
|
|
/*
|
|
* Wait for ADC to complete (GPIO2 is asserted high when ADC not
|
|
* busy) and for data from previous conversion to shift into FB
|
|
* BUFFER 1 register.
|
|
*/
|
|
/* Wait for ADC done. */
|
|
*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
|
|
|
|
/* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
|
|
*rps++ = S626_RPS_STREG |
|
|
(S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
|
|
*rps++ = (u32)devpriv->ana_buf.physical_base +
|
|
(devpriv->adc_items << 2);
|
|
|
|
/*
|
|
* If this slot's EndOfPollList flag is set, all channels have
|
|
* now been processed.
|
|
*/
|
|
if (*ppl++ & S626_EOPL) {
|
|
devpriv->adc_items++; /* Adjust poll list item count. */
|
|
break; /* Exit poll list processing loop. */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
|
|
* ADC to stabilize for 2 microseconds before starting the final
|
|
* (dummy) conversion. This delay is necessary to allow sufficient
|
|
* time between last conversion finished and the start of the dummy
|
|
* conversion. Without this delay, the last conversion's data value
|
|
* is sometimes set to the previous conversion's data value.
|
|
*/
|
|
for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
|
|
*rps++ = S626_RPS_NOP;
|
|
|
|
/*
|
|
* Start a dummy conversion to cause the data from the last
|
|
* conversion of interest to be shifted in.
|
|
*/
|
|
/* Begin ADC Start pulse. */
|
|
*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
|
|
*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
|
|
*rps++ = S626_RPS_NOP;
|
|
/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
|
|
*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
|
|
*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
|
|
|
|
/*
|
|
* Wait for the data from the last conversion of interest to arrive
|
|
* in FB BUFFER 1 register.
|
|
*/
|
|
*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; /* Wait for ADC done. */
|
|
|
|
/* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
|
|
*rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
|
|
*rps++ = (u32)devpriv->ana_buf.physical_base +
|
|
(devpriv->adc_items << 2);
|
|
|
|
/* Indicate ADC scan loop is finished. */
|
|
/* Signal ReadADC() that scan is done. */
|
|
/* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
|
|
|
|
/* invoke interrupt */
|
|
if (devpriv->ai_cmd_running == 1)
|
|
*rps++ = S626_RPS_IRQ;
|
|
|
|
/* Restart RPS program at its beginning. */
|
|
*rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */
|
|
*rps++ = (u32)devpriv->rps_buf.physical_base;
|
|
|
|
/* End of RPS program build */
|
|
}
|
|
|
|
static int s626_ai_eoc(struct comedi_device *dev,
|
|
struct comedi_subdevice *s,
|
|
struct comedi_insn *insn,
|
|
unsigned long context)
|
|
{
|
|
unsigned int status;
|
|
|
|
status = readl(dev->mmio + S626_P_PSR);
|
|
if (status & S626_PSR_GPIO2)
|
|
return 0;
|
|
return -EBUSY;
|
|
}
|
|
|
|
static int s626_ai_insn_read(struct comedi_device *dev,
|
|
struct comedi_subdevice *s,
|
|
struct comedi_insn *insn,
|
|
unsigned int *data)
|
|
{
|
|
u16 chan = CR_CHAN(insn->chanspec);
|
|
u16 range = CR_RANGE(insn->chanspec);
|
|
u16 adc_spec = 0;
|
|
u32 gpio_image;
|
|
u32 tmp;
|
|
int ret;
|
|
int n;
|
|
|
|
/*
|
|
* Convert application's ADC specification into form
|
|
* appropriate for register programming.
|
|
*/
|
|
if (range == 0)
|
|
adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
|
|
else
|
|
adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
|
|
|
|
/* Switch ADC analog gain. */
|
|
s626_debi_write(dev, S626_LP_GSEL, adc_spec); /* Set gain. */
|
|
|
|
/* Select ADC analog input channel. */
|
|
s626_debi_write(dev, S626_LP_ISEL, adc_spec); /* Select channel. */
|
|
|
|
for (n = 0; n < insn->n; n++) {
|
|
/* Delay 10 microseconds for analog input settling. */
|
|
usleep_range(10, 20);
|
|
|
|
/* Start ADC by pulsing GPIO1 low */
|
|
gpio_image = readl(dev->mmio + S626_P_GPIO);
|
|
/* Assert ADC Start command */
|
|
writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
|
|
/* and stretch it out */
|
|
writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
|
|
writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
|
|
/* Negate ADC Start command */
|
|
writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
|
|
|
|
/*
|
|
* Wait for ADC to complete (GPIO2 is asserted high when
|
|
* ADC not busy) and for data from previous conversion to
|
|
* shift into FB BUFFER 1 register.
|
|
*/
|
|
|
|
/* Wait for ADC done */
|
|
ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Fetch ADC data */
|
|
if (n != 0) {
|
|
tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
|
|
data[n - 1] = s626_ai_reg_to_uint(tmp);
|
|
}
|
|
|
|
/*
|
|
* Allow the ADC to stabilize for 4 microseconds before
|
|
* starting the next (final) conversion. This delay is
|
|
* necessary to allow sufficient time between last
|
|
* conversion finished and the start of the next
|
|
* conversion. Without this delay, the last conversion's
|
|
* data value is sometimes set to the previous
|
|
* conversion's data value.
