mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 22:21:40 +00:00
1e58a8ccf2
When we're repairing a directory structure or fixing the dotdot entry of a subdirectory, it's possible that we won't ever find a parent for the subdirectory. When this is the case, move it to the orphanage, aka /lost+found. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
4071 lines
110 KiB
C
4071 lines
110 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include <linux/iversion.h>
|
|
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_dir2.h"
|
|
#include "xfs_attr.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_trans_space.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_iunlink_item.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_bmap_util.h"
|
|
#include "xfs_errortag.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_filestream.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_icache.h"
|
|
#include "xfs_symlink.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_reflink.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_log_priv.h"
|
|
#include "xfs_health.h"
|
|
#include "xfs_pnfs.h"
|
|
|
|
struct kmem_cache *xfs_inode_cache;
|
|
|
|
/*
|
|
* helper function to extract extent size hint from inode
|
|
*/
|
|
xfs_extlen_t
|
|
xfs_get_extsz_hint(
|
|
struct xfs_inode *ip)
|
|
{
|
|
/*
|
|
* No point in aligning allocations if we need to COW to actually
|
|
* write to them.
|
|
*/
|
|
if (xfs_is_always_cow_inode(ip))
|
|
return 0;
|
|
if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
|
|
return ip->i_extsize;
|
|
if (XFS_IS_REALTIME_INODE(ip))
|
|
return ip->i_mount->m_sb.sb_rextsize;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Helper function to extract CoW extent size hint from inode.
|
|
* Between the extent size hint and the CoW extent size hint, we
|
|
* return the greater of the two. If the value is zero (automatic),
|
|
* use the default size.
|
|
*/
|
|
xfs_extlen_t
|
|
xfs_get_cowextsz_hint(
|
|
struct xfs_inode *ip)
|
|
{
|
|
xfs_extlen_t a, b;
|
|
|
|
a = 0;
|
|
if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
|
|
a = ip->i_cowextsize;
|
|
b = xfs_get_extsz_hint(ip);
|
|
|
|
a = max(a, b);
|
|
if (a == 0)
|
|
return XFS_DEFAULT_COWEXTSZ_HINT;
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* These two are wrapper routines around the xfs_ilock() routine used to
|
|
* centralize some grungy code. They are used in places that wish to lock the
|
|
* inode solely for reading the extents. The reason these places can't just
|
|
* call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
|
|
* bringing in of the extents from disk for a file in b-tree format. If the
|
|
* inode is in b-tree format, then we need to lock the inode exclusively until
|
|
* the extents are read in. Locking it exclusively all the time would limit
|
|
* our parallelism unnecessarily, though. What we do instead is check to see
|
|
* if the extents have been read in yet, and only lock the inode exclusively
|
|
* if they have not.
|
|
*
|
|
* The functions return a value which should be given to the corresponding
|
|
* xfs_iunlock() call.
|
|
*/
|
|
uint
|
|
xfs_ilock_data_map_shared(
|
|
struct xfs_inode *ip)
|
|
{
|
|
uint lock_mode = XFS_ILOCK_SHARED;
|
|
|
|
if (xfs_need_iread_extents(&ip->i_df))
|
|
lock_mode = XFS_ILOCK_EXCL;
|
|
xfs_ilock(ip, lock_mode);
|
|
return lock_mode;
|
|
}
|
|
|
|
uint
|
|
xfs_ilock_attr_map_shared(
|
|
struct xfs_inode *ip)
|
|
{
|
|
uint lock_mode = XFS_ILOCK_SHARED;
|
|
|
|
if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
|
|
lock_mode = XFS_ILOCK_EXCL;
|
|
xfs_ilock(ip, lock_mode);
|
|
return lock_mode;
|
|
}
|
|
|
|
/*
|
|
* You can't set both SHARED and EXCL for the same lock,
|
|
* and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
|
|
* XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
|
|
* to set in lock_flags.
|
|
*/
|
|
static inline void
|
|
xfs_lock_flags_assert(
|
|
uint lock_flags)
|
|
{
|
|
ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
|
|
(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
|
|
ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
|
|
(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
|
|
ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
|
|
(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
|
|
ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
|
|
ASSERT(lock_flags != 0);
|
|
}
|
|
|
|
/*
|
|
* In addition to i_rwsem in the VFS inode, the xfs inode contains 2
|
|
* multi-reader locks: invalidate_lock and the i_lock. This routine allows
|
|
* various combinations of the locks to be obtained.
|
|
*
|
|
* The 3 locks should always be ordered so that the IO lock is obtained first,
|
|
* the mmap lock second and the ilock last in order to prevent deadlock.
|
|
*
|
|
* Basic locking order:
|
|
*
|
|
* i_rwsem -> invalidate_lock -> page_lock -> i_ilock
|
|
*
|
|
* mmap_lock locking order:
|
|
*
|
|
* i_rwsem -> page lock -> mmap_lock
|
|
* mmap_lock -> invalidate_lock -> page_lock
|
|
*
|
|
* The difference in mmap_lock locking order mean that we cannot hold the
|
|
* invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
|
|
* can fault in pages during copy in/out (for buffered IO) or require the
|
|
* mmap_lock in get_user_pages() to map the user pages into the kernel address
|
|
* space for direct IO. Similarly the i_rwsem cannot be taken inside a page
|
|
* fault because page faults already hold the mmap_lock.
|
|
*
|
|
* Hence to serialise fully against both syscall and mmap based IO, we need to
|
|
* take both the i_rwsem and the invalidate_lock. These locks should *only* be
|
|
* both taken in places where we need to invalidate the page cache in a race
|
|
* free manner (e.g. truncate, hole punch and other extent manipulation
|
|
* functions).
|
|
*/
|
|
void
|
|
xfs_ilock(
|
|
xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
trace_xfs_ilock(ip, lock_flags, _RET_IP_);
|
|
|
|
xfs_lock_flags_assert(lock_flags);
|
|
|
|
if (lock_flags & XFS_IOLOCK_EXCL) {
|
|
down_write_nested(&VFS_I(ip)->i_rwsem,
|
|
XFS_IOLOCK_DEP(lock_flags));
|
|
} else if (lock_flags & XFS_IOLOCK_SHARED) {
|
|
down_read_nested(&VFS_I(ip)->i_rwsem,
|
|
XFS_IOLOCK_DEP(lock_flags));
|
|
}
|
|
|
|
if (lock_flags & XFS_MMAPLOCK_EXCL) {
|
|
down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
|
|
XFS_MMAPLOCK_DEP(lock_flags));
|
|
} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
|
|
down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
|
|
XFS_MMAPLOCK_DEP(lock_flags));
|
|
}
|
|
|
|
if (lock_flags & XFS_ILOCK_EXCL)
|
|
down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
|
|
else if (lock_flags & XFS_ILOCK_SHARED)
|
|
down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
|
|
}
|
|
|
|
/*
|
|
* This is just like xfs_ilock(), except that the caller
|
|
* is guaranteed not to sleep. It returns 1 if it gets
|
|
* the requested locks and 0 otherwise. If the IO lock is
|
|
* obtained but the inode lock cannot be, then the IO lock
|
|
* is dropped before returning.
|
|
*
|
|
* ip -- the inode being locked
|
|
* lock_flags -- this parameter indicates the inode's locks to be
|
|
* to be locked. See the comment for xfs_ilock() for a list
|
|
* of valid values.
|
|
*/
|
|
int
|
|
xfs_ilock_nowait(
|
|
xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
|
|
|
|
xfs_lock_flags_assert(lock_flags);
|
|
|
|
if (lock_flags & XFS_IOLOCK_EXCL) {
|
|
if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
|
|
goto out;
|
|
} else if (lock_flags & XFS_IOLOCK_SHARED) {
|
|
if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
|
|
goto out;
|
|
}
|
|
|
|
if (lock_flags & XFS_MMAPLOCK_EXCL) {
|
|
if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
|
|
goto out_undo_iolock;
|
|
} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
|
|
if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
|
|
goto out_undo_iolock;
|
|
}
|
|
|
|
if (lock_flags & XFS_ILOCK_EXCL) {
|
|
if (!down_write_trylock(&ip->i_lock))
|
|
goto out_undo_mmaplock;
|
|
} else if (lock_flags & XFS_ILOCK_SHARED) {
|
|
if (!down_read_trylock(&ip->i_lock))
|
|
goto out_undo_mmaplock;
|
|
}
|
|
return 1;
|
|
|
|
out_undo_mmaplock:
|
|
if (lock_flags & XFS_MMAPLOCK_EXCL)
|
|
up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
|
|
else if (lock_flags & XFS_MMAPLOCK_SHARED)
|
|
up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
|
|
out_undo_iolock:
|
|
if (lock_flags & XFS_IOLOCK_EXCL)
|
|
up_write(&VFS_I(ip)->i_rwsem);
|
|
else if (lock_flags & XFS_IOLOCK_SHARED)
|
|
up_read(&VFS_I(ip)->i_rwsem);
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* xfs_iunlock() is used to drop the inode locks acquired with
|
|
* xfs_ilock() and xfs_ilock_nowait(). The caller must pass
|
|
* in the flags given to xfs_ilock() or xfs_ilock_nowait() so
|
|
* that we know which locks to drop.
|
|
*
|
|
* ip -- the inode being unlocked
|
|
* lock_flags -- this parameter indicates the inode's locks to be
|
|
* to be unlocked. See the comment for xfs_ilock() for a list
|
|
* of valid values for this parameter.
|
|
*
|
|
*/
|
|
void
|
|
xfs_iunlock(
|
|
xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
xfs_lock_flags_assert(lock_flags);
|
|
|
|
if (lock_flags & XFS_IOLOCK_EXCL)
|
|
up_write(&VFS_I(ip)->i_rwsem);
|
|
else if (lock_flags & XFS_IOLOCK_SHARED)
|
|
up_read(&VFS_I(ip)->i_rwsem);
|
|
|
|
if (lock_flags & XFS_MMAPLOCK_EXCL)
|
|
up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
|
|
else if (lock_flags & XFS_MMAPLOCK_SHARED)
|
|
up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
|
|
|
|
if (lock_flags & XFS_ILOCK_EXCL)
|
|
up_write(&ip->i_lock);
|
|
else if (lock_flags & XFS_ILOCK_SHARED)
|
|
up_read(&ip->i_lock);
|
|
|
|
trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
|
|
}
|
|
|
|
/*
|
|
* give up write locks. the i/o lock cannot be held nested
|
|
* if it is being demoted.
|
|
*/
|
|
void
|
|
xfs_ilock_demote(
|
|
xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
|
|
ASSERT((lock_flags &
|
|
~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
|
|
|
|
if (lock_flags & XFS_ILOCK_EXCL)
|
|
downgrade_write(&ip->i_lock);
|
|
if (lock_flags & XFS_MMAPLOCK_EXCL)
|
|
downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
|
|
if (lock_flags & XFS_IOLOCK_EXCL)
|
|
downgrade_write(&VFS_I(ip)->i_rwsem);
|
|
|
|
trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
|
|
}
|
|
|
|
void
|
|
xfs_assert_ilocked(
|
|
struct xfs_inode *ip,
|
|
uint lock_flags)
|
|
{
|
|
/*
|
|
* Sometimes we assert the ILOCK is held exclusively, but we're in
|
|
* a workqueue, so lockdep doesn't know we're the owner.
|
|
*/
|
|
if (lock_flags & XFS_ILOCK_SHARED)
|
|
rwsem_assert_held(&ip->i_lock);
|
|
else if (lock_flags & XFS_ILOCK_EXCL)
|
|
rwsem_assert_held_write_nolockdep(&ip->i_lock);
|
|
|
|
if (lock_flags & XFS_MMAPLOCK_SHARED)
|
|
rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
|
|
else if (lock_flags & XFS_MMAPLOCK_EXCL)
|
|
rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
|
|
|
|
if (lock_flags & XFS_IOLOCK_SHARED)
|
|
rwsem_assert_held(&VFS_I(ip)->i_rwsem);
|
|
else if (lock_flags & XFS_IOLOCK_EXCL)
|
|
rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
|
|
}
|
|
|
|
/*
|
|
* xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
|
|
* DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
|
|
* when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
|
|
* errors and warnings.
|
|
*/
|
|
#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
|
|
static bool
|
|
xfs_lockdep_subclass_ok(
|
|
int subclass)
|
|
{
|
|
return subclass < MAX_LOCKDEP_SUBCLASSES;
|
|
}
|
|
#else
|
|
#define xfs_lockdep_subclass_ok(subclass) (true)
|
|
#endif
|
|
|
|
/*
|
|
* Bump the subclass so xfs_lock_inodes() acquires each lock with a different
|
|
* value. This can be called for any type of inode lock combination, including
|
|
* parent locking. Care must be taken to ensure we don't overrun the subclass
|
|
* storage fields in the class mask we build.
|
|
*/
|
|
static inline uint
|
|
xfs_lock_inumorder(
|
|
uint lock_mode,
|
|
uint subclass)
|
|
{
|
|
uint class = 0;
|
|
|
|
ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
|
|
XFS_ILOCK_RTSUM)));
|
|
ASSERT(xfs_lockdep_subclass_ok(subclass));
|
|
|
|
if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
|
|
ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
|
|
class += subclass << XFS_IOLOCK_SHIFT;
|
|
}
|
|
|
|
if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
|
|
ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
|
|
class += subclass << XFS_MMAPLOCK_SHIFT;
|
|
}
|
|
|
|
if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
|
|
ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
|
|
class += subclass << XFS_ILOCK_SHIFT;
|
|
}
|
|
|
|
return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
|
|
}
|
|
|
|
/*
|
|
* The following routine will lock n inodes in exclusive mode. We assume the
|
|
* caller calls us with the inodes in i_ino order.
|
|
*
|
|
* We need to detect deadlock where an inode that we lock is in the AIL and we
|
|
* start waiting for another inode that is locked by a thread in a long running
|
|
* transaction (such as truncate). This can result in deadlock since the long
|
|
* running trans might need to wait for the inode we just locked in order to
|
|
* push the tail and free space in the log.
|
|
*
|
|
* xfs_lock_inodes() can only be used to lock one type of lock at a time -
|
|
* the iolock, the mmaplock or the ilock, but not more than one at a time. If we
|
|
* lock more than one at a time, lockdep will report false positives saying we
|
|
* have violated locking orders.
|
|
*/
|
|
static void
|
|
xfs_lock_inodes(
|
|
struct xfs_inode **ips,
|
|
int inodes,
|
|
uint lock_mode)
|
|
{
|
|
int attempts = 0;
|
|
uint i;
|
|
int j;
|
|
bool try_lock;
|
|
struct xfs_log_item *lp;
|
|
|
|
/*
|
|
* Currently supports between 2 and 5 inodes with exclusive locking. We
|
|
* support an arbitrary depth of locking here, but absolute limits on
|
|
* inodes depend on the type of locking and the limits placed by
|
|
* lockdep annotations in xfs_lock_inumorder. These are all checked by
|
|
* the asserts.
|
|
*/
|
|
ASSERT(ips && inodes >= 2 && inodes <= 5);
|
|
ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
|
|
XFS_ILOCK_EXCL));
|
|
ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
|
|
XFS_ILOCK_SHARED)));
|
|
ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
|
|
inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
|
|
ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
|
|
inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
|
|
|
|
if (lock_mode & XFS_IOLOCK_EXCL) {
|
|
ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
|
|
} else if (lock_mode & XFS_MMAPLOCK_EXCL)
|
|
ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
|
|
|
|
again:
|
|
try_lock = false;
|
|
i = 0;
|
|
for (; i < inodes; i++) {
|
|
ASSERT(ips[i]);
|
|
|
|
if (i && (ips[i] == ips[i - 1])) /* Already locked */
|
|
continue;
|
|
|
|
/*
|
|
* If try_lock is not set yet, make sure all locked inodes are
|
|
* not in the AIL. If any are, set try_lock to be used later.
|
|
*/
|
|
if (!try_lock) {
|
|
for (j = (i - 1); j >= 0 && !try_lock; j--) {
|
|
lp = &ips[j]->i_itemp->ili_item;
|
|
if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
|
|
try_lock = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If any of the previous locks we have locked is in the AIL,
|
|
* we must TRY to get the second and subsequent locks. If
|
|
* we can't get any, we must release all we have
|
|
* and try again.
