mirror of
https://github.com/torvalds/linux.git
synced 2024-11-14 16:12:02 +00:00
96d4f267e4
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1320 lines
35 KiB
C
1320 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
|
|
* Copyright (c) 2016 Facebook
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/bpf_perf_event.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/error-injection.h>
|
|
|
|
#include "trace_probe.h"
|
|
#include "trace.h"
|
|
|
|
#ifdef CONFIG_MODULES
|
|
struct bpf_trace_module {
|
|
struct module *module;
|
|
struct list_head list;
|
|
};
|
|
|
|
static LIST_HEAD(bpf_trace_modules);
|
|
static DEFINE_MUTEX(bpf_module_mutex);
|
|
|
|
static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
|
|
{
|
|
struct bpf_raw_event_map *btp, *ret = NULL;
|
|
struct bpf_trace_module *btm;
|
|
unsigned int i;
|
|
|
|
mutex_lock(&bpf_module_mutex);
|
|
list_for_each_entry(btm, &bpf_trace_modules, list) {
|
|
for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
|
|
btp = &btm->module->bpf_raw_events[i];
|
|
if (!strcmp(btp->tp->name, name)) {
|
|
if (try_module_get(btm->module))
|
|
ret = btp;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
mutex_unlock(&bpf_module_mutex);
|
|
return ret;
|
|
}
|
|
#else
|
|
static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif /* CONFIG_MODULES */
|
|
|
|
u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
|
|
u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
|
|
|
|
/**
|
|
* trace_call_bpf - invoke BPF program
|
|
* @call: tracepoint event
|
|
* @ctx: opaque context pointer
|
|
*
|
|
* kprobe handlers execute BPF programs via this helper.
|
|
* Can be used from static tracepoints in the future.
|
|
*
|
|
* Return: BPF programs always return an integer which is interpreted by
|
|
* kprobe handler as:
|
|
* 0 - return from kprobe (event is filtered out)
|
|
* 1 - store kprobe event into ring buffer
|
|
* Other values are reserved and currently alias to 1
|
|
*/
|
|
unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
|
|
{
|
|
unsigned int ret;
|
|
|
|
if (in_nmi()) /* not supported yet */
|
|
return 1;
|
|
|
|
preempt_disable();
|
|
|
|
if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
|
|
/*
|
|
* since some bpf program is already running on this cpu,
|
|
* don't call into another bpf program (same or different)
|
|
* and don't send kprobe event into ring-buffer,
|
|
* so return zero here
|
|
*/
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
|
|
* to all call sites, we did a bpf_prog_array_valid() there to check
|
|
* whether call->prog_array is empty or not, which is
|
|
* a heurisitc to speed up execution.
|
|
*
|
|
* If bpf_prog_array_valid() fetched prog_array was
|
|
* non-NULL, we go into trace_call_bpf() and do the actual
|
|
* proper rcu_dereference() under RCU lock.
|
|
* If it turns out that prog_array is NULL then, we bail out.
|
|
* For the opposite, if the bpf_prog_array_valid() fetched pointer
|
|
* was NULL, you'll skip the prog_array with the risk of missing
|
|
* out of events when it was updated in between this and the
|
|
* rcu_dereference() which is accepted risk.
|
|
*/
|
|
ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
|
|
|
|
out:
|
|
__this_cpu_dec(bpf_prog_active);
|
|
preempt_enable();
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(trace_call_bpf);
|
|
|
|
#ifdef CONFIG_BPF_KPROBE_OVERRIDE
|
|
BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
|
|
{
|
|
regs_set_return_value(regs, rc);
|
|
override_function_with_return(regs);
|
|
return 0;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_override_return_proto = {
|
|
.func = bpf_override_return,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
#endif
|
|
|
|
BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
|
|
{
|
|
int ret;
|
|
|
|
ret = probe_kernel_read(dst, unsafe_ptr, size);
|
|
if (unlikely(ret < 0))
|
|
memset(dst, 0, size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_probe_read_proto = {
|
|
.func = bpf_probe_read,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
|
|
u32, size)
|
|
{
|
|
/*
|
|
* Ensure we're in user context which is safe for the helper to
|
|
* run. This helper has no business in a kthread.