|
|
*/
|
|
udelay(4);
|
|
}
|
|
|
|
/*
|
|
* Start a dummy conversion to cause the data from the
|
|
* previous conversion to be shifted in.
|
|
*/
|
|
gpio_image = readl(dev->mmio + S626_P_GPIO);
|
|
/* Assert ADC Start command */
|
|
writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
|
|
/* and stretch it out */
|
|
writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
|
|
writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
|
|
/* Negate ADC Start command */
|
|
writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
|
|
|
|
/* Wait for the data to arrive in FB BUFFER 1 register. */
|
|
|
|
/* Wait for ADC done */
|
|
ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Fetch ADC data from audio interface's input shift register. */
|
|
|
|
/* Fetch ADC data */
|
|
if (n != 0) {
|
|
tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
|
|
data[n - 1] = s626_ai_reg_to_uint(tmp);
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static int s626_ai_load_polllist(u8 *ppl, struct comedi_cmd *cmd)
|
|
{
|
|
int n;
|
|
|
|
for (n = 0; n < cmd->chanlist_len; n++) {
|
|
if (CR_RANGE(cmd->chanlist[n]) == 0)
|
|
ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
|
|
else
|
|
ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
|
|
}
|
|
if (n != 0)
|
|
ppl[n - 1] |= S626_EOPL;
|
|
|
|
return n;
|
|
}
|
|
|
|
static int s626_ai_inttrig(struct comedi_device *dev,
|
|
struct comedi_subdevice *s,
|
|
unsigned int trig_num)
|
|
{
|
|
struct comedi_cmd *cmd = &s->async->cmd;
|
|
|
|
if (trig_num != cmd->start_arg)
|
|
return -EINVAL;
|
|
|
|
/* Start executing the RPS program */
|
|
s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
|
|
|
|
s->async->inttrig = NULL;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This function doesn't require a particular form, this is just what
|
|
* happens to be used in some of the drivers. It should convert ns
|
|
* nanoseconds to a counter value suitable for programming the device.
|
|
* Also, it should adjust ns so that it cooresponds to the actual time
|
|
* that the device will use.
|
|
*/
|
|
static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags)
|
|
{
|
|
int divider, base;
|
|
|
|
base = 500; /* 2MHz internal clock */
|
|
|
|
switch (flags & CMDF_ROUND_MASK) {
|
|
case CMDF_ROUND_NEAREST:
|
|
default:
|
|
divider = DIV_ROUND_CLOSEST(*nanosec, base);
|
|
break;
|
|
case CMDF_ROUND_DOWN:
|
|
divider = (*nanosec) / base;
|
|
break;
|
|
case CMDF_ROUND_UP:
|
|
divider = DIV_ROUND_UP(*nanosec, base);
|
|
break;
|
|
}
|
|
|
|
*nanosec = base * divider;
|
|
return divider - 1;
|
|
}
|
|
|
|
static void s626_timer_load(struct comedi_device *dev,
|
|
unsigned int chan, int tick)
|
|
{
|
|
u16 setup =
|
|
/* Preload upon index. */
|
|
S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
|
|
/* Disable hardware index. */
|
|
S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
|
|
/* Operating mode is Timer. */
|
|
S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
|
|
/* Count direction is Down. */
|
|
S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
|
|
/* Clock multiplier is 1x. */
|
|
S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
|
|
/* Enabled by index */
|
|
S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
|
|
u16 value_latchsrc = S626_LATCHSRC_A_INDXA;
|
|
/* uint16_t enab = S626_CLKENAB_ALWAYS; */
|
|
|
|
s626_set_mode(dev, chan, setup, false);
|
|
|
|
/* Set the preload register */
|
|
s626_preload(dev, chan, tick);
|
|
|
|
/*
|
|
* Software index pulse forces the preload register to load
|
|
* into the counter
|
|
*/
|
|
s626_set_load_trig(dev, chan, 0);
|
|
s626_pulse_index(dev, chan);
|
|
|
|
/* set reload on counter overflow */
|
|
s626_set_load_trig(dev, chan, 1);
|
|
|
|
/* set interrupt on overflow */
|
|
s626_set_int_src(dev, chan, S626_INTSRC_OVER);
|
|
|
|
s626_set_latch_source(dev, chan, value_latchsrc);
|
|
/* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */
|
|
}
|
|
|
|
/* TO COMPLETE */
|
|
static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
|
|
{
|
|
struct s626_private *devpriv = dev->private;
|
|
u8 ppl[16];
|
|
struct comedi_cmd *cmd = &s->async->cmd;
|
|
int tick;
|
|
|
|
if (devpriv->ai_cmd_running) {
|
|
dev_err(dev->class_dev,
|
|
"%s: Another ai_cmd is running\n", __func__);
|
|
return -EBUSY;
|
|
}
|
|