|
|
*/
|
|
if (!try_lock) {
|
|
xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
|
|
continue;
|
|
}
|
|
|
|
/* try_lock means we have an inode locked that is in the AIL. */
|
|
ASSERT(i != 0);
|
|
if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
|
|
continue;
|
|
|
|
/*
|
|
* Unlock all previous guys and try again. xfs_iunlock will try
|
|
* to push the tail if the inode is in the AIL.
|
|
*/
|
|
attempts++;
|
|
for (j = i - 1; j >= 0; j--) {
|
|
/*
|
|
* Check to see if we've already unlocked this one. Not
|
|
* the first one going back, and the inode ptr is the
|
|
* same.
|
|
*/
|
|
if (j != (i - 1) && ips[j] == ips[j + 1])
|
|
continue;
|
|
|
|
xfs_iunlock(ips[j], lock_mode);
|
|
}
|
|
|
|
if ((attempts % 5) == 0) {
|
|
delay(1); /* Don't just spin the CPU */
|
|
}
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
|
|
* mmaplock must be double-locked separately since we use i_rwsem and
|
|
* invalidate_lock for that. We now support taking one lock EXCL and the
|
|
* other SHARED.
|
|
*/
|
|
void
|
|
xfs_lock_two_inodes(
|
|
struct xfs_inode *ip0,
|
|
uint ip0_mode,
|
|
struct xfs_inode *ip1,
|
|
uint ip1_mode)
|
|
{
|
|
int attempts = 0;
|
|
struct xfs_log_item *lp;
|
|
|
|
ASSERT(hweight32(ip0_mode) == 1);
|
|
ASSERT(hweight32(ip1_mode) == 1);
|
|
ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
|
|
ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
|
|
ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
|
|
ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
|
|
ASSERT(ip0->i_ino != ip1->i_ino);
|
|
|
|
if (ip0->i_ino > ip1->i_ino) {
|
|
swap(ip0, ip1);
|
|
swap(ip0_mode, ip1_mode);
|
|
}
|
|
|
|
again:
|
|
xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
|
|
|
|
/*
|
|
* If the first lock we have locked is in the AIL, we must TRY to get
|
|
* the second lock. If we can't get it, we must release the first one
|
|
* and try again.
|
|
*/
|
|
lp = &ip0->i_itemp->ili_item;
|
|
if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
|
|
if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
|
|
xfs_iunlock(ip0, ip0_mode);
|
|
if ((++attempts % 5) == 0)
|
|
delay(1); /* Don't just spin the CPU */
|
|
goto again;
|
|
}
|
|
} else {
|
|
xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
|
|
}
|
|
}
|
|
|
|
uint
|
|
xfs_ip2xflags(
|
|
struct xfs_inode *ip)
|
|
{
|
|
uint flags = 0;
|
|
|
|
if (ip->i_diflags & XFS_DIFLAG_ANY) {
|
|
if (ip->i_diflags & XFS_DIFLAG_REALTIME)
|
|
flags |= FS_XFLAG_REALTIME;
|
|
if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
|
|
flags |= FS_XFLAG_PREALLOC;
|
|
if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
|
|
flags |= FS_XFLAG_IMMUTABLE;
|
|
if (ip->i_diflags & XFS_DIFLAG_APPEND)
|
|
flags |= FS_XFLAG_APPEND;
|
|
if (ip->i_diflags & XFS_DIFLAG_SYNC)
|
|
flags |= FS_XFLAG_SYNC;
|
|
if (ip->i_diflags & XFS_DIFLAG_NOATIME)
|
|
flags |= FS_XFLAG_NOATIME;
|
|
if (ip->i_diflags & XFS_DIFLAG_NODUMP)
|
|
flags |= FS_XFLAG_NODUMP;
|
|
if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
|
|
flags |= FS_XFLAG_RTINHERIT;
|
|
if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
|
|
flags |= FS_XFLAG_PROJINHERIT;
|
|
if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
|
|
flags |= FS_XFLAG_NOSYMLINKS;
|
|
if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
|
|
flags |= FS_XFLAG_EXTSIZE;
|
|
if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
|
|
flags |= FS_XFLAG_EXTSZINHERIT;
|
|
if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
|
|
flags |= FS_XFLAG_NODEFRAG;
|
|
if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
|
|
flags |= FS_XFLAG_FILESTREAM;
|
|
}
|
|
|
|
if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
|
|
if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
|
|
flags |= FS_XFLAG_DAX;
|
|
if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
|
|
flags |= FS_XFLAG_COWEXTSIZE;
|
|
}
|
|
|
|
if (xfs_inode_has_attr_fork(ip))
|
|
flags |= FS_XFLAG_HASATTR;
|
|
return flags;
|
|
}
|
|
|
|
/*
|
|
* Lookups up an inode from "name". If ci_name is not NULL, then a CI match
|
|
* is allowed, otherwise it has to be an exact match. If a CI match is found,
|
|
* ci_name->name will point to a the actual name (caller must free) or
|
|
* will be set to NULL if an exact match is found.
|
|
*/
|
|
int
|
|
xfs_lookup(
|
|
struct xfs_inode *dp,
|
|
const struct xfs_name *name,
|
|
struct xfs_inode **ipp,
|
|
struct xfs_name *ci_name)
|
|
{
|
|
xfs_ino_t inum;
|
|
int error;
|
|
|
|
trace_xfs_lookup(dp, name);
|
|
|
|
if (xfs_is_shutdown(dp->i_mount))
|
|
return -EIO;
|
|
if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
|
|
return -EIO;
|
|
|
|
error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
|
|
if (error)
|
|
goto out_free_name;
|
|
|
|
return 0;
|
|
|
|
out_free_name:
|
|
if (ci_name)
|
|
kfree(ci_name->name);
|
|
out_unlock:
|
|
*ipp = NULL;
|
|
return error;
|
|
}
|
|
|
|
/* Propagate di_flags from a parent inode to a child inode. */
|
|
static void
|
|
xfs_inode_inherit_flags(
|
|
struct xfs_inode *ip,
|
|
const struct xfs_inode *pip)
|
|
{
|
|
unsigned int di_flags = 0;
|
|
xfs_failaddr_t failaddr;
|
|
umode_t mode = VFS_I(ip)->i_mode;
|
|
|
|
if (S_ISDIR(mode)) {
|
|
if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
|
|
di_flags |= XFS_DIFLAG_RTINHERIT;
|
|
if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
|
|
di_flags |= XFS_DIFLAG_EXTSZINHERIT;
|
|
ip->i_extsize = pip->i_extsize;
|
|
}
|
|
if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
|
|
di_flags |= XFS_DIFLAG_PROJINHERIT;
|
|
} else if (S_ISREG(mode)) {
|
|
if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
|
|
xfs_has_realtime(ip->i_mount))
|
|
di_flags |= XFS_DIFLAG_REALTIME;
|
|
if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
|
|
di_flags |= XFS_DIFLAG_EXTSIZE;
|
|
ip->i_extsize = pip->i_extsize;
|
|
}
|
|
}
|
|
if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
|
|
xfs_inherit_noatime)
|
|
di_flags |= XFS_DIFLAG_NOATIME;
|
|
if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
|
|
xfs_inherit_nodump)
|
|
di_flags |= XFS_DIFLAG_NODUMP;
|
|
if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
|
|
xfs_inherit_sync)
|
|
di_flags |= XFS_DIFLAG_SYNC;
|
|
if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
|
|
xfs_inherit_nosymlinks)
|
|
di_flags |= XFS_DIFLAG_NOSYMLINKS;
|
|
if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
|
|
xfs_inherit_nodefrag)
|
|
di_flags |= XFS_DIFLAG_NODEFRAG;
|
|
if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
|
|
di_flags |= XFS_DIFLAG_FILESTREAM;
|
|
|
|
ip->i_diflags |= di_flags;
|
|
|
|
/*
|
|
* Inode verifiers on older kernels only check that the extent size
|
|
* hint is an integer multiple of the rt extent size on realtime files.
|
|
* They did not check the hint alignment on a directory with both
|
|
* rtinherit and extszinherit flags set. If the misaligned hint is
|
|
* propagated from a directory into a new realtime file, new file
|
|
* allocations will fail due to math errors in the rt allocator and/or
|
|
* trip the verifiers. Validate the hint settings in the new file so
|
|
* that we don't let broken hints propagate.
|
|
*/
|
|
failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
|
|
VFS_I(ip)->i_mode, ip->i_diflags);
|
|
if (failaddr) {
|
|
ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
|
|
XFS_DIFLAG_EXTSZINHERIT);
|
|
ip->i_extsize = 0;
|
|
}
|
|
}
|
|
|
|
/* Propagate di_flags2 from a parent inode to a child inode. */
|
|
static void
|
|
xfs_inode_inherit_flags2(
|
|
struct xfs_inode *ip,
|
|
const struct xfs_inode *pip)
|
|
{
|
|
xfs_failaddr_t failaddr;
|
|
|
|
if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
|
|
ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
|
|
ip->i_cowextsize = pip->i_cowextsize;
|
|
}
|
|
if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
|
|
ip->i_diflags2 |= XFS_DIFLAG2_DAX;
|
|
|
|
/* Don't let invalid cowextsize hints propagate. */
|
|
failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
|
|
VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
|
|
if (failaddr) {
|
|
ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
|
|
ip->i_cowextsize = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialise a newly allocated inode and return the in-core inode to the
|
|
* caller locked exclusively.
|
|
*/
|
|
int
|
|
xfs_init_new_inode(
|
|
struct mnt_idmap *idmap,
|
|
struct xfs_trans *tp,
|
|
struct xfs_inode *pip,
|
|
xfs_ino_t ino,
|
|
umode_t mode,
|
|
xfs_nlink_t nlink,
|
|
dev_t rdev,
|
|
prid_t prid,
|
|
bool init_xattrs,
|
|
struct xfs_inode **ipp)
|
|
{
|
|
struct inode *dir = pip ? VFS_I(pip) : NULL;
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_inode *ip;
|
|
unsigned int flags;
|
|
int error;
|
|
struct timespec64 tv;
|
|
struct inode *inode;
|
|
|
|
/*
|
|
* Protect against obviously corrupt allocation btree records. Later
|
|
* xfs_iget checks will catch re-allocation of other active in-memory
|
|
* and on-disk inodes. If we don't catch reallocating the parent inode
|
|
* here we will deadlock in xfs_iget() so we have to do these checks
|
|
* first.
|
|
*/
|
|
if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
|
|
xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
|
|
xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
|
|
XFS_SICK_AG_INOBT);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
/*
|
|
* Get the in-core inode with the lock held exclusively to prevent
|
|
* others from looking at until we're done.
|
|
*/
|
|
error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
|
|
if (error)
|
|
return error;
|
|
|
|
ASSERT(ip != NULL);
|
|
inode = VFS_I(ip);
|
|
set_nlink(inode, nlink);
|
|
inode->i_rdev = rdev;
|
|
ip->i_projid = prid;
|
|
|
|
if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
|
|
inode_fsuid_set(inode, idmap);
|
|
inode->i_gid = dir->i_gid;
|
|
inode->i_mode = mode;
|
|
} else {
|
|
inode_init_owner(idmap, inode, dir, mode);
|
|
}
|
|
|
|
/*
|
|
* If the group ID of the new file does not match the effective group
|
|
* ID or one of the supplementary group IDs, the S_ISGID bit is cleared
|
|
* (and only if the irix_sgid_inherit compatibility variable is set).
|
|
*/
|
|
if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
|
|
!vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
|
|
inode->i_mode &= ~S_ISGID;
|
|
|
|
ip->i_disk_size = 0;
|
|
ip->i_df.if_nextents = 0;
|
|
ASSERT(ip->i_nblocks == 0);
|
|
|
|
tv = inode_set_ctime_current(inode);
|
|
inode_set_mtime_to_ts(inode, tv);
|
|
inode_set_atime_to_ts(inode, tv);
|
|
|
|
ip->i_extsize = 0;
|
|
ip->i_diflags = 0;
|
|
|
|
if (xfs_has_v3inodes(mp)) {
|
|
inode_set_iversion(inode, 1);
|
|
ip->i_cowextsize = 0;
|
|
ip->i_crtime = tv;
|
|
}
|
|
|
|
flags = XFS_ILOG_CORE;
|
|
switch (mode & S_IFMT) {
|
|
case S_IFIFO:
|
|
case S_IFCHR:
|
|
case S_IFBLK:
|
|
case S_IFSOCK:
|
|
ip->i_df.if_format = XFS_DINODE_FMT_DEV;
|
|
flags |= XFS_ILOG_DEV;
|
|
break;
|
|
case S_IFREG:
|
|
case S_IFDIR:
|
|
if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
|
|
xfs_inode_inherit_flags(ip, pip);
|
|
if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
|
|
xfs_inode_inherit_flags2(ip, pip);
|
|
fallthrough;
|
|
case S_IFLNK:
|
|
ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
|
|
ip->i_df.if_bytes = 0;
|
|
ip->i_df.if_data = NULL;
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
}
|
|
|
|
/*
|
|
* If we need to create attributes immediately after allocating the
|
|
* inode, initialise an empty attribute fork right now. We use the
|
|
* default fork offset for attributes here as we don't know exactly what
|
|
* size or how many attributes we might be adding. We can do this
|
|
* safely here because we know the data fork is completely empty and
|
|
* this saves us from needing to run a separate transaction to set the
|
|
* fork offset in the immediate future.
|
|
*/
|
|
if (init_xattrs && xfs_has_attr(mp)) {
|
|
ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
|
|
xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
|
|
}
|
|
|
|
/*
|
|
* Log the new values stuffed into the inode.
|
|
*/
|
|
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_log_inode(tp, ip, flags);
|
|
|
|
/* now that we have an i_mode we can setup the inode structure */
|
|
xfs_setup_inode(ip);
|
|
|
|
*ipp = ip;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Decrement the link count on an inode & log the change. If this causes the
|
|
* link count to go to zero, move the inode to AGI unlinked list so that it can
|
|
* be freed when the last active reference goes away via xfs_inactive().
|
|
*/
|
|
static int /* error */
|
|
xfs_droplink(
|
|
xfs_trans_t *tp,
|
|
xfs_inode_t *ip)
|
|
{
|
|
if (VFS_I(ip)->i_nlink == 0) {
|
|
xfs_alert(ip->i_mount,
|
|
"%s: Attempt to drop inode (%llu) with nlink zero.",
|
|
__func__, ip->i_ino);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
|
|
|
|
drop_nlink(VFS_I(ip));
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
|
|
if (VFS_I(ip)->i_nlink)
|
|
return 0;
|
|
|
|
return xfs_iunlink(tp, ip);
|
|
}
|
|
|
|
/*
|
|
* Increment the link count on an inode & log the change.
|
|
*/
|
|
void
|
|
xfs_bumplink(
|
|
struct xfs_trans *tp,
|
|
struct xfs_inode *ip)
|
|
{
|
|
xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
|
|
|
|
inc_nlink(VFS_I(ip));
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
}
|
|
|
|
#ifdef CONFIG_XFS_LIVE_HOOKS
|
|
/*
|
|
* Use a static key here to reduce the overhead of directory live update hooks.
|
|
* If the compiler supports jump labels, the static branch will be replaced by
|
|
* a nop sled when there are no hook users. Online fsck is currently the only
|
|
* caller, so this is a reasonable tradeoff.
|
|
*
|
|
* Note: Patching the kernel code requires taking the cpu hotplug lock. Other
|
|
* parts of the kernel allocate memory with that lock held, which means that
|
|
* XFS callers cannot hold any locks that might be used by memory reclaim or
|
|
* writeback when calling the static_branch_{inc,dec} functions.