|
|
*
|
|
* access_ok() should prevent writing to non-user memory, but in
|
|
* some situations (nommu, temporary switch, etc) access_ok() does
|
|
* not provide enough validation, hence the check on KERNEL_DS.
|
|
*/
|
|
|
|
if (unlikely(in_interrupt() ||
|
|
current->flags & (PF_KTHREAD | PF_EXITING)))
|
|
return -EPERM;
|
|
if (unlikely(uaccess_kernel()))
|
|
return -EPERM;
|
|
if (!access_ok(unsafe_ptr, size))
|
|
return -EPERM;
|
|
|
|
return probe_kernel_write(unsafe_ptr, src, size);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_probe_write_user_proto = {
|
|
.func = bpf_probe_write_user,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_ANYTHING,
|
|
.arg2_type = ARG_PTR_TO_MEM,
|
|
.arg3_type = ARG_CONST_SIZE,
|
|
};
|
|
|
|
static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
|
|
{
|
|
pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
|
|
current->comm, task_pid_nr(current));
|
|
|
|
return &bpf_probe_write_user_proto;
|
|
}
|
|
|
|
/*
|
|
* Only limited trace_printk() conversion specifiers allowed:
|
|
* %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
|
|
*/
|
|
BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
|
|
u64, arg2, u64, arg3)
|
|
{
|
|
bool str_seen = false;
|
|
int mod[3] = {};
|
|
int fmt_cnt = 0;
|
|
u64 unsafe_addr;
|
|
char buf[64];
|
|
int i;
|
|
|
|
/*
|
|
* bpf_check()->check_func_arg()->check_stack_boundary()
|
|
* guarantees that fmt points to bpf program stack,
|
|
* fmt_size bytes of it were initialized and fmt_size > 0
|
|
*/
|
|
if (fmt[--fmt_size] != 0)
|
|
return -EINVAL;
|
|
|
|
/* check format string for allowed specifiers */
|
|
for (i = 0; i < fmt_size; i++) {
|
|
if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
|
|
return -EINVAL;
|
|
|
|
if (fmt[i] != '%')
|
|
continue;
|
|
|
|
if (fmt_cnt >= 3)
|
|
return -EINVAL;
|
|
|
|
/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
|
|
i++;
|
|
if (fmt[i] == 'l') {
|
|
mod[fmt_cnt]++;
|
|
i++;
|
|
} else if (fmt[i] == 'p' || fmt[i] == 's') {
|
|
mod[fmt_cnt]++;
|
|
/* disallow any further format extensions */
|
|
if (fmt[i + 1] != 0 &&
|
|
!isspace(fmt[i + 1]) &&
|
|
!ispunct(fmt[i + 1]))
|
|
return -EINVAL;
|
|
fmt_cnt++;
|
|
if (fmt[i] == 's') {
|
|
if (str_seen)
|
|
/* allow only one '%s' per fmt string */
|
|
return -EINVAL;
|
|
str_seen = true;
|
|
|
|
switch (fmt_cnt) {
|
|
case 1:
|
|
unsafe_addr = arg1;
|
|
arg1 = (long) buf;
|
|
break;
|
|
case 2:
|
|
unsafe_addr = arg2;
|
|
arg2 = (long) buf;
|
|
break;
|
|
case 3:
|
|
unsafe_addr = arg3;
|
|
arg3 = (long) buf;
|
|
break;
|
|
}
|
|
buf[0] = 0;
|
|
strncpy_from_unsafe(buf,
|
|
(void *) (long) unsafe_addr,
|
|
sizeof(buf));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (fmt[i] == 'l') {
|
|
mod[fmt_cnt]++;
|
|
i++;
|
|
}
|
|
|
|
if (fmt[i] != 'i' && fmt[i] != 'd' &&
|
|
fmt[i] != 'u' && fmt[i] != 'x')
|
|
return -EINVAL;
|
|
fmt_cnt++;
|
|
}
|
|
|
|
/* Horrid workaround for getting va_list handling working with different
|
|
* argument type combinations generically for 32 and 64 bit archs.