/* disable interrupt */
|
|
writel(0, dev->mmio + S626_P_IER);
|
|
|
|
/* clear interrupt request */
|
|
writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR);
|
|
|
|
/* clear any pending interrupt */
|
|
s626_dio_clear_irq(dev);
|
|
/* s626_enc_clear_irq(dev); */
|
|
|
|
/* reset ai_cmd_running flag */
|
|
devpriv->ai_cmd_running = 0;
|
|
|
|
s626_ai_load_polllist(ppl, cmd);
|
|
devpriv->ai_cmd_running = 1;
|
|
devpriv->ai_convert_count = 0;
|
|
|
|
switch (cmd->scan_begin_src) {
|
|
case TRIG_FOLLOW:
|
|
break;
|
|
case TRIG_TIMER:
|
|
/*
|
|
* set a counter to generate adc trigger at scan_begin_arg
|
|
* interval
|
|
*/
|
|
tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags);
|
|
|
|
/* load timer value and enable interrupt */
|
|
s626_timer_load(dev, 5, tick);
|
|
s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
|
|
break;
|
|
case TRIG_EXT:
|
|
/* set the digital line and interrupt for scan trigger */
|
|
if (cmd->start_src != TRIG_EXT)
|
|
s626_dio_set_irq(dev, cmd->scan_begin_arg);
|
|
break;
|
|
}
|
|
|
|
switch (cmd->convert_src) {
|
|
case TRIG_NOW:
|
|
break;
|
|
case TRIG_TIMER:
|
|
/*
|
|
* set a counter to generate adc trigger at convert_arg
|
|
* interval
|
|
*/
|
|
tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags);
|
|
|
|
/* load timer value and enable interrupt */
|
|
s626_timer_load(dev, 4, tick);
|
|
s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
|
|
break;
|
|
case TRIG_EXT:
|
|
/* set the digital line and interrupt for convert trigger */
|
|
if (cmd->scan_begin_src != TRIG_EXT &&
|
|
cmd->start_src == TRIG_EXT)
|
|
s626_dio_set_irq(dev, cmd->convert_arg);
|
|
break;
|
|
}
|
|
|
|
s626_reset_adc(dev, ppl);
|
|
|
|
switch (cmd->start_src) {
|
|
case TRIG_NOW:
|
|
/* Trigger ADC scan loop start */
|
|
/* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
|
|
|
|
/* Start executing the RPS program */
|
|
s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
|
|
s->async->inttrig = NULL;
|
|
break;
|
|
case TRIG_EXT:
|
|
/* configure DIO channel for acquisition trigger */
|
|
s626_dio_set_irq(dev, cmd->start_arg);
|
|
s->async->inttrig = NULL;
|
|
break;
|
|
case TRIG_INT:
|
|
s->async->inttrig = s626_ai_inttrig;
|
|
break;
|
|
}
|
|
|
|
/* enable interrupt */
|
|
writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int s626_ai_cmdtest(struct comedi_device *dev,
|
|
struct comedi_subdevice *s, struct comedi_cmd *cmd)
|
|
{
|
|
int err = 0;
|
|
unsigned int arg;
|
|
|
|
/* Step 1 : check if triggers are trivially valid */
|
|
|
|
err |= comedi_check_trigger_src(&cmd->start_src,
|
|
TRIG_NOW | TRIG_INT | TRIG_EXT);
|
|
err |= comedi_check_trigger_src(&cmd->scan_begin_src,
|
|
TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
|
|
err |= comedi_check_trigger_src(&cmd->convert_src,
|
|
TRIG_TIMER | TRIG_EXT | TRIG_NOW);
|
|
err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
|
|
err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
|
|
|
|
if (err)
|
|
return 1;
|
|
|
|
/* Step 2a : make sure trigger sources are unique */
|
|
|
|
err |= comedi_check_trigger_is_unique(cmd->start_src);
|
|
err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
|
|
err |= comedi_check_trigger_is_unique(cmd->convert_src);
|
|
err |= comedi_check_trigger_is_unique(cmd->stop_src);
|
|
|
|
/* Step 2b : and mutually compatible */
|
|
|
|
if (err)
|
|
return 2;
|
|
|
|
/* Step 3: check if arguments are trivially valid */
|
|
|
|
switch (cmd->start_src) {
|
|
case TRIG_NOW:
|
|
case TRIG_INT:
|
|
err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
|
|
break;
|
|
case TRIG_EXT:
|
|
err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39);
|
|
break;
|
|
}
|
|
|
|
if (cmd->scan_begin_src == TRIG_EXT)
|
|
err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
|
|
if (cmd->convert_src == TRIG_EXT)
|
|
err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39);
|
|
|
|
#define S626_MAX_SPEED 200000 /* in nanoseconds */
|
|
#define S626_MIN_SPEED 2000000000 /* in nanoseconds */
|
|
|
|
if (cmd->scan_begin_src == TRIG_TIMER) {
|
|
err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
|
|
S626_MAX_SPEED);
|
|
err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
|
|
S626_MIN_SPEED);
|
|
} else {
|
|
/*
|
|
* external trigger
|
|
* should be level/edge, hi/lo specification here
|
|
* should specify multiple external triggers