|
|
*/
|
|
DEFINE_STATIC_XFS_HOOK_SWITCH(xfs_dir_hooks_switch);
|
|
|
|
void
|
|
xfs_dir_hook_disable(void)
|
|
{
|
|
xfs_hooks_switch_off(&xfs_dir_hooks_switch);
|
|
}
|
|
|
|
void
|
|
xfs_dir_hook_enable(void)
|
|
{
|
|
xfs_hooks_switch_on(&xfs_dir_hooks_switch);
|
|
}
|
|
|
|
/* Call hooks for a directory update relating to a child dirent update. */
|
|
inline void
|
|
xfs_dir_update_hook(
|
|
struct xfs_inode *dp,
|
|
struct xfs_inode *ip,
|
|
int delta,
|
|
const struct xfs_name *name)
|
|
{
|
|
if (xfs_hooks_switched_on(&xfs_dir_hooks_switch)) {
|
|
struct xfs_dir_update_params p = {
|
|
.dp = dp,
|
|
.ip = ip,
|
|
.delta = delta,
|
|
.name = name,
|
|
};
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
|
|
xfs_hooks_call(&mp->m_dir_update_hooks, 0, &p);
|
|
}
|
|
}
|
|
|
|
/* Call the specified function during a directory update. */
|
|
int
|
|
xfs_dir_hook_add(
|
|
struct xfs_mount *mp,
|
|
struct xfs_dir_hook *hook)
|
|
{
|
|
return xfs_hooks_add(&mp->m_dir_update_hooks, &hook->dirent_hook);
|
|
}
|
|
|
|
/* Stop calling the specified function during a directory update. */
|
|
void
|
|
xfs_dir_hook_del(
|
|
struct xfs_mount *mp,
|
|
struct xfs_dir_hook *hook)
|
|
{
|
|
xfs_hooks_del(&mp->m_dir_update_hooks, &hook->dirent_hook);
|
|
}
|
|
|
|
/* Configure directory update hook functions. */
|
|
void
|
|
xfs_dir_hook_setup(
|
|
struct xfs_dir_hook *hook,
|
|
notifier_fn_t mod_fn)
|
|
{
|
|
xfs_hook_setup(&hook->dirent_hook, mod_fn);
|
|
}
|
|
#endif /* CONFIG_XFS_LIVE_HOOKS */
|
|
|
|
int
|
|
xfs_create(
|
|
struct mnt_idmap *idmap,
|
|
xfs_inode_t *dp,
|
|
struct xfs_name *name,
|
|
umode_t mode,
|
|
dev_t rdev,
|
|
bool init_xattrs,
|
|
xfs_inode_t **ipp)
|
|
{
|
|
int is_dir = S_ISDIR(mode);
|
|
struct xfs_mount *mp = dp->i_mount;
|
|
struct xfs_inode *ip = NULL;
|
|
struct xfs_trans *tp = NULL;
|
|
int error;
|
|
bool unlock_dp_on_error = false;
|
|
prid_t prid;
|
|
struct xfs_dquot *udqp = NULL;
|
|
struct xfs_dquot *gdqp = NULL;
|
|
struct xfs_dquot *pdqp = NULL;
|
|
struct xfs_trans_res *tres;
|
|
uint resblks;
|
|
xfs_ino_t ino;
|
|
|
|
trace_xfs_create(dp, name);
|
|
|
|
if (xfs_is_shutdown(mp))
|
|
return -EIO;
|
|
if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
|
|
return -EIO;
|
|
|
|
prid = xfs_get_initial_prid(dp);
|
|
|
|
/*
|
|
* Make sure that we have allocated dquot(s) on disk.
|
|
*/
|
|
error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
|
|
mapped_fsgid(idmap, &init_user_ns), prid,
|
|
XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
|
|
&udqp, &gdqp, &pdqp);
|
|
if (error)
|
|
return error;
|
|
|
|
if (is_dir) {
|
|
resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
|
|
tres = &M_RES(mp)->tr_mkdir;
|
|
} else {
|
|
resblks = XFS_CREATE_SPACE_RES(mp, name->len);
|
|
tres = &M_RES(mp)->tr_create;
|
|
}
|
|
|
|
/*
|
|
* Initially assume that the file does not exist and
|
|
* reserve the resources for that case. If that is not
|
|
* the case we'll drop the one we have and get a more
|
|
* appropriate transaction later.
|
|
*/
|
|
error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
|
|
&tp);
|
|
if (error == -ENOSPC) {
|
|
/* flush outstanding delalloc blocks and retry */
|
|
xfs_flush_inodes(mp);
|
|
error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
|
|
resblks, &tp);
|
|
}
|
|
if (error)
|
|
goto out_release_dquots;
|
|
|
|
xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
|
|
unlock_dp_on_error = true;
|
|
|
|
/*
|
|
* A newly created regular or special file just has one directory
|
|
* entry pointing to them, but a directory also the "." entry
|
|
* pointing to itself.
|
|
*/
|
|
error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
|
|
if (!error)
|
|
error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
|
|
is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
/*
|
|
* Now we join the directory inode to the transaction. We do not do it
|
|
* earlier because xfs_dialloc might commit the previous transaction
|
|
* (and release all the locks). An error from here on will result in
|
|
* the transaction cancel unlocking dp so don't do it explicitly in the
|
|
* error path.
|
|
*/
|
|
xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
|
|
unlock_dp_on_error = false;
|
|
|
|
error = xfs_dir_createname(tp, dp, name, ip->i_ino,
|
|
resblks - XFS_IALLOC_SPACE_RES(mp));
|
|
if (error) {
|
|
ASSERT(error != -ENOSPC);
|
|
goto out_trans_cancel;
|
|
}
|
|
xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
|
xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
|
|
|
|
if (is_dir) {
|
|
error = xfs_dir_init(tp, ip, dp);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
xfs_bumplink(tp, dp);
|
|
}
|
|
|
|
/*
|
|
* Create ip with a reference from dp, and add '.' and '..' references
|
|
* if it's a directory.
|
|
*/
|
|
xfs_dir_update_hook(dp, ip, 1, name);
|
|
|
|
/*
|
|
* If this is a synchronous mount, make sure that the
|
|
* create transaction goes to disk before returning to
|
|
* the user.
|
|
*/
|
|
if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
|
|
xfs_trans_set_sync(tp);
|
|
|
|
/*
|
|
* Attach the dquot(s) to the inodes and modify them incore.
|
|
* These ids of the inode couldn't have changed since the new
|
|
* inode has been locked ever since it was created.
|
|
*/
|
|
xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
|
|
|
|
error = xfs_trans_commit(tp);
|
|
if (error)
|
|
goto out_release_inode;
|
|
|
|
xfs_qm_dqrele(udqp);
|
|
xfs_qm_dqrele(gdqp);
|
|
xfs_qm_dqrele(pdqp);
|
|
|
|
*ipp = ip;
|
|
return 0;
|
|
|
|
out_trans_cancel:
|
|
xfs_trans_cancel(tp);
|
|
out_release_inode:
|
|
/*
|
|
* Wait until after the current transaction is aborted to finish the
|
|
* setup of the inode and release the inode. This prevents recursive
|
|
* transactions and deadlocks from xfs_inactive.
|
|
*/
|
|
if (ip) {
|
|
xfs_finish_inode_setup(ip);
|
|
xfs_irele(ip);
|
|
}
|
|
out_release_dquots:
|
|
xfs_qm_dqrele(udqp);
|
|
xfs_qm_dqrele(gdqp);
|
|
xfs_qm_dqrele(pdqp);
|
|
|
|
if (unlock_dp_on_error)
|
|
xfs_iunlock(dp, XFS_ILOCK_EXCL);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_create_tmpfile(
|
|
struct mnt_idmap *idmap,
|
|
struct xfs_inode *dp,
|
|
umode_t mode,
|
|
struct xfs_inode **ipp)
|
|
{
|
|
struct xfs_mount *mp = dp->i_mount;
|
|
struct xfs_inode *ip = NULL;
|
|
struct xfs_trans *tp = NULL;
|
|
int error;
|
|
prid_t prid;
|
|
struct xfs_dquot *udqp = NULL;
|
|
struct xfs_dquot *gdqp = NULL;
|
|
struct xfs_dquot *pdqp = NULL;
|
|
struct xfs_trans_res *tres;
|
|
uint resblks;
|
|
xfs_ino_t ino;
|
|
|
|
if (xfs_is_shutdown(mp))
|
|
return -EIO;
|
|
|
|
prid = xfs_get_initial_prid(dp);
|
|
|
|
/*
|
|
* Make sure that we have allocated dquot(s) on disk.
|
|
*/
|
|
error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
|
|
mapped_fsgid(idmap, &init_user_ns), prid,
|
|
XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
|
|
&udqp, &gdqp, &pdqp);
|
|
if (error)
|
|
return error;
|
|
|
|
resblks = XFS_IALLOC_SPACE_RES(mp);
|
|
tres = &M_RES(mp)->tr_create_tmpfile;
|
|
|
|
error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
|
|
&tp);
|
|
if (error)
|
|
goto out_release_dquots;
|
|
|
|
error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
|
|
if (!error)
|
|
error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
|
|
0, 0, prid, false, &ip);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
if (xfs_has_wsync(mp))
|
|
xfs_trans_set_sync(tp);
|
|
|
|
/*
|
|
* Attach the dquot(s) to the inodes and modify them incore.
|
|
* These ids of the inode couldn't have changed since the new
|
|
* inode has been locked ever since it was created.
|
|
*/
|
|
xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
|
|
|
|
error = xfs_iunlink(tp, ip);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
error = xfs_trans_commit(tp);
|
|
if (error)
|
|
goto out_release_inode;
|
|
|
|
xfs_qm_dqrele(udqp);
|
|
xfs_qm_dqrele(gdqp);
|
|
xfs_qm_dqrele(pdqp);
|
|
|
|
*ipp = ip;
|
|
return 0;
|
|
|
|
out_trans_cancel:
|
|
xfs_trans_cancel(tp);
|
|
out_release_inode:
|
|
/*
|
|
* Wait until after the current transaction is aborted to finish the
|
|
* setup of the inode and release the inode. This prevents recursive
|
|
* transactions and deadlocks from xfs_inactive.
|
|
*/
|
|
if (ip) {
|
|
xfs_finish_inode_setup(ip);
|
|
xfs_irele(ip);
|
|
}
|
|
out_release_dquots:
|
|
xfs_qm_dqrele(udqp);
|
|
xfs_qm_dqrele(gdqp);
|
|
xfs_qm_dqrele(pdqp);
|
|
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_link(
|
|
xfs_inode_t *tdp,
|
|
xfs_inode_t *sip,
|
|
struct xfs_name *target_name)
|
|
{
|
|
xfs_mount_t *mp = tdp->i_mount;
|
|
xfs_trans_t *tp;
|
|
int error, nospace_error = 0;
|
|
int resblks;
|
|
|
|
trace_xfs_link(tdp, target_name);
|
|
|
|
ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
|
|
|
|
if (xfs_is_shutdown(mp))
|
|
return -EIO;
|
|
if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
|
|
return -EIO;
|
|
|
|
error = xfs_qm_dqattach(sip);
|
|
if (error)
|
|
goto std_return;
|
|
|
|
error = xfs_qm_dqattach(tdp);
|
|
if (error)
|
|
goto std_return;
|
|
|
|
resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
|
|
error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
|
|
&tp, &nospace_error);
|
|
if (error)
|
|
goto std_return;
|
|
|
|
/*
|
|
* If we are using project inheritance, we only allow hard link
|
|
* creation in our tree when the project IDs are the same; else
|
|
* the tree quota mechanism could be circumvented.
|
|
*/
|
|
if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
|
|
tdp->i_projid != sip->i_projid)) {
|
|
/*
|
|
* Project quota setup skips special files which can
|
|
* leave inodes in a PROJINHERIT directory without a
|
|
* project ID set. We need to allow links to be made
|
|
* to these "project-less" inodes because userspace
|
|
* expects them to succeed after project ID setup,
|
|
* but everything else should be rejected.
|
|
*/
|
|
if (!special_file(VFS_I(sip)->i_mode) ||
|
|
sip->i_projid != 0) {
|
|
error = -EXDEV;
|
|
goto error_return;
|
|
}
|
|
}
|
|
|
|
if (!resblks) {
|
|
error = xfs_dir_canenter(tp, tdp, target_name);
|
|
if (error)
|
|
goto error_return;
|
|
}
|
|
|
|
/*
|
|
* Handle initial link state of O_TMPFILE inode
|
|
*/
|
|
if (VFS_I(sip)->i_nlink == 0) {
|
|
struct xfs_perag *pag;
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
|
|
error = xfs_iunlink_remove(tp, pag, sip);
|
|
xfs_perag_put(pag);
|
|
if (error)
|
|
goto error_return;
|
|
}
|
|
|
|
error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
|
|
resblks);
|
|
if (error)
|
|
goto error_return;
|
|
xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
|
xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
|
|
|
|
xfs_bumplink(tp, sip);
|
|
xfs_dir_update_hook(tdp, sip, 1, target_name);
|
|
|
|
/*
|
|
* If this is a synchronous mount, make sure that the
|
|
* link transaction goes to disk before returning to
|
|
* the user.
|
|
*/
|
|
if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
|
|
xfs_trans_set_sync(tp);
|
|
|
|
return xfs_trans_commit(tp);
|
|
|
|
error_return:
|
|
xfs_trans_cancel(tp);
|
|
std_return:
|
|
if (error == -ENOSPC && nospace_error)
|
|
error = nospace_error;
|
|
return error;
|
|
}
|
|
|
|
/* Clear the reflink flag and the cowblocks tag if possible. */
|
|
static void
|
|
xfs_itruncate_clear_reflink_flags(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_ifork *dfork;
|
|
struct xfs_ifork *cfork;
|
|
|
|
if (!xfs_is_reflink_inode(ip))
|
|
return;
|
|
dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
|
|
cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
|
|
if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
|
|
ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
|
|
if (cfork->if_bytes == 0)
|
|
xfs_inode_clear_cowblocks_tag(ip);
|
|
}
|
|
|
|
/*
|
|
* Free up the underlying blocks past new_size. The new size must be smaller
|
|
* than the current size. This routine can be used both for the attribute and
|
|
* data fork, and does not modify the inode size, which is left to the caller.
|
|
*
|
|
* The transaction passed to this routine must have made a permanent log
|
|
* reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
|
|
* given transaction and start new ones, so make sure everything involved in
|
|
* the transaction is tidy before calling here. Some transaction will be
|
|
* returned to the caller to be committed. The incoming transaction must
|
|
* already include the inode, and both inode locks must be held exclusively.
|
|
* The inode must also be "held" within the transaction. On return the inode
|
|
* will be "held" within the returned transaction. This routine does NOT
|
|
* require any disk space to be reserved for it within the transaction.
|
|
*
|
|
* If we get an error, we must return with the inode locked and linked into the
|
|
* current transaction. This keeps things simple for the higher level code,
|
|
* because it always knows that the inode is locked and held in the transaction
|
|
* that returns to it whether errors occur or not. We don't mark the inode
|
|
* dirty on error so that transactions can be easily aborted if possible.
|
|
*/
|
|
int
|
|
xfs_itruncate_extents_flags(
|
|
struct xfs_trans **tpp,
|
|
struct xfs_inode *ip,
|
|
int whichfork,
|
|
xfs_fsize_t new_size,
|
|
int flags)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_trans *tp = *tpp;
|
|
xfs_fileoff_t first_unmap_block;
|
|
int error = 0;
|
|
|
|
xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
|
|
if (atomic_read(&VFS_I(ip)->i_count))
|
|
xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
|
|
ASSERT(new_size <= XFS_ISIZE(ip));
|
|
ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
|
|
ASSERT(ip->i_itemp != NULL);
|
|
ASSERT(ip->i_itemp->ili_lock_flags == 0);
|
|
ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
|
|
|
|
trace_xfs_itruncate_extents_start(ip, new_size);
|
|
|
|
flags |= xfs_bmapi_aflag(whichfork);
|
|
|
|
/*
|
|
* Since it is possible for space to become allocated beyond
|
|
* the end of the file (in a crash where the space is allocated
|
|
* but the inode size is not yet updated), simply remove any
|
|
* blocks which show up between the new EOF and the maximum
|
|
* possible file size.
|
|
*
|
|
* We have to free all the blocks to the bmbt maximum offset, even if
|
|
* the page cache can't scale that far.
|
|
*/
|
|
first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
|
|
if (!xfs_verify_fileoff(mp, first_unmap_block)) {
|
|
WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
|
|
return 0;
|
|
}
|
|
|
|
error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
|
|
XFS_MAX_FILEOFF);
|
|
if (error)
|
|
goto out;
|
|
|
|
if (whichfork == XFS_DATA_FORK) {
|
|
/* Remove all pending CoW reservations. */
|
|
error = xfs_reflink_cancel_cow_blocks(ip, &tp,
|
|
first_unmap_block, XFS_MAX_FILEOFF, true);
|
|
if (error)
|
|
goto out;
|
|
|
|
xfs_itruncate_clear_reflink_flags(ip);
|
|
}
|
|
|
|
/*
|
|
* Always re-log the inode so that our permanent transaction can keep
|
|
* on rolling it forward in the log.