|
|
*/
|
|
#define __BPF_TP_EMIT() __BPF_ARG3_TP()
|
|
#define __BPF_TP(...) \
|
|
__trace_printk(0 /* Fake ip */, \
|
|
fmt, ##__VA_ARGS__)
|
|
|
|
#define __BPF_ARG1_TP(...) \
|
|
((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \
|
|
? __BPF_TP(arg1, ##__VA_ARGS__) \
|
|
: ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \
|
|
? __BPF_TP((long)arg1, ##__VA_ARGS__) \
|
|
: __BPF_TP((u32)arg1, ##__VA_ARGS__)))
|
|
|
|
#define __BPF_ARG2_TP(...) \
|
|
((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \
|
|
? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \
|
|
: ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \
|
|
? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \
|
|
: __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
|
|
|
|
#define __BPF_ARG3_TP(...) \
|
|
((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \
|
|
? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \
|
|
: ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \
|
|
? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \
|
|
: __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
|
|
|
|
return __BPF_TP_EMIT();
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_trace_printk_proto = {
|
|
.func = bpf_trace_printk,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_MEM,
|
|
.arg2_type = ARG_CONST_SIZE,
|
|
};
|
|
|
|
const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
|
|
{
|
|
/*
|
|
* this program might be calling bpf_trace_printk,
|
|
* so allocate per-cpu printk buffers
|
|
*/
|
|
trace_printk_init_buffers();
|
|
|
|
return &bpf_trace_printk_proto;
|
|
}
|
|
|
|
static __always_inline int
|
|
get_map_perf_counter(struct bpf_map *map, u64 flags,
|
|
u64 *value, u64 *enabled, u64 *running)
|
|
{
|
|
struct bpf_array *array = container_of(map, struct bpf_array, map);
|
|
unsigned int cpu = smp_processor_id();
|
|
u64 index = flags & BPF_F_INDEX_MASK;
|
|
struct bpf_event_entry *ee;
|
|
|
|
if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
|
|
return -EINVAL;
|
|
if (index == BPF_F_CURRENT_CPU)
|
|
index = cpu;
|
|
if (unlikely(index >= array->map.max_entries))
|
|
return -E2BIG;
|
|
|
|
ee = READ_ONCE(array->ptrs[index]);
|
|
if (!ee)
|
|
return -ENOENT;
|
|
|
|
return perf_event_read_local(ee->event, value, enabled, running);
|
|
}
|
|
|
|
BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
|
|
{
|
|
u64 value = 0;
|
|
int err;
|
|
|
|
err = get_map_perf_counter(map, flags, &value, NULL, NULL);
|
|
/*
|
|
* this api is ugly since we miss [-22..-2] range of valid
|
|
* counter values, but that's uapi
|
|
*/
|
|
if (err)
|
|
return err;
|
|
return value;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_read_proto = {
|
|
.func = bpf_perf_event_read,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
|
|
struct bpf_perf_event_value *, buf, u32, size)
|
|
{
|
|
int err = -EINVAL;
|
|
|
|
if (unlikely(size != sizeof(struct bpf_perf_event_value)))
|
|
goto clear;
|
|
err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
|
|
&buf->running);
|
|
if (unlikely(err))
|
|
goto clear;
|
|
return 0;
|
|
clear:
|
|
memset(buf, 0, size);
|
|
return err;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
|
|
.func = bpf_perf_event_read_value,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_ANYTHING,
|
|
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg4_type = ARG_CONST_SIZE,
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd);
|
|
|
|
static __always_inline u64
|
|