|
|
* err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
|
|
*/
|
|
}
|
|
if (cmd->convert_src == TRIG_TIMER) {
|
|
err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
|
|
S626_MAX_SPEED);
|
|
err |= comedi_check_trigger_arg_max(&cmd->convert_arg,
|
|
S626_MIN_SPEED);
|
|
} else {
|
|
/*
|
|
* external trigger - see above
|
|
* err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
|
|
*/
|
|
}
|
|
|
|
err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
|
|
cmd->chanlist_len);
|
|
|
|
if (cmd->stop_src == TRIG_COUNT)
|
|
err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
|
|
else /* TRIG_NONE */
|
|
err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
|
|
|
|
if (err)
|
|
return 3;
|
|
|
|
/* step 4: fix up any arguments */
|
|
|
|
if (cmd->scan_begin_src == TRIG_TIMER) {
|
|
arg = cmd->scan_begin_arg;
|
|
s626_ns_to_timer(&arg, cmd->flags);
|
|
err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
|
|
}
|
|
|
|
if (cmd->convert_src == TRIG_TIMER) {
|
|
arg = cmd->convert_arg;
|
|
s626_ns_to_timer(&arg, cmd->flags);
|
|
err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
|
|
|
|
if (cmd->scan_begin_src == TRIG_TIMER) {
|
|
arg = cmd->convert_arg * cmd->scan_end_arg;
|
|
err |= comedi_check_trigger_arg_min(
|
|
&cmd->scan_begin_arg, arg);
|
|
}
|
|
}
|
|
|
|
if (err)
|
|
return 4;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
|
|
{
|
|
struct s626_private *devpriv = dev->private;
|
|
|
|
/* Stop RPS program in case it is currently running */
|
|
s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
|
|
|
|
/* disable master interrupt */
|
|
writel(0, dev->mmio + S626_P_IER);
|
|
|
|
devpriv->ai_cmd_running = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int s626_ao_insn_write(struct comedi_device *dev,
|
|
struct comedi_subdevice *s,
|
|
struct comedi_insn *insn,
|
|
unsigned int *data)
|
|
{
|
|
unsigned int chan = CR_CHAN(insn->chanspec);
|
|
int i;
|
|
|
|
for (i = 0; i < insn->n; i++) {
|
|
s16 dacdata = (s16)data[i];
|
|
int ret;
|
|
|
|
dacdata -= (0x1fff);
|
|
|
|
ret = s626_set_dac(dev, chan, dacdata);
|
|
if (ret)
|
|
return ret;
|
|
|
|
s->readback[chan] = data[i];
|
|
}
|
|
|
|
return insn->n;
|
|
}
|
|
|
|
/* *************** DIGITAL I/O FUNCTIONS *************** */
|
|
|
|
/*
|
|
* All DIO functions address a group of DIO channels by means of
|
|
* "group" argument. group may be 0, 1 or 2, which correspond to DIO
|
|
* ports A, B and C, respectively.
|
|
*/
|
|
|
|
static void s626_dio_init(struct comedi_device *dev)
|
|
{
|
|
u16 group;
|
|
|
|
/* Prepare to treat writes to WRCapSel as capture disables. */
|
|
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
|
|
|
|
/* For each group of sixteen channels ... */
|
|
for (group = 0; group < S626_DIO_BANKS; group++) {
|
|
/* Disable all interrupts */
|
|
s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
|
|
/* Disable all event captures */
|
|
s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
|
|
/* Init all DIOs to default edge polarity */
|
|
s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
|
|
/* Program all outputs to inactive state */
|
|
s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
|
|
}
|
|
}
|
|
|
|
static int s626_dio_insn_bits(struct comedi_device *dev,
|
|
struct comedi_subdevice *s,
|
|
struct comedi_insn *insn,
|
|
unsigned int *data)
|
|
{
|
|
unsigned long group = (unsigned long)s->private;
|
|
|
|
if (comedi_dio_update_state(s, data))
|
|
s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
|
|
|
|
data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
|
|
|
|
return insn->n;
|
|
}
|
|
|
|
static int s626_dio_insn_config(struct comedi_device *dev,
|
|
struct comedi_subdevice *s,
|
|
struct comedi_insn *insn,
|
|
unsigned int *data)
|
|
{
|
|
unsigned long group = (unsigned long)s->private;
|
|
int ret;
|
|
|
|
ret = comedi_dio_insn_config(dev, s, insn, data, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
|
|
|
|
return insn->n;
|
|
}
|
|
|
|
/*
|
|
* Now this function initializes the value of the counter (data[0])
|
|
* and set the subdevice. To complete with trigger and interrupt
|
|
* configuration.
|
|
*
|
|
* FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
|
|
* what is being configured, but this function appears to be using data[0]
|
|
* as a variable.