|
|
*/
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
|
|
trace_xfs_itruncate_extents_end(ip, new_size);
|
|
|
|
out:
|
|
*tpp = tp;
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_release(
|
|
xfs_inode_t *ip)
|
|
{
|
|
xfs_mount_t *mp = ip->i_mount;
|
|
int error = 0;
|
|
|
|
if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
|
|
return 0;
|
|
|
|
/* If this is a read-only mount, don't do this (would generate I/O) */
|
|
if (xfs_is_readonly(mp))
|
|
return 0;
|
|
|
|
if (!xfs_is_shutdown(mp)) {
|
|
int truncated;
|
|
|
|
/*
|
|
* If we previously truncated this file and removed old data
|
|
* in the process, we want to initiate "early" writeout on
|
|
* the last close. This is an attempt to combat the notorious
|
|
* NULL files problem which is particularly noticeable from a
|
|
* truncate down, buffered (re-)write (delalloc), followed by
|
|
* a crash. What we are effectively doing here is
|
|
* significantly reducing the time window where we'd otherwise
|
|
* be exposed to that problem.
|
|
*/
|
|
truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
|
|
if (truncated) {
|
|
xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
|
|
if (ip->i_delayed_blks > 0) {
|
|
error = filemap_flush(VFS_I(ip)->i_mapping);
|
|
if (error)
|
|
return error;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (VFS_I(ip)->i_nlink == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* If we can't get the iolock just skip truncating the blocks past EOF
|
|
* because we could deadlock with the mmap_lock otherwise. We'll get
|
|
* another chance to drop them once the last reference to the inode is
|
|
* dropped, so we'll never leak blocks permanently.
|
|
*/
|
|
if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
|
|
return 0;
|
|
|
|
if (xfs_can_free_eofblocks(ip, false)) {
|
|
/*
|
|
* Check if the inode is being opened, written and closed
|
|
* frequently and we have delayed allocation blocks outstanding
|
|
* (e.g. streaming writes from the NFS server), truncating the
|
|
* blocks past EOF will cause fragmentation to occur.
|
|
*
|
|
* In this case don't do the truncation, but we have to be
|
|
* careful how we detect this case. Blocks beyond EOF show up as
|
|
* i_delayed_blks even when the inode is clean, so we need to
|
|
* truncate them away first before checking for a dirty release.
|
|
* Hence on the first dirty close we will still remove the
|
|
* speculative allocation, but after that we will leave it in
|
|
* place.
|
|
*/
|
|
if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
|
|
goto out_unlock;
|
|
|
|
error = xfs_free_eofblocks(ip);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
/* delalloc blocks after truncation means it really is dirty */
|
|
if (ip->i_delayed_blks)
|
|
xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
|
|
}
|
|
|
|
out_unlock:
|
|
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Mark all the buffers attached to this directory stale. In theory we should
|
|
* never be freeing a directory with any blocks at all, but this covers the
|
|
* case where we've recovered a directory swap with a "temporary" directory
|
|
* created by online repair and now need to dump it.
|
|
*/
|
|
STATIC void
|
|
xfs_inactive_dir(
|
|
struct xfs_inode *dp)
|
|
{
|
|
struct xfs_iext_cursor icur;
|
|
struct xfs_bmbt_irec got;
|
|
struct xfs_mount *mp = dp->i_mount;
|
|
struct xfs_da_geometry *geo = mp->m_dir_geo;
|
|
struct xfs_ifork *ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
|
|
xfs_fileoff_t off;
|
|
|
|
/*
|
|
* Invalidate each directory block. All directory blocks are of
|
|
* fsbcount length and alignment, so we only need to walk those same
|
|
* offsets. We hold the only reference to this inode, so we must wait
|
|
* for the buffer locks.
|
|
*/
|
|
for_each_xfs_iext(ifp, &icur, &got) {
|
|
for (off = round_up(got.br_startoff, geo->fsbcount);
|
|
off < got.br_startoff + got.br_blockcount;
|
|
off += geo->fsbcount) {
|
|
struct xfs_buf *bp = NULL;
|
|
xfs_fsblock_t fsbno;
|
|
int error;
|
|
|
|
fsbno = (off - got.br_startoff) + got.br_startblock;
|
|
error = xfs_buf_incore(mp->m_ddev_targp,
|
|
XFS_FSB_TO_DADDR(mp, fsbno),
|
|
XFS_FSB_TO_BB(mp, geo->fsbcount),
|
|
XBF_LIVESCAN, &bp);
|
|
if (error)
|
|
continue;
|
|
|
|
xfs_buf_stale(bp);
|
|
xfs_buf_relse(bp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* xfs_inactive_truncate
|
|
*
|
|
* Called to perform a truncate when an inode becomes unlinked.
|
|
*/
|
|
STATIC int
|
|
xfs_inactive_truncate(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_trans *tp;
|
|
int error;
|
|
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
|
|
if (error) {
|
|
ASSERT(xfs_is_shutdown(mp));
|
|
return error;
|
|
}
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_ijoin(tp, ip, 0);
|
|
|
|
/*
|
|
* Log the inode size first to prevent stale data exposure in the event
|
|
* of a system crash before the truncate completes. See the related
|
|
* comment in xfs_vn_setattr_size() for details.
|
|
*/
|
|
ip->i_disk_size = 0;
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
|
|
error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
|
|
if (error)
|
|
goto error_trans_cancel;
|
|
|
|
ASSERT(ip->i_df.if_nextents == 0);
|
|
|
|
error = xfs_trans_commit(tp);
|
|
if (error)
|
|
goto error_unlock;
|
|
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return 0;
|
|
|
|
error_trans_cancel:
|
|
xfs_trans_cancel(tp);
|
|
error_unlock:
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* xfs_inactive_ifree()
|
|
*
|
|
* Perform the inode free when an inode is unlinked.
|
|
*/
|
|
STATIC int
|
|
xfs_inactive_ifree(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_trans *tp;
|
|
int error;
|
|
|
|
/*
|
|
* We try to use a per-AG reservation for any block needed by the finobt
|
|
* tree, but as the finobt feature predates the per-AG reservation
|
|
* support a degraded file system might not have enough space for the
|
|
* reservation at mount time. In that case try to dip into the reserved
|
|
* pool and pray.
|
|
*
|
|
* Send a warning if the reservation does happen to fail, as the inode
|
|
* now remains allocated and sits on the unlinked list until the fs is
|
|
* repaired.
|
|
*/
|
|
if (unlikely(mp->m_finobt_nores)) {
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
|
|
XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
|
|
&tp);
|
|
} else {
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
|
|
}
|
|
if (error) {
|
|
if (error == -ENOSPC) {
|
|
xfs_warn_ratelimited(mp,
|
|
"Failed to remove inode(s) from unlinked list. "
|
|
"Please free space, unmount and run xfs_repair.");
|
|
} else {
|
|
ASSERT(xfs_is_shutdown(mp));
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* We do not hold the inode locked across the entire rolling transaction
|
|
* here. We only need to hold it for the first transaction that
|
|
* xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
|
|
* underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
|
|
* here breaks the relationship between cluster buffer invalidation and
|
|
* stale inode invalidation on cluster buffer item journal commit
|
|
* completion, and can result in leaving dirty stale inodes hanging
|
|
* around in memory.
|
|
*
|
|
* We have no need for serialising this inode operation against other
|
|
* operations - we freed the inode and hence reallocation is required
|
|
* and that will serialise on reallocating the space the deferops need
|
|
* to free. Hence we can unlock the inode on the first commit of
|
|
* the transaction rather than roll it right through the deferops. This
|
|
* avoids relogging the XFS_ISTALE inode.
|
|
*
|
|
* We check that xfs_ifree() hasn't grown an internal transaction roll
|
|
* by asserting that the inode is still locked when it returns.
|
|
*/
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
|
|
|
|
error = xfs_ifree(tp, ip);
|
|
xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
|
|
if (error) {
|
|
/*
|
|
* If we fail to free the inode, shut down. The cancel
|
|
* might do that, we need to make sure. Otherwise the
|
|
* inode might be lost for a long time or forever.
|
|
*/
|
|
if (!xfs_is_shutdown(mp)) {
|
|
xfs_notice(mp, "%s: xfs_ifree returned error %d",
|
|
__func__, error);
|
|
xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
|
|
}
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Credit the quota account(s). The inode is gone.
|
|
*/
|
|
xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
|
|
|
|
return xfs_trans_commit(tp);
|
|
}
|
|
|
|
/*
|
|
* Returns true if we need to update the on-disk metadata before we can free
|
|
* the memory used by this inode. Updates include freeing post-eof
|
|
* preallocations; freeing COW staging extents; and marking the inode free in
|
|
* the inobt if it is on the unlinked list.
|
|
*/
|
|
bool
|
|
xfs_inode_needs_inactive(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
|
|
|
|
/*
|
|
* If the inode is already free, then there can be nothing
|
|
* to clean up here.
|
|
*/
|
|
if (VFS_I(ip)->i_mode == 0)
|
|
return false;
|
|
|
|
/*
|
|
* If this is a read-only mount, don't do this (would generate I/O)
|
|
* unless we're in log recovery and cleaning the iunlinked list.
|
|
*/
|
|
if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
|
|
return false;
|
|
|
|
/* If the log isn't running, push inodes straight to reclaim. */
|
|
if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
|
|
return false;
|
|
|
|
/* Metadata inodes require explicit resource cleanup. */
|
|
if (xfs_is_metadata_inode(ip))
|
|
return false;
|
|
|
|
/* Want to clean out the cow blocks if there are any. */
|
|
if (cow_ifp && cow_ifp->if_bytes > 0)
|
|
return true;
|
|
|
|
/* Unlinked files must be freed. */
|
|
if (VFS_I(ip)->i_nlink == 0)
|
|
return true;
|
|
|
|
/*
|
|
* This file isn't being freed, so check if there are post-eof blocks
|
|
* to free. @force is true because we are evicting an inode from the
|
|
* cache. Post-eof blocks must be freed, lest we end up with broken
|
|
* free space accounting.
|
|
*
|
|
* Note: don't bother with iolock here since lockdep complains about
|
|
* acquiring it in reclaim context. We have the only reference to the
|
|
* inode at this point anyways.
|
|
*/
|
|
return xfs_can_free_eofblocks(ip, true);
|
|
}
|
|
|
|
/*
|
|
* Save health status somewhere, if we're dumping an inode with uncorrected
|
|
* errors and online repair isn't running.
|
|
*/
|
|
static inline void
|
|
xfs_inactive_health(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
unsigned int sick;
|
|
unsigned int checked;
|
|
|
|
xfs_inode_measure_sickness(ip, &sick, &checked);
|
|
if (!sick)
|
|
return;
|
|
|
|
trace_xfs_inode_unfixed_corruption(ip, sick);
|
|
|
|
if (sick & XFS_SICK_INO_FORGET)
|
|
return;
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
if (!pag) {
|
|
/* There had better still be a perag structure! */
|
|
ASSERT(0);
|
|
return;
|
|
}
|
|
|
|
xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
|
|
xfs_perag_put(pag);
|
|
}
|
|
|
|
/*
|
|
* xfs_inactive
|
|
*
|
|
* This is called when the vnode reference count for the vnode
|
|
* goes to zero. If the file has been unlinked, then it must
|
|
* now be truncated. Also, we clear all of the read-ahead state
|
|
* kept for the inode here since the file is now closed.
|
|
*/
|
|
int
|
|
xfs_inactive(
|
|
xfs_inode_t *ip)
|
|
{
|
|
struct xfs_mount *mp;
|
|
int error = 0;
|
|
int truncate = 0;
|
|
|
|
/*
|
|
* If the inode is already free, then there can be nothing
|
|
* to clean up here.
|
|
*/
|
|
if (VFS_I(ip)->i_mode == 0) {
|
|
ASSERT(ip->i_df.if_broot_bytes == 0);
|
|
goto out;
|
|
}
|
|
|
|
mp = ip->i_mount;
|
|
ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
|
|
|
|
xfs_inactive_health(ip);
|
|
|
|
/*
|
|
* If this is a read-only mount, don't do this (would generate I/O)
|
|
* unless we're in log recovery and cleaning the iunlinked list.
|
|
*/
|
|
if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
|
|
goto out;
|
|
|
|
/* Metadata inodes require explicit resource cleanup. */
|
|
if (xfs_is_metadata_inode(ip))
|
|
goto out;
|
|
|
|
/* Try to clean out the cow blocks if there are any. */
|
|
if (xfs_inode_has_cow_data(ip))
|
|
xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
|
|
|
|
if (VFS_I(ip)->i_nlink != 0) {
|
|
/*
|
|
* force is true because we are evicting an inode from the
|
|
* cache. Post-eof blocks must be freed, lest we end up with
|
|
* broken free space accounting.
|
|
*
|
|
* Note: don't bother with iolock here since lockdep complains
|
|
* about acquiring it in reclaim context. We have the only
|
|
* reference to the inode at this point anyways.
|
|
*/
|
|
if (xfs_can_free_eofblocks(ip, true))
|
|
error = xfs_free_eofblocks(ip);
|
|
|
|
goto out;
|
|
}
|
|
|
|
if (S_ISREG(VFS_I(ip)->i_mode) &&
|
|
(ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
|
|
ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
|
|
truncate = 1;
|
|
|
|
if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
|
|
/*
|
|
* If this inode is being inactivated during a quotacheck and
|
|
* has not yet been scanned by quotacheck, we /must/ remove
|
|
* the dquots from the inode before inactivation changes the
|
|
* block and inode counts. Most probably this is a result of
|
|
* reloading the incore iunlinked list to purge unrecovered
|
|
* unlinked inodes.
|
|
*/
|
|
xfs_qm_dqdetach(ip);
|
|
} else {
|
|
error = xfs_qm_dqattach(ip);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
|
|
xfs_inactive_dir(ip);
|
|
truncate = 1;
|
|
}
|
|
|
|
if (S_ISLNK(VFS_I(ip)->i_mode))
|
|
error = xfs_inactive_symlink(ip);
|
|
else if (truncate)
|
|
error = xfs_inactive_truncate(ip);
|
|
if (error)
|
|
goto out;
|
|
|
|
/*
|
|
* If there are attributes associated with the file then blow them away
|
|
* now. The code calls a routine that recursively deconstructs the
|
|
* attribute fork. If also blows away the in-core attribute fork.
|
|
*/
|
|
if (xfs_inode_has_attr_fork(ip)) {
|
|
error = xfs_attr_inactive(ip);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
ASSERT(ip->i_forkoff == 0);
|
|
|
|
/*
|
|
* Free the inode.
|
|
*/
|
|
error = xfs_inactive_ifree(ip);
|
|
|
|
out:
|
|
/*
|
|
* We're done making metadata updates for this inode, so we can release
|
|
* the attached dquots.
|
|
*/
|
|
xfs_qm_dqdetach(ip);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* In-Core Unlinked List Lookups
|
|
* =============================
|
|
*
|
|
* Every inode is supposed to be reachable from some other piece of metadata
|
|
* with the exception of the root directory. Inodes with a connection to a
|
|
* file descriptor but not linked from anywhere in the on-disk directory tree
|
|
* are collectively known as unlinked inodes, though the filesystem itself
|
|
* maintains links to these inodes so that on-disk metadata are consistent.
|
|
*
|
|
* XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
|
|
* header contains a number of buckets that point to an inode, and each inode
|
|
* record has a pointer to the next inode in the hash chain. This
|
|
* singly-linked list causes scaling problems in the iunlink remove function
|
|
* because we must walk that list to find the inode that points to the inode
|
|
* being removed from the unlinked hash bucket list.
|
|
*
|
|
* Hence we keep an in-memory double linked list to link each inode on an
|
|
* unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
|
|
* based lists would require having 64 list heads in the perag, one for each
|
|
* list. This is expensive in terms of memory (think millions of AGs) and cache
|
|
* misses on lookups. Instead, use the fact that inodes on the unlinked list
|
|
* must be referenced at the VFS level to keep them on the list and hence we
|
|
* have an existence guarantee for inodes on the unlinked list.