__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
|
|
u64 flags, struct perf_sample_data *sd)
|
|
{
|
|
struct bpf_array *array = container_of(map, struct bpf_array, map);
|
|
unsigned int cpu = smp_processor_id();
|
|
u64 index = flags & BPF_F_INDEX_MASK;
|
|
struct bpf_event_entry *ee;
|
|
struct perf_event *event;
|
|
|
|
if (index == BPF_F_CURRENT_CPU)
|
|
index = cpu;
|
|
if (unlikely(index >= array->map.max_entries))
|
|
return -E2BIG;
|
|
|
|
ee = READ_ONCE(array->ptrs[index]);
|
|
if (!ee)
|
|
return -ENOENT;
|
|
|
|
event = ee->event;
|
|
if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
|
|
event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(event->oncpu != cpu))
|
|
return -EOPNOTSUPP;
|
|
|
|
perf_event_output(event, sd, regs);
|
|
return 0;
|
|
}
|
|
|
|
BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
|
|
u64, flags, void *, data, u64, size)
|
|
{
|
|
struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd);
|
|
struct perf_raw_record raw = {
|
|
.frag = {
|
|
.size = size,
|
|
.data = data,
|
|
},
|
|
};
|
|
|
|
if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
|
|
return -EINVAL;
|
|
|
|
perf_sample_data_init(sd, 0, 0);
|
|
sd->raw = &raw;
|
|
|
|
return __bpf_perf_event_output(regs, map, flags, sd);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_output_proto = {
|
|
.func = bpf_perf_event_output,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_PTR_TO_MEM,
|
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
|
|
static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd);
|
|
|
|
u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
|
|
void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
|
|
{
|
|
struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd);
|
|
struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
|
|
struct perf_raw_frag frag = {
|
|
.copy = ctx_copy,
|
|
.size = ctx_size,
|
|
.data = ctx,
|
|
};
|
|
struct perf_raw_record raw = {
|
|
.frag = {
|
|
{
|
|
.next = ctx_size ? &frag : NULL,
|
|
},
|
|
.size = meta_size,
|
|
.data = meta,
|
|
},
|
|
};
|
|
|
|
perf_fetch_caller_regs(regs);
|
|
perf_sample_data_init(sd, 0, 0);
|
|
sd->raw = &raw;
|
|
|
|
return __bpf_perf_event_output(regs, map, flags, sd);
|
|
}
|
|
|
|
BPF_CALL_0(bpf_get_current_task)
|
|
{
|
|
return (long) current;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_current_task_proto = {
|
|
.func = bpf_get_current_task,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
|
|
{
|
|
struct bpf_array *array = container_of(map, struct bpf_array, map);
|
|
struct cgroup *cgrp;
|
|
|
|
if (unlikely(idx >= array->map.max_entries))
|
|
return -E2BIG;
|
|
|
|
cgrp = READ_ONCE(array->ptrs[idx]);
|
|
if (unlikely(!cgrp))
|
|
return -EAGAIN;
|
|
|
|
return task_under_cgroup_hierarchy(current, cgrp);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
|
|
.func = bpf_current_task_under_cgroup,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
|
|
const void *, unsafe_ptr)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* The strncpy_from_unsafe() call will likely not fill the entire
|
|
* buffer, but that's okay in this circumstance as we're probing
|
|
* arbitrary memory anyway similar to bpf_probe_read() and might
|
|
* as well probe the stack. Thus, memory is explicitly cleared
|
|
* only in error case, so that improper users ignoring return
|
|
* code altogether don't copy garbage; otherwise length of string
|
|
* is returned that can be used for bpf_perf_event_output() et al.