|
|
*/
|
|
static int s626_enc_insn_config(struct comedi_device *dev,
|
|
struct comedi_subdevice *s,
|
|
struct comedi_insn *insn, unsigned int *data)
|
|
{
|
|
unsigned int chan = CR_CHAN(insn->chanspec);
|
|
u16 setup =
|
|
/* Preload upon index. */
|
|
S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
|
|
/* Disable hardware index. */
|
|
S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
|
|
/* Operating mode is Counter. */
|
|
S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
|
|
/* Active high clock. */
|
|
S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
|
|
/* Clock multiplier is 1x. */
|
|
S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
|
|
/* Enabled by index */
|
|
S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
|
|
/* uint16_t disable_int_src = true; */
|
|
/* uint32_t Preloadvalue; //Counter initial value */
|
|
u16 value_latchsrc = S626_LATCHSRC_AB_READ;
|
|
u16 enab = S626_CLKENAB_ALWAYS;
|
|
|
|
/* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
|
|
|
|
s626_set_mode(dev, chan, setup, true);
|
|
s626_preload(dev, chan, data[0]);
|
|
s626_pulse_index(dev, chan);
|
|
s626_set_latch_source(dev, chan, value_latchsrc);
|
|
s626_set_enable(dev, chan, (enab != 0));
|
|
|
|
return insn->n;
|
|
}
|
|
|
|
static int s626_enc_insn_read(struct comedi_device *dev,
|
|
struct comedi_subdevice *s,
|
|
struct comedi_insn *insn,
|
|
unsigned int *data)
|
|
{
|
|
unsigned int chan = CR_CHAN(insn->chanspec);
|
|
u16 cntr_latch_reg = S626_LP_CNTR(chan);
|
|
int i;
|
|
|
|
for (i = 0; i < insn->n; i++) {
|
|
unsigned int val;
|
|
|
|
/*
|
|
* Read the counter's output latch LSW/MSW.
|
|
* Latches on LSW read.
|
|
*/
|
|
val = s626_debi_read(dev, cntr_latch_reg);
|
|
val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16);
|
|
data[i] = val;
|
|
}
|
|
|
|
return insn->n;
|
|
}
|
|
|
|
static int s626_enc_insn_write(struct comedi_device *dev,
|
|
struct comedi_subdevice *s,
|
|
struct comedi_insn *insn, unsigned int *data)
|
|
{
|
|
unsigned int chan = CR_CHAN(insn->chanspec);
|
|
|
|
/* Set the preload register */
|
|
s626_preload(dev, chan, data[0]);
|
|
|
|
/*
|
|
* Software index pulse forces the preload register to load
|
|
* into the counter
|
|
*/
|
|
s626_set_load_trig(dev, chan, 0);
|
|
s626_pulse_index(dev, chan);
|
|
s626_set_load_trig(dev, chan, 2);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void s626_write_misc2(struct comedi_device *dev, u16 new_image)
|
|
{
|
|
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
|
|
s626_debi_write(dev, S626_LP_WRMISC2, new_image);
|
|
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
|
|
}
|
|
|
|
static void s626_counters_init(struct comedi_device *dev)
|
|
{
|
|
int chan;
|
|
u16 setup =
|
|
/* Preload upon index. */
|
|
S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
|
|
/* Disable hardware index. */
|
|
S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
|
|
/* Operating mode is counter. */
|
|
S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
|
|
/* Active high clock. */
|
|
S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
|
|
/* Clock multiplier is 1x. */
|
|
S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
|
|
/* Enabled by index */
|
|
S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
|
|
|
|
/*
|
|
* Disable all counter interrupts and clear any captured counter events.
|
|
*/
|
|
for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
|
|
s626_set_mode(dev, chan, setup, true);
|
|
s626_set_int_src(dev, chan, 0);
|
|
s626_reset_cap_flags(dev, chan);
|
|
s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS);
|
|
}
|
|
}
|
|
|
|
static int s626_allocate_dma_buffers(struct comedi_device *dev)
|
|
{
|
|
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
|
|
struct s626_private *devpriv = dev->private;
|
|
void *addr;
|
|
dma_addr_t appdma;
|
|
|
|
addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma,
|
|
GFP_KERNEL);
|
|
if (!addr)
|
|
return -ENOMEM;
|
|
devpriv->ana_buf.logical_base = addr;
|
|
devpriv->ana_buf.physical_base = appdma;
|
|
|
|
addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma,
|
|
GFP_KERNEL);
|
|
if (!addr)
|
|
return -ENOMEM;
|
|
devpriv->rps_buf.logical_base = addr;
|
|
devpriv->rps_buf.physical_base = appdma;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void s626_free_dma_buffers(struct comedi_device *dev)
|
|
{
|
|
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
|
|
struct s626_private *devpriv = dev->private;
|
|
|
|
if (!devpriv)
|
|
return;
|
|
|
|
if (devpriv->rps_buf.logical_base)
|
|
dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE,
|
|
devpriv->rps_buf.logical_base,
|
|
devpriv->rps_buf.physical_base);
|
|
if (devpriv->ana_buf.logical_base)
|
|
dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE,
|
|
devpriv->ana_buf.logical_base,
|
|
devpriv->ana_buf.physical_base);
|
|
}
|
|
|
|
static int s626_initialize(struct comedi_device *dev)
|
|
{
|
|
struct s626_private *devpriv = dev->private;
|
|
dma_addr_t phys_buf;
|
|
u16 chan;
|
|
int i;
|
|
int ret;
|
|
|
|
/* Enable DEBI and audio pins, enable I2C interface */
|
|
s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
|
|
S626_P_MC1);
|
|
|
|
/*
|
|
* Configure DEBI operating mode
|
|
*
|
|
* Local bus is 16 bits wide
|
|
* Declare DEBI transfer timeout interval
|
|
* Set up byte lane steering
|
|
* Intel-compatible local bus (DEBI never times out)
|
|
*/
|
|
writel(S626_DEBI_CFG_SLAVE16 |
|
|
(S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
|
|
S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG);
|
|
|
|
/* Disable MMU paging */
|
|
writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE);
|
|
|
|
/* Init GPIO so that ADC Start* is negated */
|
|
writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
|
|
|
|
/* I2C device address for onboard eeprom (revb) */
|
|
devpriv->i2c_adrs = 0xA0;
|
|
|
|
/*
|
|
* Issue an I2C ABORT command to halt any I2C
|
|
* operation in progress and reset BUSY flag.