|
|
*
|
|
* Given we have an existence guarantee, we can use lockless inode cache lookups
|
|
* to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
|
|
* for the double linked unlinked list, and we don't need any extra locking to
|
|
* keep the list safe as all manipulations are done under the AGI buffer lock.
|
|
* Keeping the list up to date does not require memory allocation, just finding
|
|
* the XFS inode and updating the next/prev unlinked list aginos.
|
|
*/
|
|
|
|
/*
|
|
* Find an inode on the unlinked list. This does not take references to the
|
|
* inode as we have existence guarantees by holding the AGI buffer lock and that
|
|
* only unlinked, referenced inodes can be on the unlinked inode list. If we
|
|
* don't find the inode in cache, then let the caller handle the situation.
|
|
*/
|
|
static struct xfs_inode *
|
|
xfs_iunlink_lookup(
|
|
struct xfs_perag *pag,
|
|
xfs_agino_t agino)
|
|
{
|
|
struct xfs_inode *ip;
|
|
|
|
rcu_read_lock();
|
|
ip = radix_tree_lookup(&pag->pag_ici_root, agino);
|
|
if (!ip) {
|
|
/* Caller can handle inode not being in memory. */
|
|
rcu_read_unlock();
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Inode in RCU freeing limbo should not happen. Warn about this and
|
|
* let the caller handle the failure.
|
|
*/
|
|
if (WARN_ON_ONCE(!ip->i_ino)) {
|
|
rcu_read_unlock();
|
|
return NULL;
|
|
}
|
|
ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
|
|
rcu_read_unlock();
|
|
return ip;
|
|
}
|
|
|
|
/*
|
|
* Update the prev pointer of the next agino. Returns -ENOLINK if the inode
|
|
* is not in cache.
|
|
*/
|
|
static int
|
|
xfs_iunlink_update_backref(
|
|
struct xfs_perag *pag,
|
|
xfs_agino_t prev_agino,
|
|
xfs_agino_t next_agino)
|
|
{
|
|
struct xfs_inode *ip;
|
|
|
|
/* No update necessary if we are at the end of the list. */
|
|
if (next_agino == NULLAGINO)
|
|
return 0;
|
|
|
|
ip = xfs_iunlink_lookup(pag, next_agino);
|
|
if (!ip)
|
|
return -ENOLINK;
|
|
|
|
ip->i_prev_unlinked = prev_agino;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Point the AGI unlinked bucket at an inode and log the results. The caller
|
|
* is responsible for validating the old value.
|
|
*/
|
|
STATIC int
|
|
xfs_iunlink_update_bucket(
|
|
struct xfs_trans *tp,
|
|
struct xfs_perag *pag,
|
|
struct xfs_buf *agibp,
|
|
unsigned int bucket_index,
|
|
xfs_agino_t new_agino)
|
|
{
|
|
struct xfs_agi *agi = agibp->b_addr;
|
|
xfs_agino_t old_value;
|
|
int offset;
|
|
|
|
ASSERT(xfs_verify_agino_or_null(pag, new_agino));
|
|
|
|
old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
|
|
trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
|
|
old_value, new_agino);
|
|
|
|
/*
|
|
* We should never find the head of the list already set to the value
|
|
* passed in because either we're adding or removing ourselves from the
|
|
* head of the list.
|
|
*/
|
|
if (old_value == new_agino) {
|
|
xfs_buf_mark_corrupt(agibp);
|
|
xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
|
|
offset = offsetof(struct xfs_agi, agi_unlinked) +
|
|
(sizeof(xfs_agino_t) * bucket_index);
|
|
xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Load the inode @next_agino into the cache and set its prev_unlinked pointer
|
|
* to @prev_agino. Caller must hold the AGI to synchronize with other changes
|
|
* to the unlinked list.
|
|
*/
|
|
STATIC int
|
|
xfs_iunlink_reload_next(
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agibp,
|
|
xfs_agino_t prev_agino,
|
|
xfs_agino_t next_agino)
|
|
{
|
|
struct xfs_perag *pag = agibp->b_pag;
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
struct xfs_inode *next_ip = NULL;
|
|
xfs_ino_t ino;
|
|
int error;
|
|
|
|
ASSERT(next_agino != NULLAGINO);
|
|
|
|
#ifdef DEBUG
|
|
rcu_read_lock();
|
|
next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
|
|
ASSERT(next_ip == NULL);
|
|
rcu_read_unlock();
|
|
#endif
|
|
|
|
xfs_info_ratelimited(mp,
|
|
"Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.",
|
|
next_agino, pag->pag_agno);
|
|
|
|
/*
|
|
* Use an untrusted lookup just to be cautious in case the AGI has been
|
|
* corrupted and now points at a free inode. That shouldn't happen,
|
|
* but we'd rather shut down now since we're already running in a weird
|
|
* situation.
|
|
*/
|
|
ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
|
|
error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
|
|
if (error) {
|
|
xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
|
|
return error;
|
|
}
|
|
|
|
/* If this is not an unlinked inode, something is very wrong. */
|
|
if (VFS_I(next_ip)->i_nlink != 0) {
|
|
xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
|
|
error = -EFSCORRUPTED;
|
|
goto rele;
|
|
}
|
|
|
|
next_ip->i_prev_unlinked = prev_agino;
|
|
trace_xfs_iunlink_reload_next(next_ip);
|
|
rele:
|
|
ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
|
|
if (xfs_is_quotacheck_running(mp) && next_ip)
|
|
xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
|
|
xfs_irele(next_ip);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
xfs_iunlink_insert_inode(
|
|
struct xfs_trans *tp,
|
|
struct xfs_perag *pag,
|
|
struct xfs_buf *agibp,
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_agi *agi = agibp->b_addr;
|
|
xfs_agino_t next_agino;
|
|
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
|
|
short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
|
|
int error;
|
|
|
|
/*
|
|
* Get the index into the agi hash table for the list this inode will
|
|
* go on. Make sure the pointer isn't garbage and that this inode
|
|
* isn't already on the list.
|
|
*/
|
|
next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
|
|
if (next_agino == agino ||
|
|
!xfs_verify_agino_or_null(pag, next_agino)) {
|
|
xfs_buf_mark_corrupt(agibp);
|
|
xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
/*
|
|
* Update the prev pointer in the next inode to point back to this
|
|
* inode.
|
|
*/
|
|
error = xfs_iunlink_update_backref(pag, agino, next_agino);
|
|
if (error == -ENOLINK)
|
|
error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino);
|
|
if (error)
|
|
return error;
|
|
|
|
if (next_agino != NULLAGINO) {
|
|
/*
|
|
* There is already another inode in the bucket, so point this
|
|
* inode to the current head of the list.
|
|
*/
|
|
error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
|
|
if (error)
|
|
return error;
|
|
ip->i_next_unlinked = next_agino;
|
|
}
|
|
|
|
/* Point the head of the list to point to this inode. */
|
|
ip->i_prev_unlinked = NULLAGINO;
|
|
return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
|
|
}
|
|
|
|
/*
|
|
* This is called when the inode's link count has gone to 0 or we are creating
|
|
* a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
|
|
*
|
|
* We place the on-disk inode on a list in the AGI. It will be pulled from this
|
|
* list when the inode is freed.
|
|
*/
|
|
int
|
|
xfs_iunlink(
|
|
struct xfs_trans *tp,
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_perag *pag;
|
|
struct xfs_buf *agibp;
|
|
int error;
|
|
|
|
ASSERT(VFS_I(ip)->i_nlink == 0);
|
|
ASSERT(VFS_I(ip)->i_mode != 0);
|
|
trace_xfs_iunlink(ip);
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
|
|
/* Get the agi buffer first. It ensures lock ordering on the list. */
|
|
error = xfs_read_agi(pag, tp, 0, &agibp);
|
|
if (error)
|
|
goto out;
|
|
|
|
error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
|
|
out:
|
|
xfs_perag_put(pag);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
xfs_iunlink_remove_inode(
|
|
struct xfs_trans *tp,
|
|
struct xfs_perag *pag,
|
|
struct xfs_buf *agibp,
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_agi *agi = agibp->b_addr;
|
|
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
|
|
xfs_agino_t head_agino;
|
|
short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
|
|
int error;
|
|
|
|
trace_xfs_iunlink_remove(ip);
|
|
|
|
/*
|
|
* Get the index into the agi hash table for the list this inode will
|
|
* go on. Make sure the head pointer isn't garbage.
|
|
*/
|
|
head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
|
|
if (!xfs_verify_agino(pag, head_agino)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
agi, sizeof(*agi));
|
|
xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
/*
|
|
* Set our inode's next_unlinked pointer to NULL and then return
|
|
* the old pointer value so that we can update whatever was previous
|
|
* to us in the list to point to whatever was next in the list.
|
|
*/
|
|
error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Update the prev pointer in the next inode to point back to previous
|
|
* inode in the chain.
|
|
*/
|
|
error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
|
|
ip->i_next_unlinked);
|
|
if (error == -ENOLINK)
|
|
error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked,
|
|
ip->i_next_unlinked);
|
|
if (error)
|
|
return error;
|
|
|
|
if (head_agino != agino) {
|
|
struct xfs_inode *prev_ip;
|
|
|
|
prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
|
|
if (!prev_ip) {
|
|
xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
error = xfs_iunlink_log_inode(tp, prev_ip, pag,
|
|
ip->i_next_unlinked);
|
|
prev_ip->i_next_unlinked = ip->i_next_unlinked;
|
|
} else {
|
|
/* Point the head of the list to the next unlinked inode. */
|
|
error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
|
|
ip->i_next_unlinked);
|
|
}
|
|
|
|
ip->i_next_unlinked = NULLAGINO;
|
|
ip->i_prev_unlinked = 0;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Pull the on-disk inode from the AGI unlinked list.
|
|
*/
|
|
int
|
|
xfs_iunlink_remove(
|
|
struct xfs_trans *tp,
|
|
struct xfs_perag *pag,
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_buf *agibp;
|
|
int error;
|
|
|
|
trace_xfs_iunlink_remove(ip);
|
|
|
|
/* Get the agi buffer first. It ensures lock ordering on the list. */
|
|
error = xfs_read_agi(pag, tp, 0, &agibp);
|
|
if (error)
|
|
return error;
|
|
|
|
return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
|
|
}
|
|
|
|
/*
|
|
* Look up the inode number specified and if it is not already marked XFS_ISTALE
|
|
* mark it stale. We should only find clean inodes in this lookup that aren't
|
|
* already stale.
|
|
*/
|
|
static void
|
|
xfs_ifree_mark_inode_stale(
|
|
struct xfs_perag *pag,
|
|
struct xfs_inode *free_ip,
|
|
xfs_ino_t inum)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
struct xfs_inode_log_item *iip;
|
|
struct xfs_inode *ip;
|
|
|
|
retry:
|
|
rcu_read_lock();
|
|
ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
|
|
|
|
/* Inode not in memory, nothing to do */
|
|
if (!ip) {
|
|
rcu_read_unlock();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* because this is an RCU protected lookup, we could find a recently
|
|
* freed or even reallocated inode during the lookup. We need to check
|
|
* under the i_flags_lock for a valid inode here. Skip it if it is not
|
|
* valid, the wrong inode or stale.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
|
|
goto out_iflags_unlock;
|
|
|
|
/*
|
|
* Don't try to lock/unlock the current inode, but we _cannot_ skip the
|
|
* other inodes that we did not find in the list attached to the buffer
|
|
* and are not already marked stale. If we can't lock it, back off and
|
|
* retry.
|
|
*/
|
|
if (ip != free_ip) {
|
|
if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
delay(1);
|
|
goto retry;
|
|
}
|
|
}
|
|
ip->i_flags |= XFS_ISTALE;
|
|
|
|
/*
|
|
* If the inode is flushing, it is already attached to the buffer. All
|
|
* we needed to do here is mark the inode stale so buffer IO completion
|
|
* will remove it from the AIL.
|
|
*/
|
|
iip = ip->i_itemp;
|
|
if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
|
|
ASSERT(!list_empty(&iip->ili_item.li_bio_list));
|
|
ASSERT(iip->ili_last_fields);
|
|
goto out_iunlock;
|
|
}
|
|
|
|
/*
|
|
* Inodes not attached to the buffer can be released immediately.
|
|
* Everything else has to go through xfs_iflush_abort() on journal
|
|
* commit as the flock synchronises removal of the inode from the
|
|
* cluster buffer against inode reclaim.
|
|
*/
|
|
if (!iip || list_empty(&iip->ili_item.li_bio_list))
|
|
goto out_iunlock;
|
|
|
|
__xfs_iflags_set(ip, XFS_IFLUSHING);
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
|
|
/* we have a dirty inode in memory that has not yet been flushed. */
|
|
spin_lock(&iip->ili_lock);
|
|
iip->ili_last_fields = iip->ili_fields;
|
|
iip->ili_fields = 0;
|
|
iip->ili_fsync_fields = 0;
|
|
spin_unlock(&iip->ili_lock);
|
|
ASSERT(iip->ili_last_fields);
|
|
|
|
if (ip != free_ip)
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return;
|
|
|
|
out_iunlock:
|
|
if (ip != free_ip)
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
out_iflags_unlock:
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* A big issue when freeing the inode cluster is that we _cannot_ skip any
|
|
* inodes that are in memory - they all must be marked stale and attached to
|
|
* the cluster buffer.
|
|
*/
|
|
static int
|
|
xfs_ifree_cluster(
|
|
struct xfs_trans *tp,
|
|
struct xfs_perag *pag,
|
|
struct xfs_inode *free_ip,
|
|
struct xfs_icluster *xic)
|
|
{
|
|
struct xfs_mount *mp = free_ip->i_mount;
|
|
struct xfs_ino_geometry *igeo = M_IGEO(mp);
|
|
struct xfs_buf *bp;
|
|
xfs_daddr_t blkno;
|
|
xfs_ino_t inum = xic->first_ino;
|
|
int nbufs;
|
|
int i, j;
|
|
int ioffset;
|
|
int error;
|
|
|
|
nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
|
|
|
|
for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
|
|
/*
|
|
* The allocation bitmap tells us which inodes of the chunk were
|
|
* physically allocated. Skip the cluster if an inode falls into
|
|
* a sparse region.
|
|
*/
|
|
ioffset = inum - xic->first_ino;
|
|
if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
|
|
ASSERT(ioffset % igeo->inodes_per_cluster == 0);
|
|
continue;
|
|
}
|
|
|
|
blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
|
|
XFS_INO_TO_AGBNO(mp, inum));
|
|
|
|
/*
|
|
* We obtain and lock the backing buffer first in the process
|
|
* here to ensure dirty inodes attached to the buffer remain in
|
|
* the flushing state while we mark them stale.
|
|
*
|
|
* If we scan the in-memory inodes first, then buffer IO can
|
|
* complete before we get a lock on it, and hence we may fail
|
|
* to mark all the active inodes on the buffer stale.
|
|
*/
|
|
error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
|
|
mp->m_bsize * igeo->blocks_per_cluster,
|
|
XBF_UNMAPPED, &bp);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* This buffer may not have been correctly initialised as we
|
|
* didn't read it from disk. That's not important because we are
|
|
* only using to mark the buffer as stale in the log, and to
|
|
* attach stale cached inodes on it. That means it will never be
|
|
* dispatched for IO. If it is, we want to know about it, and we
|
|
* want it to fail. We can acheive this by adding a write
|
|
* verifier to the buffer.
|
|
*/
|
|
bp->b_ops = &xfs_inode_buf_ops;
|
|
|
|
/*
|
|
* Now we need to set all the cached clean inodes as XFS_ISTALE,
|
|
* too. This requires lookups, and will skip inodes that we've
|
|
* already marked XFS_ISTALE.
|
|
*/
|
|
for (i = 0; i < igeo->inodes_per_cluster; i++)
|
|
xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
|
|
|
|
xfs_trans_stale_inode_buf(tp, bp);
|
|
xfs_trans_binval(tp, bp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is called to return an inode to the inode free list. The inode should
|
|
* already be truncated to 0 length and have no pages associated with it. This
|
|
* routine also assumes that the inode is already a part of the transaction.