|
|
*/
|
|
ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
|
|
if (unlikely(ret < 0))
|
|
memset(dst, 0, size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_probe_read_str_proto = {
|
|
.func = bpf_probe_read_str,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static const struct bpf_func_proto *
|
|
tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_map_lookup_elem:
|
|
return &bpf_map_lookup_elem_proto;
|
|
case BPF_FUNC_map_update_elem:
|
|
return &bpf_map_update_elem_proto;
|
|
case BPF_FUNC_map_delete_elem:
|
|
return &bpf_map_delete_elem_proto;
|
|
case BPF_FUNC_probe_read:
|
|
return &bpf_probe_read_proto;
|
|
case BPF_FUNC_ktime_get_ns:
|
|
return &bpf_ktime_get_ns_proto;
|
|
case BPF_FUNC_tail_call:
|
|
return &bpf_tail_call_proto;
|
|
case BPF_FUNC_get_current_pid_tgid:
|
|
return &bpf_get_current_pid_tgid_proto;
|
|
case BPF_FUNC_get_current_task:
|
|
return &bpf_get_current_task_proto;
|
|
case BPF_FUNC_get_current_uid_gid:
|
|
return &bpf_get_current_uid_gid_proto;
|
|
case BPF_FUNC_get_current_comm:
|
|
return &bpf_get_current_comm_proto;
|
|
case BPF_FUNC_trace_printk:
|
|
return bpf_get_trace_printk_proto();
|
|
case BPF_FUNC_get_smp_processor_id:
|
|
return &bpf_get_smp_processor_id_proto;
|
|
case BPF_FUNC_get_numa_node_id:
|
|
return &bpf_get_numa_node_id_proto;
|
|
case BPF_FUNC_perf_event_read:
|
|
return &bpf_perf_event_read_proto;
|
|
case BPF_FUNC_probe_write_user:
|
|
return bpf_get_probe_write_proto();
|
|
case BPF_FUNC_current_task_under_cgroup:
|
|
return &bpf_current_task_under_cgroup_proto;
|
|
case BPF_FUNC_get_prandom_u32:
|
|
return &bpf_get_prandom_u32_proto;
|
|
case BPF_FUNC_probe_read_str:
|
|
return &bpf_probe_read_str_proto;
|
|
#ifdef CONFIG_CGROUPS
|
|
case BPF_FUNC_get_current_cgroup_id:
|
|
return &bpf_get_current_cgroup_id_proto;
|
|
#endif
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static const struct bpf_func_proto *
|
|
kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_perf_event_output:
|
|
return &bpf_perf_event_output_proto;
|
|
case BPF_FUNC_get_stackid:
|
|
return &bpf_get_stackid_proto;
|
|
case BPF_FUNC_get_stack:
|
|
return &bpf_get_stack_proto;
|
|
case BPF_FUNC_perf_event_read_value:
|
|
return &bpf_perf_event_read_value_proto;
|
|
#ifdef CONFIG_BPF_KPROBE_OVERRIDE
|
|
case BPF_FUNC_override_return:
|
|
return &bpf_override_return_proto;
|
|
#endif
|
|
default:
|
|
return tracing_func_proto(func_id, prog);
|
|
}
|
|
}
|
|
|
|
/* bpf+kprobe programs can access fields of 'struct pt_regs' */
|
|
static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
if (off < 0 || off >= sizeof(struct pt_regs))
|
|
return false;
|
|
if (type != BPF_READ)
|
|
return false;
|
|
if (off % size != 0)
|
|
return false;
|
|
/*
|
|
* Assertion for 32 bit to make sure last 8 byte access
|
|
* (BPF_DW) to the last 4 byte member is disallowed.
|
|
*/
|
|
if (off + size > sizeof(struct pt_regs))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
const struct bpf_verifier_ops kprobe_verifier_ops = {
|
|
.get_func_proto = kprobe_prog_func_proto,
|
|
.is_valid_access = kprobe_prog_is_valid_access,
|
|
};
|
|
|
|
const struct bpf_prog_ops kprobe_prog_ops = {
|
|
};
|
|
|
|
BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
|
|
u64, flags, void *, data, u64, size)
|
|
{
|
|
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
|
|
|
|
/*
|
|
* r1 points to perf tracepoint buffer where first 8 bytes are hidden
|
|
* from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
|
|
* from there and call the same bpf_perf_event_output() helper inline.
|
|
*/
|
|
return ____bpf_perf_event_output(regs, map, flags, data, size);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
|
|
.func = bpf_perf_event_output_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_PTR_TO_MEM,
|
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
|
|
u64, flags)
|
|
{
|
|
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
|
|
|
|
/*
|
|
* Same comment as in bpf_perf_event_output_tp(), only that this time
|
|
* the other helper's function body cannot be inlined due to being
|
|
* external, thus we need to call raw helper function.