|
|
*/
|
|
writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
|
|
dev->mmio + S626_P_I2CSTAT);
|
|
s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
|
|
ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Per SAA7146 data sheet, write to STATUS
|
|
* reg twice to reset all I2C error flags.
|
|
*/
|
|
for (i = 0; i < 2; i++) {
|
|
writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT);
|
|
s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
|
|
ret = comedi_timeout(dev, NULL,
|
|
NULL, s626_i2c_handshake_eoc, 0);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Init audio interface functional attributes: set DAC/ADC
|
|
* serial clock rates, invert DAC serial clock so that
|
|
* DAC data setup times are satisfied, enable DAC serial
|
|
* clock out.
|
|
*/
|
|
writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2);
|
|
|
|
/*
|
|
* Set up TSL1 slot list, which is used to control the
|
|
* accumulation of ADC data: S626_RSD1 = shift data in on SD1.
|
|
* S626_SIB_A1 = store data uint8_t at next available location
|
|
* in FB BUFFER1 register.
|
|
*/
|
|
writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1);
|
|
writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
|
|
dev->mmio + S626_P_TSL1 + 4);
|
|
|
|
/* Enable TSL1 slot list so that it executes all the time */
|
|
writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1);
|
|
|
|
/*
|
|
* Initialize RPS registers used for ADC
|
|
*/
|
|
|
|
/* Physical start of RPS program */
|
|
writel((u32)devpriv->rps_buf.physical_base,
|
|
dev->mmio + S626_P_RPSADDR1);
|
|
/* RPS program performs no explicit mem writes */
|
|
writel(0, dev->mmio + S626_P_RPSPAGE1);
|
|
/* Disable RPS timeouts */
|
|
writel(0, dev->mmio + S626_P_RPS1_TOUT);
|
|
|
|
#if 0
|
|
/*
|
|
* SAA7146 BUG WORKAROUND
|
|
*
|
|
* Initialize SAA7146 ADC interface to a known state by
|
|
* invoking ADCs until FB BUFFER 1 register shows that it
|
|
* is correctly receiving ADC data. This is necessary
|
|
* because the SAA7146 ADC interface does not start up in
|
|
* a defined state after a PCI reset.
|
|
*/
|
|
{
|
|
struct comedi_subdevice *s = dev->read_subdev;
|
|
u8 poll_list;
|
|
u16 adc_data;
|
|
u16 start_val;
|
|
u16 index;
|
|
unsigned int data[16];
|
|
|
|
/* Create a simple polling list for analog input channel 0 */
|
|
poll_list = S626_EOPL;
|
|
s626_reset_adc(dev, &poll_list);
|
|
|
|
/* Get initial ADC value */
|
|
s626_ai_rinsn(dev, s, NULL, data);
|
|
start_val = data[0];
|
|
|
|
/*
|
|
* VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
|
|
* EXECUTION.
|
|
*
|
|
* Invoke ADCs until the new ADC value differs from the initial
|
|
* value or a timeout occurs. The timeout protects against the
|
|
* possibility that the driver is restarting and the ADC data is
|
|
* a fixed value resulting from the applied ADC analog input
|
|
* being unusually quiet or at the rail.
|
|
*/
|
|
for (index = 0; index < 500; index++) {
|
|
s626_ai_rinsn(dev, s, NULL, data);
|
|
adc_data = data[0];
|
|
if (adc_data != start_val)
|
|
break;
|
|
}
|
|
}
|
|
#endif /* SAA7146 BUG WORKAROUND */
|
|
|
|
/*
|
|
* Initialize the DAC interface
|
|
*/
|
|
|
|
/*
|
|
* Init Audio2's output DMAC attributes:
|
|
* burst length = 1 DWORD
|
|
* threshold = 1 DWORD.
|
|
*/
|
|
writel(0, dev->mmio + S626_P_PCI_BT_A);
|
|
|
|
/*
|
|
* Init Audio2's output DMA physical addresses. The protection
|
|
* address is set to 1 DWORD past the base address so that a
|
|
* single DWORD will be transferred each time a DMA transfer is
|
|
* enabled.
|
|
*/
|
|
phys_buf = devpriv->ana_buf.physical_base +
|
|
(S626_DAC_WDMABUF_OS * sizeof(u32));
|
|
writel((u32)phys_buf, dev->mmio + S626_P_BASEA2_OUT);
|
|
writel((u32)(phys_buf + sizeof(u32)),
|
|
dev->mmio + S626_P_PROTA2_OUT);
|
|
|
|
/*
|
|
* Cache Audio2's output DMA buffer logical address. This is
|
|
* where DAC data is buffered for A2 output DMA transfers.