|
|
*
|
|
* The on-disk copy of the inode will have been added to the list of unlinked
|
|
* inodes in the AGI. We need to remove the inode from that list atomically with
|
|
* respect to freeing it here.
|
|
*/
|
|
int
|
|
xfs_ifree(
|
|
struct xfs_trans *tp,
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
struct xfs_icluster xic = { 0 };
|
|
struct xfs_inode_log_item *iip = ip->i_itemp;
|
|
int error;
|
|
|
|
xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
|
|
ASSERT(VFS_I(ip)->i_nlink == 0);
|
|
ASSERT(ip->i_df.if_nextents == 0);
|
|
ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
|
|
ASSERT(ip->i_nblocks == 0);
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
|
|
/*
|
|
* Free the inode first so that we guarantee that the AGI lock is going
|
|
* to be taken before we remove the inode from the unlinked list. This
|
|
* makes the AGI lock -> unlinked list modification order the same as
|
|
* used in O_TMPFILE creation.
|
|
*/
|
|
error = xfs_difree(tp, pag, ip->i_ino, &xic);
|
|
if (error)
|
|
goto out;
|
|
|
|
error = xfs_iunlink_remove(tp, pag, ip);
|
|
if (error)
|
|
goto out;
|
|
|
|
/*
|
|
* Free any local-format data sitting around before we reset the
|
|
* data fork to extents format. Note that the attr fork data has
|
|
* already been freed by xfs_attr_inactive.
|
|
*/
|
|
if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
|
|
kfree(ip->i_df.if_data);
|
|
ip->i_df.if_data = NULL;
|
|
ip->i_df.if_bytes = 0;
|
|
}
|
|
|
|
VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
|
|
ip->i_diflags = 0;
|
|
ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
|
|
ip->i_forkoff = 0; /* mark the attr fork not in use */
|
|
ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
|
|
if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
|
|
xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
|
|
|
|
/* Don't attempt to replay owner changes for a deleted inode */
|
|
spin_lock(&iip->ili_lock);
|
|
iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
|
|
spin_unlock(&iip->ili_lock);
|
|
|
|
/*
|
|
* Bump the generation count so no one will be confused
|
|
* by reincarnations of this inode.
|
|
*/
|
|
VFS_I(ip)->i_generation++;
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
|
|
if (xic.deleted)
|
|
error = xfs_ifree_cluster(tp, pag, ip, &xic);
|
|
out:
|
|
xfs_perag_put(pag);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* This is called to unpin an inode. The caller must have the inode locked
|
|
* in at least shared mode so that the buffer cannot be subsequently pinned
|
|
* once someone is waiting for it to be unpinned.
|
|
*/
|
|
static void
|
|
xfs_iunpin(
|
|
struct xfs_inode *ip)
|
|
{
|
|
xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
|
|
|
|
trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
|
|
|
|
/* Give the log a push to start the unpinning I/O */
|
|
xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
|
|
|
|
}
|
|
|
|
static void
|
|
__xfs_iunpin_wait(
|
|
struct xfs_inode *ip)
|
|
{
|
|
wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
|
|
DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
|
|
|
|
xfs_iunpin(ip);
|
|
|
|
do {
|
|
prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
|
|
if (xfs_ipincount(ip))
|
|
io_schedule();
|
|
} while (xfs_ipincount(ip));
|
|
finish_wait(wq, &wait.wq_entry);
|
|
}
|
|
|
|
void
|
|
xfs_iunpin_wait(
|
|
struct xfs_inode *ip)
|
|
{
|
|
if (xfs_ipincount(ip))
|
|
__xfs_iunpin_wait(ip);
|
|
}
|
|
|
|
/*
|
|
* Removing an inode from the namespace involves removing the directory entry
|
|
* and dropping the link count on the inode. Removing the directory entry can
|
|
* result in locking an AGF (directory blocks were freed) and removing a link
|
|
* count can result in placing the inode on an unlinked list which results in
|
|
* locking an AGI.
|
|
*
|
|
* The big problem here is that we have an ordering constraint on AGF and AGI
|
|
* locking - inode allocation locks the AGI, then can allocate a new extent for
|
|
* new inodes, locking the AGF after the AGI. Similarly, freeing the inode
|
|
* removes the inode from the unlinked list, requiring that we lock the AGI
|
|
* first, and then freeing the inode can result in an inode chunk being freed
|
|
* and hence freeing disk space requiring that we lock an AGF.
|
|
*
|
|
* Hence the ordering that is imposed by other parts of the code is AGI before
|
|
* AGF. This means we cannot remove the directory entry before we drop the inode
|
|
* reference count and put it on the unlinked list as this results in a lock
|
|
* order of AGF then AGI, and this can deadlock against inode allocation and
|
|
* freeing. Therefore we must drop the link counts before we remove the
|
|
* directory entry.
|
|
*
|
|
* This is still safe from a transactional point of view - it is not until we
|
|
* get to xfs_defer_finish() that we have the possibility of multiple
|
|
* transactions in this operation. Hence as long as we remove the directory
|
|
* entry and drop the link count in the first transaction of the remove
|
|
* operation, there are no transactional constraints on the ordering here.
|
|
*/
|
|
int
|
|
xfs_remove(
|
|
xfs_inode_t *dp,
|
|
struct xfs_name *name,
|
|
xfs_inode_t *ip)
|
|
{
|
|
xfs_mount_t *mp = dp->i_mount;
|
|
xfs_trans_t *tp = NULL;
|
|
int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
|
|
int dontcare;
|
|
int error = 0;
|
|
uint resblks;
|
|
|
|
trace_xfs_remove(dp, name);
|
|
|
|
if (xfs_is_shutdown(mp))
|
|
return -EIO;
|
|
if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
|
|
return -EIO;
|
|
|
|
error = xfs_qm_dqattach(dp);
|
|
if (error)
|
|
goto std_return;
|
|
|
|
error = xfs_qm_dqattach(ip);
|
|
if (error)
|
|
goto std_return;
|
|
|
|
/*
|
|
* We try to get the real space reservation first, allowing for
|
|
* directory btree deletion(s) implying possible bmap insert(s). If we
|
|
* can't get the space reservation then we use 0 instead, and avoid the
|
|
* bmap btree insert(s) in the directory code by, if the bmap insert
|
|
* tries to happen, instead trimming the LAST block from the directory.
|
|
*
|
|
* Ignore EDQUOT and ENOSPC being returned via nospace_error because
|
|
* the directory code can handle a reservationless update and we don't
|
|
* want to prevent a user from trying to free space by deleting things.
|
|
*/
|
|
resblks = XFS_REMOVE_SPACE_RES(mp);
|
|
error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
|
|
&tp, &dontcare);
|
|
if (error) {
|
|
ASSERT(error != -ENOSPC);
|
|
goto std_return;
|
|
}
|
|
|
|
/*
|
|
* If we're removing a directory perform some additional validation.
|
|
*/
|
|
if (is_dir) {
|
|
ASSERT(VFS_I(ip)->i_nlink >= 2);
|
|
if (VFS_I(ip)->i_nlink != 2) {
|
|
error = -ENOTEMPTY;
|
|
goto out_trans_cancel;
|
|
}
|
|
if (!xfs_dir_isempty(ip)) {
|
|
error = -ENOTEMPTY;
|
|
goto out_trans_cancel;
|
|
}
|
|
|
|
/* Drop the link from ip's "..". */
|
|
error = xfs_droplink(tp, dp);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
/* Drop the "." link from ip to self. */
|
|
error = xfs_droplink(tp, ip);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
/*
|
|
* Point the unlinked child directory's ".." entry to the root
|
|
* directory to eliminate back-references to inodes that may
|
|
* get freed before the child directory is closed. If the fs
|
|
* gets shrunk, this can lead to dirent inode validation errors.
|
|
*/
|
|
if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
|
|
error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
|
|
tp->t_mountp->m_sb.sb_rootino, 0);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
}
|
|
} else {
|
|
/*
|
|
* When removing a non-directory we need to log the parent
|
|
* inode here. For a directory this is done implicitly
|
|
* by the xfs_droplink call for the ".." entry.
|
|
*/
|
|
xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
|
|
}
|
|
xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
|
|
|
/* Drop the link from dp to ip. */
|
|
error = xfs_droplink(tp, ip);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
|
|
if (error) {
|
|
ASSERT(error != -ENOENT);
|
|
goto out_trans_cancel;
|
|
}
|
|
|
|
/*
|
|
* Drop the link from dp to ip, and if ip was a directory, remove the
|
|
* '.' and '..' references since we freed the directory.
|
|
*/
|
|
xfs_dir_update_hook(dp, ip, -1, name);
|
|
|
|
/*
|
|
* If this is a synchronous mount, make sure that the
|
|
* remove transaction goes to disk before returning to
|
|
* the user.
|
|
*/
|
|
if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
|
|
xfs_trans_set_sync(tp);
|
|
|
|
error = xfs_trans_commit(tp);
|
|
if (error)
|
|
goto std_return;
|
|
|
|
if (is_dir && xfs_inode_is_filestream(ip))
|
|
xfs_filestream_deassociate(ip);
|
|
|
|
return 0;
|
|
|
|
out_trans_cancel:
|
|
xfs_trans_cancel(tp);
|
|
std_return:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Enter all inodes for a rename transaction into a sorted array.
|
|
*/
|
|
#define __XFS_SORT_INODES 5
|
|
STATIC void
|
|
xfs_sort_for_rename(
|
|
struct xfs_inode *dp1, /* in: old (source) directory inode */
|
|
struct xfs_inode *dp2, /* in: new (target) directory inode */
|
|
struct xfs_inode *ip1, /* in: inode of old entry */
|
|
struct xfs_inode *ip2, /* in: inode of new entry */
|
|
struct xfs_inode *wip, /* in: whiteout inode */
|
|
struct xfs_inode **i_tab,/* out: sorted array of inodes */
|
|
int *num_inodes) /* in/out: inodes in array */
|
|
{
|
|
int i, j;
|
|
|
|
ASSERT(*num_inodes == __XFS_SORT_INODES);
|
|
memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
|
|
|
|
/*
|
|
* i_tab contains a list of pointers to inodes. We initialize
|
|
* the table here & we'll sort it. We will then use it to
|
|
* order the acquisition of the inode locks.
|
|
*
|
|
* Note that the table may contain duplicates. e.g., dp1 == dp2.
|
|
*/
|
|
i = 0;
|
|
i_tab[i++] = dp1;
|
|
i_tab[i++] = dp2;
|
|
i_tab[i++] = ip1;
|
|
if (ip2)
|
|
i_tab[i++] = ip2;
|
|
if (wip)
|
|
i_tab[i++] = wip;
|
|
*num_inodes = i;
|
|
|
|
/*
|
|
* Sort the elements via bubble sort. (Remember, there are at
|
|
* most 5 elements to sort, so this is adequate.)
|
|
*/
|
|
for (i = 0; i < *num_inodes; i++) {
|
|
for (j = 1; j < *num_inodes; j++) {
|
|
if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
|
|
struct xfs_inode *temp = i_tab[j];
|
|
i_tab[j] = i_tab[j-1];
|
|
i_tab[j-1] = temp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
xfs_finish_rename(
|
|
struct xfs_trans *tp)
|
|
{
|
|
/*
|
|
* If this is a synchronous mount, make sure that the rename transaction
|
|
* goes to disk before returning to the user.
|
|
*/
|
|
if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
|
|
xfs_trans_set_sync(tp);
|
|
|
|
return xfs_trans_commit(tp);
|
|
}
|
|
|
|
/*
|
|
* xfs_cross_rename()
|
|
*
|
|
* responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
|
|
*/
|
|
STATIC int
|
|
xfs_cross_rename(
|
|
struct xfs_trans *tp,
|
|
struct xfs_inode *dp1,
|
|
struct xfs_name *name1,
|
|
struct xfs_inode *ip1,
|
|
struct xfs_inode *dp2,
|
|
struct xfs_name *name2,
|
|
struct xfs_inode *ip2,
|
|
int spaceres)
|
|
{
|
|
int error = 0;
|
|
int ip1_flags = 0;
|
|
int ip2_flags = 0;
|
|
int dp2_flags = 0;
|
|
|
|
/* Swap inode number for dirent in first parent */
|
|
error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
|
|
if (error)
|
|
goto out_trans_abort;
|
|
|
|
/* Swap inode number for dirent in second parent */
|
|
error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
|
|
if (error)
|
|
goto out_trans_abort;
|
|
|
|
/*
|
|
* If we're renaming one or more directories across different parents,
|
|
* update the respective ".." entries (and link counts) to match the new
|
|
* parents.
|
|
*/
|
|
if (dp1 != dp2) {
|
|
dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
|
|
|
|
if (S_ISDIR(VFS_I(ip2)->i_mode)) {
|
|
error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
|
|
dp1->i_ino, spaceres);
|
|
if (error)
|
|
goto out_trans_abort;
|
|
|
|
/* transfer ip2 ".." reference to dp1 */
|
|
if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
|
|
error = xfs_droplink(tp, dp2);
|
|
if (error)
|
|
goto out_trans_abort;
|
|
xfs_bumplink(tp, dp1);
|
|
}
|
|
|
|
/*
|
|
* Although ip1 isn't changed here, userspace needs
|
|
* to be warned about the change, so that applications
|
|
* relying on it (like backup ones), will properly
|
|
* notify the change
|
|
*/
|
|
ip1_flags |= XFS_ICHGTIME_CHG;
|
|
ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
|
|
}
|
|
|
|
if (S_ISDIR(VFS_I(ip1)->i_mode)) {
|
|
error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
|
|
dp2->i_ino, spaceres);
|
|
if (error)
|
|
goto out_trans_abort;
|
|
|
|
/* transfer ip1 ".." reference to dp2 */
|
|
if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
|
|
error = xfs_droplink(tp, dp1);
|
|
if (error)
|
|
goto out_trans_abort;
|
|
xfs_bumplink(tp, dp2);
|
|
}
|
|
|
|
/*
|
|
* Although ip2 isn't changed here, userspace needs
|
|
* to be warned about the change, so that applications
|
|
* relying on it (like backup ones), will properly
|
|
* notify the change
|
|
*/
|
|
ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
|
|
ip2_flags |= XFS_ICHGTIME_CHG;
|
|
}
|
|
}
|
|
|
|
if (ip1_flags) {
|
|
xfs_trans_ichgtime(tp, ip1, ip1_flags);
|
|
xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
|
|
}
|
|
if (ip2_flags) {
|
|
xfs_trans_ichgtime(tp, ip2, ip2_flags);
|
|
xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
|
|
}
|
|
if (dp2_flags) {
|
|
xfs_trans_ichgtime(tp, dp2, dp2_flags);
|
|
xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
|
|
}
|
|
xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
|
xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
|
|
|
|
/*
|
|
* Inform our hook clients that we've finished an exchange operation as
|
|
* follows: removed the source and target files from their directories;
|
|
* added the target to the source directory; and added the source to
|
|
* the target directory. All inodes are locked, so it's ok to model a
|
|
* rename this way so long as we say we deleted entries before we add
|
|
* new ones.
|
|
*/
|
|
xfs_dir_update_hook(dp1, ip1, -1, name1);
|
|
xfs_dir_update_hook(dp2, ip2, -1, name2);
|
|
xfs_dir_update_hook(dp1, ip2, 1, name1);
|
|
xfs_dir_update_hook(dp2, ip1, 1, name2);
|
|
|
|
return xfs_finish_rename(tp);
|
|
|
|
out_trans_abort:
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* xfs_rename_alloc_whiteout()
|
|
*
|
|
* Return a referenced, unlinked, unlocked inode that can be used as a
|
|
* whiteout in a rename transaction. We use a tmpfile inode here so that if we
|
|
* crash between allocating the inode and linking it into the rename transaction
|
|
* recovery will free the inode and we won't leak it.
|
|
*/
|
|
static int
|
|
xfs_rename_alloc_whiteout(
|
|
struct mnt_idmap *idmap,
|
|
struct xfs_name *src_name,
|
|
struct xfs_inode *dp,
|
|
struct xfs_inode **wip)
|
|
{
|
|
struct xfs_inode *tmpfile;
|
|
struct qstr name;
|
|
int error;
|
|
|
|
error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
|
|
&tmpfile);
|
|
if (error)
|
|
return error;
|
|
|
|
name.name = src_name->name;
|
|
name.len = src_name->len;
|
|
error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
|
|
if (error) {
|
|
xfs_finish_inode_setup(tmpfile);
|
|
xfs_irele(tmpfile);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Prepare the tmpfile inode as if it were created through the VFS.
|
|
* Complete the inode setup and flag it as linkable. nlink is already
|
|
* zero, so we can skip the drop_nlink.
|
|
*/
|
|
xfs_setup_iops(tmpfile);
|
|
xfs_finish_inode_setup(tmpfile);
|
|
VFS_I(tmpfile)->i_state |= I_LINKABLE;
|
|
|
|
*wip = tmpfile;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* xfs_rename
|
|
*/
|
|
int
|
|
xfs_rename(
|
|
struct mnt_idmap *idmap,
|
|
struct xfs_inode *src_dp,
|
|
struct xfs_name *src_name,
|
|
struct xfs_inode *src_ip,
|
|
struct xfs_inode *target_dp,
|
|
struct xfs_name *target_name,
|
|
struct xfs_inode *target_ip,
|
|
unsigned int flags)
|
|
{
|
|
struct xfs_mount *mp = src_dp->i_mount;
|
|
struct xfs_trans *tp;
|
|
struct xfs_inode *wip = NULL; /* whiteout inode */
|
|
struct xfs_inode *inodes[__XFS_SORT_INODES];
|
|
int i;
|
|
int num_inodes = __XFS_SORT_INODES;
|
|
bool new_parent = (src_dp != target_dp);
|
|
bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
|
|
int spaceres;
|
|
bool retried = false;
|
|
int error, nospace_error = 0;
|
|
|
|
trace_xfs_rename(src_dp, target_dp, src_name, target_name);
|
|
|
|
if ((flags & RENAME_EXCHANGE) && !target_ip)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If we are doing a whiteout operation, allocate the whiteout inode
|
|
* we will be placing at the target and ensure the type is set
|
|
* appropriately.
|
|
*/
|
|
if (flags & RENAME_WHITEOUT) {
|
|
error = xfs_rename_alloc_whiteout(idmap, src_name,
|
|
target_dp, &wip);
|
|
if (error)
|
|
return error;
|
|
|
|
/* setup target dirent info as whiteout */
|
|
src_name->type = XFS_DIR3_FT_CHRDEV;
|
|
}
|
|
|
|
xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
|
|
inodes, &num_inodes);
|
|
|
|
retry:
|
|
nospace_error = 0;
|
|
spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
|
|
if (error == -ENOSPC) {
|
|
nospace_error = error;
|
|
spaceres = 0;
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
|
|
&tp);
|
|
}
|
|
if (error)
|
|
goto out_release_wip;
|
|
|
|
/*
|
|
* Attach the dquots to the inodes
|
|
*/
|
|
error = xfs_qm_vop_rename_dqattach(inodes);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
/*
|
|
* Lock all the participating inodes. Depending upon whether
|
|
* the target_name exists in the target directory, and
|
|
* whether the target directory is the same as the source
|
|
* directory, we can lock from 2 to 5 inodes.
|
|
*/
|
|
xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
|
|
|
|
/*
|
|
* Join all the inodes to the transaction. From this point on,
|
|
* we can rely on either trans_commit or trans_cancel to unlock
|
|
* them.
|
|
*/
|
|
xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
|
|
if (new_parent)
|
|
xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
|
|
xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
|
|
if (target_ip)
|
|
xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
|
|
if (wip)
|
|
xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
|
|
|
|
/*
|
|
* If we are using project inheritance, we only allow renames
|
|
* into our tree when the project IDs are the same; else the
|
|
* tree quota mechanism would be circumvented.
|
|
*/
|
|
if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
|
|
target_dp->i_projid != src_ip->i_projid)) {
|
|
error = -EXDEV;
|
|
goto out_trans_cancel;
|
|
}
|
|
|
|
/* RENAME_EXCHANGE is unique from here on. */
|
|
if (flags & RENAME_EXCHANGE)
|
|
return xfs_cross_rename(tp, src_dp, src_name, src_ip,
|
|
target_dp, target_name, target_ip,
|
|
spaceres);
|
|
|
|
/*
|
|
* Try to reserve quota to handle an expansion of the target directory.
|
|
* We'll allow the rename to continue in reservationless mode if we hit
|
|
* a space usage constraint. If we trigger reservationless mode, save
|
|
* the errno if there isn't any free space in the target directory.
|
|
*/
|
|
if (spaceres != 0) {
|
|
error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
|
|
0, false);
|
|
if (error == -EDQUOT || error == -ENOSPC) {
|
|
if (!retried) {
|
|
xfs_trans_cancel(tp);
|
|
xfs_blockgc_free_quota(target_dp, 0);
|
|
retried = true;
|
|
goto retry;
|
|
}
|
|
|
|
nospace_error = error;
|
|
spaceres = 0;
|
|
error = 0;
|
|
}
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
}
|
|
|
|
/*
|
|
* Check for expected errors before we dirty the transaction
|
|
* so we can return an error without a transaction abort.
|
|
*/
|
|
if (target_ip == NULL) {
|
|
/*
|
|
* If there's no space reservation, check the entry will
|
|
* fit before actually inserting it.
|
|
*/
|
|
if (!spaceres) {
|
|
error = xfs_dir_canenter(tp, target_dp, target_name);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
}
|
|
} else {
|
|
/*
|
|
* If target exists and it's a directory, check that whether
|
|
* it can be destroyed.
|
|
*/
|
|
if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
|
|
(!xfs_dir_isempty(target_ip) ||
|
|
(VFS_I(target_ip)->i_nlink > 2))) {
|
|
error = -EEXIST;
|
|
goto out_trans_cancel;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Lock the AGI buffers we need to handle bumping the nlink of the
|
|
* whiteout inode off the unlinked list and to handle dropping the
|
|
* nlink of the target inode. Per locking order rules, do this in
|
|
* increasing AG order and before directory block allocation tries to
|
|
* grab AGFs because we grab AGIs before AGFs.
|
|
*
|
|
* The (vfs) caller must ensure that if src is a directory then
|
|
* target_ip is either null or an empty directory.
|
|
*/
|
|
for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
|
|
if (inodes[i] == wip ||
|
|
(inodes[i] == target_ip &&
|
|
(VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
|
|
struct xfs_perag *pag;
|
|
struct xfs_buf *bp;
|
|
|
|
pag = xfs_perag_get(mp,
|
|
XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
|
|
error = xfs_read_agi(pag, tp, 0, &bp);
|
|
xfs_perag_put(pag);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Directory entry creation below may acquire the AGF. Remove
|
|
* the whiteout from the unlinked list first to preserve correct
|
|
* AGI/AGF locking order. This dirties the transaction so failures
|
|
* after this point will abort and log recovery will clean up the
|
|
* mess.
|
|
*
|
|
* For whiteouts, we need to bump the link count on the whiteout
|
|
* inode. After this point, we have a real link, clear the tmpfile
|
|
* state flag from the inode so it doesn't accidentally get misused
|
|
* in future.
|
|
*/
|
|
if (wip) {
|
|
struct xfs_perag *pag;
|
|
|
|
ASSERT(VFS_I(wip)->i_nlink == 0);
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
|
|
error = xfs_iunlink_remove(tp, pag, wip);
|
|
xfs_perag_put(pag);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
xfs_bumplink(tp, wip);
|
|
VFS_I(wip)->i_state &= ~I_LINKABLE;
|
|
}
|
|
|
|
/*
|
|
* Set up the target.
|
|
*/
|
|
if (target_ip == NULL) {
|
|
/*
|
|
* If target does not exist and the rename crosses
|
|
* directories, adjust the target directory link count
|
|
* to account for the ".." reference from the new entry.
|
|
*/
|
|
error = xfs_dir_createname(tp, target_dp, target_name,
|
|
src_ip->i_ino, spaceres);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
xfs_trans_ichgtime(tp, target_dp,
|
|
XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
|
|
|
if (new_parent && src_is_directory) {
|
|
xfs_bumplink(tp, target_dp);
|
|
}
|
|
} else { /* target_ip != NULL */
|
|
/*
|
|
* Link the source inode under the target name.
|
|
* If the source inode is a directory and we are moving
|
|
* it across directories, its ".." entry will be
|
|
* inconsistent until we replace that down below.
|
|
*
|
|
* In case there is already an entry with the same
|
|
* name at the destination directory, remove it first.
|
|
*/
|
|
error = xfs_dir_replace(tp, target_dp, target_name,
|
|
src_ip->i_ino, spaceres);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
xfs_trans_ichgtime(tp, target_dp,
|
|
XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
|
|
|
/*
|
|
* Decrement the link count on the target since the target
|
|
* dir no longer points to it.
|
|
*/
|
|
error = xfs_droplink(tp, target_ip);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
if (src_is_directory) {
|
|
/*
|
|
* Drop the link from the old "." entry.
|
|
*/
|
|
error = xfs_droplink(tp, target_ip);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
}
|
|
} /* target_ip != NULL */
|
|
|
|
/*
|
|
* Remove the source.
|
|
*/
|
|
if (new_parent && src_is_directory) {
|
|
/*
|
|
* Rewrite the ".." entry to point to the new
|
|
* directory.
|
|
*/
|
|
error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
|
|
target_dp->i_ino, spaceres);
|
|
ASSERT(error != -EEXIST);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
}
|
|
|
|
/*
|
|
* We always want to hit the ctime on the source inode.
|
|
*
|
|
* This isn't strictly required by the standards since the source
|
|
* inode isn't really being changed, but old unix file systems did
|
|
* it and some incremental backup programs won't work without it.
|
|
*/
|
|
xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
|
|
xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
|
|
|
|
/*
|
|
* Adjust the link count on src_dp. This is necessary when
|
|
* renaming a directory, either within one parent when
|
|
* the target existed, or across two parent directories.
|
|
*/
|
|
if (src_is_directory && (new_parent || target_ip != NULL)) {
|
|
|
|
/*
|
|
* Decrement link count on src_directory since the
|
|
* entry that's moved no longer points to it.
|
|
*/
|
|
error = xfs_droplink(tp, src_dp);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
}
|
|
|
|
/*
|
|
* For whiteouts, we only need to update the source dirent with the
|
|
* inode number of the whiteout inode rather than removing it
|
|
* altogether.
|
|
*/
|
|
if (wip)
|
|
error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
|
|
spaceres);
|
|
else
|
|
error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
|
|
spaceres);
|
|
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
|
xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
|
|
if (new_parent)
|
|
xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
|
|
|
|
/*
|
|
* Inform our hook clients that we've finished a rename operation as
|
|
* follows: removed the source and target files from their directories;
|
|
* that we've added the source to the target directory; and finally
|
|
* that we've added the whiteout, if there was one. All inodes are
|
|
* locked, so it's ok to model a rename this way so long as we say we
|
|
* deleted entries before we add new ones.
|
|
*/
|
|
if (target_ip)
|
|
xfs_dir_update_hook(target_dp, target_ip, -1, target_name);
|
|
xfs_dir_update_hook(src_dp, src_ip, -1, src_name);
|
|
xfs_dir_update_hook(target_dp, src_ip, 1, target_name);
|
|
if (wip)
|
|
xfs_dir_update_hook(src_dp, wip, 1, src_name);
|
|
|
|
error = xfs_finish_rename(tp);
|
|
if (wip)
|
|
xfs_irele(wip);
|
|
return error;
|
|
|
|
out_trans_cancel:
|
|
xfs_trans_cancel(tp);
|
|
out_release_wip:
|
|
if (wip)
|
|
xfs_irele(wip);
|
|
if (error == -ENOSPC && nospace_error)
|
|
error = nospace_error;
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
xfs_iflush(
|
|
struct xfs_inode *ip,
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_inode_log_item *iip = ip->i_itemp;
|
|
struct xfs_dinode *dip;
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
int error;
|
|
|
|
xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
|
|
ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
|
|
ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
|
|
ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
|
|
ASSERT(iip->ili_item.li_buf == bp);
|
|
|
|
dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
|
|
|
|
/*
|
|
* We don't flush the inode if any of the following checks fail, but we
|
|
* do still update the log item and attach to the backing buffer as if
|
|
* the flush happened. This is a formality to facilitate predictable
|
|
* error handling as the caller will shutdown and fail the buffer.
|
|
*/
|
|
error = -EFSCORRUPTED;
|
|
if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
|
|
mp, XFS_ERRTAG_IFLUSH_1)) {
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
|
|
__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
|
|
goto flush_out;
|
|
}
|
|
if (S_ISREG(VFS_I(ip)->i_mode)) {
|
|
if (XFS_TEST_ERROR(
|
|
ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
|
|
ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
|
|
mp, XFS_ERRTAG_IFLUSH_3)) {
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
"%s: Bad regular inode %llu, ptr "PTR_FMT,
|
|
__func__, ip->i_ino, ip);
|
|
goto flush_out;
|
|
}
|
|
} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
|
|
if (XFS_TEST_ERROR(
|
|
ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
|
|
ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
|
|
ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
|
|
mp, XFS_ERRTAG_IFLUSH_4)) {
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
"%s: Bad directory inode %llu, ptr "PTR_FMT,
|
|
__func__, ip->i_ino, ip);
|
|
goto flush_out;
|
|
}
|
|
}
|
|
if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
|
|
ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
"%s: detected corrupt incore inode %llu, "
|
|
"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
|
|
__func__, ip->i_ino,
|
|
ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
|
|
ip->i_nblocks, ip);
|
|
goto flush_out;
|
|
}
|
|
if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
|
|
mp, XFS_ERRTAG_IFLUSH_6)) {
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
|
|
__func__, ip->i_ino, ip->i_forkoff, ip);
|
|
goto flush_out;
|
|
}
|
|
|
|
/*
|
|
* Inode item log recovery for v2 inodes are dependent on the flushiter
|
|
* count for correct sequencing. We bump the flush iteration count so
|
|
* we can detect flushes which postdate a log record during recovery.
|
|
* This is redundant as we now log every change and hence this can't
|
|
* happen but we need to still do it to ensure backwards compatibility
|
|
* with old kernels that predate logging all inode changes.
|
|
*/
|
|
if (!xfs_has_v3inodes(mp))
|
|
ip->i_flushiter++;
|
|
|
|
/*
|
|
* If there are inline format data / attr forks attached to this inode,
|
|
* make sure they are not corrupt.
|
|
*/
|
|
if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
|
|
xfs_ifork_verify_local_data(ip))
|
|
goto flush_out;
|
|
if (xfs_inode_has_attr_fork(ip) &&
|
|
ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
|
|
xfs_ifork_verify_local_attr(ip))
|
|
goto flush_out;
|
|
|
|
/*
|
|
* Copy the dirty parts of the inode into the on-disk inode. We always
|
|
* copy out the core of the inode, because if the inode is dirty at all
|
|
* the core must be.
|
|
*/
|
|
xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
|
|
|
|
/* Wrap, we never let the log put out DI_MAX_FLUSH */
|
|
if (!xfs_has_v3inodes(mp)) {
|
|
if (ip->i_flushiter == DI_MAX_FLUSH)
|
|
ip->i_flushiter = 0;
|
|
}
|
|
|
|
xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
|
|
if (xfs_inode_has_attr_fork(ip))
|
|
xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
|
|
|
|
/*
|
|
* We've recorded everything logged in the inode, so we'd like to clear
|
|
* the ili_fields bits so we don't log and flush things unnecessarily.
|
|
* However, we can't stop logging all this information until the data
|
|
* we've copied into the disk buffer is written to disk. If we did we
|
|
* might overwrite the copy of the inode in the log with all the data
|
|
* after re-logging only part of it, and in the face of a crash we
|
|
* wouldn't have all the data we need to recover.
|
|
*
|
|
* What we do is move the bits to the ili_last_fields field. When
|
|
* logging the inode, these bits are moved back to the ili_fields field.
|
|
* In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
|
|
* we know that the information those bits represent is permanently on
|
|
* disk. As long as the flush completes before the inode is logged
|
|
* again, then both ili_fields and ili_last_fields will be cleared.