|
|
*/
|
|
devpriv->dac_wbuf = (u32 *)devpriv->ana_buf.logical_base +
|
|
S626_DAC_WDMABUF_OS;
|
|
|
|
/*
|
|
* Audio2's output channels does not use paging. The
|
|
* protection violation handling bit is set so that the
|
|
* DMAC will automatically halt and its PCI address pointer
|
|
* will be reset when the protection address is reached.
|
|
*/
|
|
writel(8, dev->mmio + S626_P_PAGEA2_OUT);
|
|
|
|
/*
|
|
* Initialize time slot list 2 (TSL2), which is used to control
|
|
* the clock generation for and serialization of data to be sent
|
|
* to the DAC devices. Slot 0 is a NOP that is used to trap TSL
|
|
* execution; this permits other slots to be safely modified
|
|
* without first turning off the TSL sequencer (which is
|
|
* apparently impossible to do). Also, SD3 (which is driven by a
|
|
* pull-up resistor) is shifted in and stored to the MSB of
|
|
* FB_BUFFER2 to be used as evidence that the slot sequence has
|
|
* not yet finished executing.
|
|
*/
|
|
|
|
/* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
|
|
writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
|
|
dev->mmio + S626_VECTPORT(0));
|
|
|
|
/*
|
|
* Initialize slot 1, which is constant. Slot 1 causes a
|
|
* DWORD to be transferred from audio channel 2's output FIFO
|
|
* to the FIFO's output buffer so that it can be serialized
|
|
* and sent to the DAC during subsequent slots. All remaining
|
|
* slots are dynamically populated as required by the target
|
|
* DAC device.
|
|
*/
|
|
|
|
/* Slot 1: Fetch DWORD from Audio2's output FIFO */
|
|
writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1));
|
|
|
|
/* Start DAC's audio interface (TSL2) running */
|
|
writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1);
|
|
|
|
/*
|
|
* Init Trim DACs to calibrated values. Do it twice because the
|
|
* SAA7146 audio channel does not always reset properly and
|
|
* sometimes causes the first few TrimDAC writes to malfunction.
|
|
*/
|
|
s626_load_trim_dacs(dev);
|
|
ret = s626_load_trim_dacs(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Manually init all gate array hardware in case this is a soft
|
|
* reset (we have no way of determining whether this is a warm
|
|
* or cold start). This is necessary because the gate array will
|
|
* reset only in response to a PCI hard reset; there is no soft
|
|
* reset function.
|
|
*/
|
|
|
|
/*
|
|
* Init all DAC outputs to 0V and init all DAC setpoint and
|
|
* polarity images.
|
|
*/
|
|
for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
|
|
ret = s626_set_dac(dev, chan, 0);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Init counters */
|
|
s626_counters_init(dev);
|
|
|
|
/*
|
|
* Without modifying the state of the Battery Backup enab, disable
|
|
* the watchdog timer, set DIO channels 0-5 to operate in the
|
|
* standard DIO (vs. counter overflow) mode, disable the battery
|
|
* charger, and reset the watchdog interval selector to zero.
|
|
*/
|
|
s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
|
|
S626_MISC2_BATT_ENABLE));
|
|
|
|
/* Initialize the digital I/O subsystem */
|
|
s626_dio_init(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int s626_auto_attach(struct comedi_device *dev,
|
|
unsigned long context_unused)
|
|
{
|
|
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
|
|
struct s626_private *devpriv;
|
|
struct comedi_subdevice *s;
|
|
int ret;
|
|
|
|
devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
|
|
if (!devpriv)
|
|
return -ENOMEM;
|
|
|
|
ret = comedi_pci_enable(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dev->mmio = pci_ioremap_bar(pcidev, 0);
|
|
if (!dev->mmio)
|
|
return -ENOMEM;
|
|
|
|
/* disable master interrupt */
|
|
writel(0, dev->mmio + S626_P_IER);
|
|
|
|
/* soft reset */
|
|
writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1);
|
|
|
|
/* DMA FIXME DMA// */
|
|
|
|
ret = s626_allocate_dma_buffers(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (pcidev->irq) {
|
|
ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
|
|
dev->board_name, dev);
|
|
|
|
if (ret == 0)
|
|
dev->irq = pcidev->irq;
|
|
}
|
|
|
|
ret = comedi_alloc_subdevices(dev, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
s = &dev->subdevices[0];
|
|
/* analog input subdevice */
|
|
s->type = COMEDI_SUBD_AI;
|
|
s->subdev_flags = SDF_READABLE | SDF_DIFF;