|
|
*/
|
|
error = 0;
|
|
flush_out:
|
|
spin_lock(&iip->ili_lock);
|
|
iip->ili_last_fields = iip->ili_fields;
|
|
iip->ili_fields = 0;
|
|
iip->ili_fsync_fields = 0;
|
|
spin_unlock(&iip->ili_lock);
|
|
|
|
/*
|
|
* Store the current LSN of the inode so that we can tell whether the
|
|
* item has moved in the AIL from xfs_buf_inode_iodone().
|
|
*/
|
|
xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
|
|
&iip->ili_item.li_lsn);
|
|
|
|
/* generate the checksum. */
|
|
xfs_dinode_calc_crc(mp, dip);
|
|
if (error)
|
|
xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Non-blocking flush of dirty inode metadata into the backing buffer.
|
|
*
|
|
* The caller must have a reference to the inode and hold the cluster buffer
|
|
* locked. The function will walk across all the inodes on the cluster buffer it
|
|
* can find and lock without blocking, and flush them to the cluster buffer.
|
|
*
|
|
* On successful flushing of at least one inode, the caller must write out the
|
|
* buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
|
|
* the caller needs to release the buffer. On failure, the filesystem will be
|
|
* shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
|
|
* will be returned.
|
|
*/
|
|
int
|
|
xfs_iflush_cluster(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_mount;
|
|
struct xfs_log_item *lip, *n;
|
|
struct xfs_inode *ip;
|
|
struct xfs_inode_log_item *iip;
|
|
int clcount = 0;
|
|
int error = 0;
|
|
|
|
/*
|
|
* We must use the safe variant here as on shutdown xfs_iflush_abort()
|
|
* will remove itself from the list.
|
|
*/
|
|
list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
|
|
iip = (struct xfs_inode_log_item *)lip;
|
|
ip = iip->ili_inode;
|
|
|
|
/*
|
|
* Quick and dirty check to avoid locks if possible.
|
|
*/
|
|
if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
|
|
continue;
|
|
if (xfs_ipincount(ip))
|
|
continue;
|
|
|
|
/*
|
|
* The inode is still attached to the buffer, which means it is
|
|
* dirty but reclaim might try to grab it. Check carefully for
|
|
* that, and grab the ilock while still holding the i_flags_lock
|
|
* to guarantee reclaim will not be able to reclaim this inode
|
|
* once we drop the i_flags_lock.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
|
|
if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
|
|
spin_unlock(&ip->i_flags_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* ILOCK will pin the inode against reclaim and prevent
|
|
* concurrent transactions modifying the inode while we are
|
|
* flushing the inode. If we get the lock, set the flushing
|
|
* state before we drop the i_flags_lock.
|
|
*/
|
|
if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
|
|
spin_unlock(&ip->i_flags_lock);
|
|
continue;
|
|
}
|
|
__xfs_iflags_set(ip, XFS_IFLUSHING);
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
/*
|
|
* Abort flushing this inode if we are shut down because the
|
|
* inode may not currently be in the AIL. This can occur when
|
|
* log I/O failure unpins the inode without inserting into the
|
|
* AIL, leaving a dirty/unpinned inode attached to the buffer
|
|
* that otherwise looks like it should be flushed.
|
|
*/
|
|
if (xlog_is_shutdown(mp->m_log)) {
|
|
xfs_iunpin_wait(ip);
|
|
xfs_iflush_abort(ip);
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
error = -EIO;
|
|
continue;
|
|
}
|
|
|
|
/* don't block waiting on a log force to unpin dirty inodes */
|
|
if (xfs_ipincount(ip)) {
|
|
xfs_iflags_clear(ip, XFS_IFLUSHING);
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
continue;
|
|
}
|
|
|
|
if (!xfs_inode_clean(ip))
|
|
error = xfs_iflush(ip, bp);
|
|
else
|
|
xfs_iflags_clear(ip, XFS_IFLUSHING);
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
if (error)
|
|
break;
|
|
clcount++;
|
|
}
|
|
|
|
if (error) {
|
|
/*
|
|
* Shutdown first so we kill the log before we release this
|
|
* buffer. If it is an INODE_ALLOC buffer and pins the tail
|
|
* of the log, failing it before the _log_ is shut down can
|
|
* result in the log tail being moved forward in the journal
|
|
* on disk because log writes can still be taking place. Hence
|
|
* unpinning the tail will allow the ICREATE intent to be
|
|
* removed from the log an recovery will fail with uninitialised
|
|
* inode cluster buffers.
|
|
*/
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
bp->b_flags |= XBF_ASYNC;
|
|
xfs_buf_ioend_fail(bp);
|
|
return error;
|
|
}
|
|
|
|
if (!clcount)
|
|
return -EAGAIN;
|
|
|
|
XFS_STATS_INC(mp, xs_icluster_flushcnt);
|
|
XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* Release an inode. */
|
|
void
|
|
xfs_irele(
|
|
struct xfs_inode *ip)
|
|
{
|
|
trace_xfs_irele(ip, _RET_IP_);
|
|
iput(VFS_I(ip));
|
|
}
|
|
|
|
/*
|
|
* Ensure all commited transactions touching the inode are written to the log.
|
|
*/
|
|
int
|
|
xfs_log_force_inode(
|
|
struct xfs_inode *ip)
|
|
{
|
|
xfs_csn_t seq = 0;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_SHARED);
|
|
if (xfs_ipincount(ip))
|
|
seq = ip->i_itemp->ili_commit_seq;
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
|
|
if (!seq)
|
|
return 0;
|
|
return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
|
|
}
|
|
|
|
/*
|
|
* Grab the exclusive iolock for a data copy from src to dest, making sure to
|
|
* abide vfs locking order (lowest pointer value goes first) and breaking the
|
|
* layout leases before proceeding. The loop is needed because we cannot call
|
|
* the blocking break_layout() with the iolocks held, and therefore have to
|
|
* back out both locks.
|
|
*/
|
|
static int
|
|
xfs_iolock_two_inodes_and_break_layout(
|
|
struct inode *src,
|
|
struct inode *dest)
|
|
{
|
|
int error;
|
|
|
|
if (src > dest)
|
|
swap(src, dest);
|
|
|
|
retry:
|
|
/* Wait to break both inodes' layouts before we start locking. */
|
|
error = break_layout(src, true);
|
|
if (error)
|
|
return error;
|
|
if (src != dest) {
|
|
error = break_layout(dest, true);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/* Lock one inode and make sure nobody got in and leased it. */
|
|
inode_lock(src);
|
|
error = break_layout(src, false);
|
|
if (error) {
|
|
inode_unlock(src);
|
|
if (error == -EWOULDBLOCK)
|
|
goto retry;
|
|
return error;
|
|
}
|
|
|
|
if (src == dest)
|
|
return 0;
|
|
|
|
/* Lock the other inode and make sure nobody got in and leased it. */
|
|
inode_lock_nested(dest, I_MUTEX_NONDIR2);
|
|
error = break_layout(dest, false);
|
|
if (error) {
|
|
inode_unlock(src);
|
|
inode_unlock(dest);
|
|
if (error == -EWOULDBLOCK)
|
|
goto retry;
|
|
return error;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
xfs_mmaplock_two_inodes_and_break_dax_layout(
|
|
struct xfs_inode *ip1,
|
|
struct xfs_inode *ip2)
|
|
{
|
|
int error;
|
|
bool retry;
|
|
struct page *page;
|
|
|
|
if (ip1->i_ino > ip2->i_ino)
|
|
swap(ip1, ip2);
|
|
|
|
again:
|
|
retry = false;
|
|
/* Lock the first inode */
|
|
xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
|
|
error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
|
|
if (error || retry) {
|
|
xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
|
|
if (error == 0 && retry)
|
|
goto again;
|
|
return error;
|
|
}
|
|
|
|
if (ip1 == ip2)
|
|
return 0;
|
|
|
|
/* Nested lock the second inode */
|
|
xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
|
|
/*
|
|
* We cannot use xfs_break_dax_layouts() directly here because it may
|
|
* need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
|
|
* for this nested lock case.
|
|
*/
|
|
page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
|
|
if (page && page_ref_count(page) != 1) {
|
|
xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
|
|
xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
|
|
goto again;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Lock two inodes so that userspace cannot initiate I/O via file syscalls or
|
|
* mmap activity.
|
|
*/
|
|
int
|
|
xfs_ilock2_io_mmap(
|
|
struct xfs_inode *ip1,
|
|
struct xfs_inode *ip2)
|
|
{
|
|
int ret;
|
|
|
|
ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
|
|
ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
|
|
if (ret) {
|
|
inode_unlock(VFS_I(ip2));
|
|
if (ip1 != ip2)
|
|
inode_unlock(VFS_I(ip1));
|
|
return ret;
|
|
}
|
|
} else
|
|
filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
|
|
VFS_I(ip2)->i_mapping);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Unlock both inodes to allow IO and mmap activity. */
|
|
void
|
|
xfs_iunlock2_io_mmap(
|
|
struct xfs_inode *ip1,
|
|
struct xfs_inode *ip2)
|
|
{
|
|
if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
|
|
xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
|
|
if (ip1 != ip2)
|
|
xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
|
|
} else
|
|
filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
|
|
VFS_I(ip2)->i_mapping);
|
|
|
|
inode_unlock(VFS_I(ip2));
|
|
if (ip1 != ip2)
|
|
inode_unlock(VFS_I(ip1));
|
|
}
|
|
|
|
/* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
|
|
void
|
|
xfs_iunlock2_remapping(
|
|
struct xfs_inode *ip1,
|
|
struct xfs_inode *ip2)
|
|
{
|
|
xfs_iflags_clear(ip1, XFS_IREMAPPING);
|
|
|
|
if (ip1 != ip2)
|
|
xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
|
|
xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
|
|
|
|
if (ip1 != ip2)
|
|
inode_unlock_shared(VFS_I(ip1));
|
|
inode_unlock(VFS_I(ip2));
|
|
}
|
|
|
|
/*
|
|
* Reload the incore inode list for this inode. Caller should ensure that
|
|
* the link count cannot change, either by taking ILOCK_SHARED or otherwise
|
|
* preventing other threads from executing.
|
|
*/
|
|
int
|
|
xfs_inode_reload_unlinked_bucket(
|
|
struct xfs_trans *tp,
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_buf *agibp;
|
|
struct xfs_agi *agi;
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
|
|
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
|
|
xfs_agino_t prev_agino, next_agino;
|
|
unsigned int bucket;
|
|
bool foundit = false;
|
|
int error;
|
|
|
|
/* Grab the first inode in the list */
|
|
pag = xfs_perag_get(mp, agno);
|
|
error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
|
|
xfs_perag_put(pag);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
|
|
* incore unlinked list pointers for this inode. Check once more to
|
|
* see if we raced with anyone else to reload the unlinked list.
|
|
*/
|
|
if (!xfs_inode_unlinked_incomplete(ip)) {
|
|
foundit = true;
|
|
goto out_agibp;
|
|
}
|
|
|
|
bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
|
|
agi = agibp->b_addr;
|
|
|
|
trace_xfs_inode_reload_unlinked_bucket(ip);
|
|
|
|
xfs_info_ratelimited(mp,
|
|
"Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.",
|
|
agino, agno);
|
|
|
|
prev_agino = NULLAGINO;
|
|
next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
|
|
while (next_agino != NULLAGINO) {
|
|
struct xfs_inode *next_ip = NULL;
|
|
|
|
/* Found this caller's inode, set its backlink. */
|
|
if (next_agino == agino) {
|
|
next_ip = ip;
|
|
next_ip->i_prev_unlinked = prev_agino;
|
|
foundit = true;
|
|
goto next_inode;
|
|
}
|
|
|
|
/* Try in-memory lookup first. */
|
|
next_ip = xfs_iunlink_lookup(pag, next_agino);
|
|
if (next_ip)
|
|
goto next_inode;
|
|
|
|
/* Inode not in memory, try reloading it. */
|
|
error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
|
|
next_agino);
|
|
if (error)
|
|
break;
|
|
|
|
/* Grab the reloaded inode. */
|
|
next_ip = xfs_iunlink_lookup(pag, next_agino);
|
|
if (!next_ip) {
|
|
/* No incore inode at all? We reloaded it... */
|
|
ASSERT(next_ip != NULL);
|
|
error = -EFSCORRUPTED;
|
|
break;
|
|
}
|
|
|
|
next_inode:
|
|
prev_agino = next_agino;
|
|
next_agino = next_ip->i_next_unlinked;
|
|
}
|
|
|
|
out_agibp:
|
|
xfs_trans_brelse(tp, agibp);
|
|
/* Should have found this inode somewhere in the iunlinked bucket. */
|
|
if (!error && !foundit)
|
|
error = -EFSCORRUPTED;
|
|
return error;
|
|
}
|
|
|
|
/* Decide if this inode is missing its unlinked list and reload it. */
|
|
int
|
|
xfs_inode_reload_unlinked(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_trans *tp;
|
|
int error;
|
|
|
|
error = xfs_trans_alloc_empty(ip->i_mount, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_SHARED);
|
|
if (xfs_inode_unlinked_incomplete(ip))
|
|
error = xfs_inode_reload_unlinked_bucket(tp, ip);
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
xfs_trans_cancel(tp);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Has this inode fork been zapped by repair? */
|
|
bool
|
|
xfs_ifork_zapped(
|
|
const struct xfs_inode *ip,
|
|
int whichfork)
|
|
{
|
|
unsigned int datamask = 0;
|
|
|
|
switch (whichfork) {
|
|
case XFS_DATA_FORK:
|
|
switch (ip->i_vnode.i_mode & S_IFMT) {
|
|
case S_IFDIR:
|
|
datamask = XFS_SICK_INO_DIR_ZAPPED;
|
|
break;
|
|
case S_IFLNK:
|
|
datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
|
|
break;
|
|
}
|
|
return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
|
|
case XFS_ATTR_FORK:
|
|
return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Compute the number of data and realtime blocks used by a file. */
|
|
void
|
|
xfs_inode_count_blocks(
|
|
struct xfs_trans *tp,
|
|
struct xfs_inode *ip,
|
|
xfs_filblks_t *dblocks,
|
|
xfs_filblks_t *rblocks)
|
|
{
|
|
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
|
|
|
|
*rblocks = 0;
|
|
if (XFS_IS_REALTIME_INODE(ip))
|
|
xfs_bmap_count_leaves(ifp, rblocks);
|
|
*dblocks = ip->i_nblocks - *rblocks;
|
|
}
|
|
|
|
static void
|
|
xfs_wait_dax_page(
|
|
struct inode *inode)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
|
|
xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
|
|
schedule();
|
|
xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
|
|
}
|
|
|
|
int
|
|
xfs_break_dax_layouts(
|
|
struct inode *inode,
|
|
bool *retry)
|
|
{
|
|
struct page *page;
|
|
|
|
xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
|
|
|
|
page = dax_layout_busy_page(inode->i_mapping);
|
|
if (!page)
|
|
return 0;
|
|
|
|
*retry = true;
|
|
return ___wait_var_event(&page->_refcount,
|
|
atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
|
|
0, 0, xfs_wait_dax_page(inode));
|
|
}
|
|
|
|
int
|
|
xfs_break_layouts(
|
|
struct inode *inode,
|
|
uint *iolock,
|
|
enum layout_break_reason reason)
|
|
{
|
|
bool retry;
|
|
int error;
|
|
|
|
xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
|
|
|
|
do {
|
|
retry = false;
|
|
switch (reason) {
|
|
case BREAK_UNMAP:
|
|
error = xfs_break_dax_layouts(inode, &retry);
|
|
if (error || retry)
|
|
break;
|
|
fallthrough;
|
|
case BREAK_WRITE:
|
|
error = xfs_break_leased_layouts(inode, iolock, &retry);
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
error = -EINVAL;
|
|
}
|
|
} while (error == 0 && retry);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Returns the size of fundamental allocation unit for a file, in bytes. */
|
|
unsigned int
|
|
xfs_inode_alloc_unitsize(
|
|
struct xfs_inode *ip)
|
|
{
|
|
unsigned int blocks = 1;
|
|
|
|
if (XFS_IS_REALTIME_INODE(ip))
|
|
blocks = ip->i_mount->m_sb.sb_rextsize;
|
|
|
|
return XFS_FSB_TO_B(ip->i_mount, blocks);
|
|
}
|