|
|
s->n_chan = S626_ADC_CHANNELS;
|
|
s->maxdata = 0x3fff;
|
|
s->range_table = &s626_range_table;
|
|
s->len_chanlist = S626_ADC_CHANNELS;
|
|
s->insn_read = s626_ai_insn_read;
|
|
if (dev->irq) {
|
|
dev->read_subdev = s;
|
|
s->subdev_flags |= SDF_CMD_READ;
|
|
s->do_cmd = s626_ai_cmd;
|
|
s->do_cmdtest = s626_ai_cmdtest;
|
|
s->cancel = s626_ai_cancel;
|
|
}
|
|
|
|
s = &dev->subdevices[1];
|
|
/* analog output subdevice */
|
|
s->type = COMEDI_SUBD_AO;
|
|
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
|
|
s->n_chan = S626_DAC_CHANNELS;
|
|
s->maxdata = 0x3fff;
|
|
s->range_table = &range_bipolar10;
|
|
s->insn_write = s626_ao_insn_write;
|
|
|
|
ret = comedi_alloc_subdev_readback(s);
|
|
if (ret)
|
|
return ret;
|
|
|
|
s = &dev->subdevices[2];
|
|
/* digital I/O subdevice */
|
|
s->type = COMEDI_SUBD_DIO;
|
|
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
|
|
s->n_chan = 16;
|
|
s->maxdata = 1;
|
|
s->io_bits = 0xffff;
|
|
s->private = (void *)0; /* DIO group 0 */
|
|
s->range_table = &range_digital;
|
|
s->insn_config = s626_dio_insn_config;
|
|
s->insn_bits = s626_dio_insn_bits;
|
|
|
|
s = &dev->subdevices[3];
|
|
/* digital I/O subdevice */
|
|
s->type = COMEDI_SUBD_DIO;
|
|
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
|
|
s->n_chan = 16;
|
|
s->maxdata = 1;
|
|
s->io_bits = 0xffff;
|
|
s->private = (void *)1; /* DIO group 1 */
|
|
s->range_table = &range_digital;
|
|
s->insn_config = s626_dio_insn_config;
|
|
s->insn_bits = s626_dio_insn_bits;
|
|
|
|
s = &dev->subdevices[4];
|
|
/* digital I/O subdevice */
|
|
s->type = COMEDI_SUBD_DIO;
|
|
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
|
|
s->n_chan = 16;
|
|
s->maxdata = 1;
|
|
s->io_bits = 0xffff;
|
|
s->private = (void *)2; /* DIO group 2 */
|
|
s->range_table = &range_digital;
|
|
s->insn_config = s626_dio_insn_config;
|
|
s->insn_bits = s626_dio_insn_bits;
|
|
|
|
s = &dev->subdevices[5];
|
|
/* encoder (counter) subdevice */
|
|
s->type = COMEDI_SUBD_COUNTER;
|
|
s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
|
|
s->n_chan = S626_ENCODER_CHANNELS;
|
|
s->maxdata = 0xffffff;
|
|
s->range_table = &range_unknown;
|
|
s->insn_config = s626_enc_insn_config;
|
|
s->insn_read = s626_enc_insn_read;
|
|
s->insn_write = s626_enc_insn_write;
|
|
|
|
return s626_initialize(dev);
|
|
}
|
|
|
|
static void s626_detach(struct comedi_device *dev)
|
|
{
|
|
struct s626_private *devpriv = dev->private;
|
|
|
|
if (devpriv) {
|
|
/* stop ai_command */
|
|
devpriv->ai_cmd_running = 0;
|
|
|
|
if (dev->mmio) {
|
|
/* interrupt mask */
|
|
/* Disable master interrupt */
|
|
writel(0, dev->mmio + S626_P_IER);
|
|
/* Clear board's IRQ status flag */
|
|
writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
|
|
dev->mmio + S626_P_ISR);
|
|
|
|
/* Disable the watchdog timer and battery charger. */
|
|
s626_write_misc2(dev, 0);
|
|
|
|
/* Close all interfaces on 7146 device */
|
|
writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1);
|
|
writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1);
|
|
}
|
|
}
|
|
comedi_pci_detach(dev);
|
|
s626_free_dma_buffers(dev);
|
|
}
|
|
|
|
static struct comedi_driver s626_driver = {
|
|
.driver_name = "s626",
|
|
.module = THIS_MODULE,
|
|
.auto_attach = s626_auto_attach,
|
|
.detach = s626_detach,
|
|
};
|
|
|
|
static int s626_pci_probe(struct pci_dev *dev,
|
|
const struct pci_device_id *id)
|
|
{
|
|
return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
|
|
}
|
|
|
|
/*
|
|
* For devices with vendor:device id == 0x1131:0x7146 you must specify
|
|
* also subvendor:subdevice ids, because otherwise it will conflict with
|
|
* Philips SAA7146 media/dvb based cards.
|
|
*/
|
|
static const struct pci_device_id s626_pci_table[] = {
|
|
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
|
|
0x6000, 0x0272) },
|
|
{ 0 }
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, s626_pci_table);
|
|
|
|
static struct pci_driver s626_pci_driver = {
|
|
.name = "s626",
|
|
.id_table = s626_pci_table,
|
|
.probe = s626_pci_probe,
|
|
.remove = comedi_pci_auto_unconfig,
|
|
};
|
|
module_comedi_pci_driver(s626_driver, s626_pci_driver);
|
|
|
|
MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
|
|
MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
|
|
MODULE_LICENSE("GPL");
|