|
|
*/
|
|
return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
|
|
flags, 0, 0);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
|
|
.func = bpf_get_stackid_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
|
|
u64, flags)
|
|
{
|
|
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
|
|
|
|
return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
|
|
(unsigned long) size, flags, 0);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_stack_proto_tp = {
|
|
.func = bpf_get_stack_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static const struct bpf_func_proto *
|
|
tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_perf_event_output:
|
|
return &bpf_perf_event_output_proto_tp;
|
|
case BPF_FUNC_get_stackid:
|
|
return &bpf_get_stackid_proto_tp;
|
|
case BPF_FUNC_get_stack:
|
|
return &bpf_get_stack_proto_tp;
|
|
default:
|
|
return tracing_func_proto(func_id, prog);
|
|
}
|
|
}
|
|
|
|
static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
|
|
return false;
|
|
if (type != BPF_READ)
|
|
return false;
|
|
if (off % size != 0)
|
|
return false;
|
|
|
|
BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
|
|
return true;
|
|
}
|
|
|
|
const struct bpf_verifier_ops tracepoint_verifier_ops = {
|
|
.get_func_proto = tp_prog_func_proto,
|
|
.is_valid_access = tp_prog_is_valid_access,
|
|
};
|
|
|
|
const struct bpf_prog_ops tracepoint_prog_ops = {
|
|
};
|
|
|
|
BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
|
|
struct bpf_perf_event_value *, buf, u32, size)
|
|
{
|
|
int err = -EINVAL;
|
|
|
|
if (unlikely(size != sizeof(struct bpf_perf_event_value)))
|
|
goto clear;
|
|
err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
|
|
&buf->running);
|
|
if (unlikely(err))
|
|
goto clear;
|
|
return 0;
|
|
clear:
|
|
memset(buf, 0, size);
|
|
return err;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
|
|
.func = bpf_perf_prog_read_value,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg3_type = ARG_CONST_SIZE,
|
|
};
|
|
|
|
static const struct bpf_func_proto *
|
|
pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_perf_event_output:
|
|
return &bpf_perf_event_output_proto_tp;
|
|
case BPF_FUNC_get_stackid:
|
|
return &bpf_get_stackid_proto_tp;
|
|
case BPF_FUNC_get_stack:
|
|
return &bpf_get_stack_proto_tp;
|
|
case BPF_FUNC_perf_prog_read_value:
|
|
return &bpf_perf_prog_read_value_proto;
|
|
default:
|
|
return tracing_func_proto(func_id, prog);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
|
|
* to avoid potential recursive reuse issue when/if tracepoints are added
|
|
* inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack
|
|
*/
|
|
static DEFINE_PER_CPU(struct pt_regs, bpf_raw_tp_regs);
|
|
BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
|
|
struct bpf_map *, map, u64, flags, void *, data, u64, size)
|
|
{
|
|
struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
|
|
|
|
perf_fetch_caller_regs(regs);
|
|
return ____bpf_perf_event_output(regs, map, flags, data, size);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
|
|
.func = bpf_perf_event_output_raw_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_PTR_TO_MEM,
|
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
|
|
struct bpf_map *, map, u64, flags)
|
|
{
|
|
struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
|
|
|
|
perf_fetch_caller_regs(regs);
|
|
/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
|
|
return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
|
|
flags, 0, 0);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
|
|
.func = bpf_get_stackid_raw_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
|
|
void *, buf, u32, size, u64, flags)
|
|
{
|
|
struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
|
|
|
|
perf_fetch_caller_regs(regs);
|
|
return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
|
|
(unsigned long) size, flags, 0);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
|
|
.func = bpf_get_stack_raw_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_PTR_TO_MEM,
|
|
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static const struct bpf_func_proto *
|
|
raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_perf_event_output:
|
|
return &bpf_perf_event_output_proto_raw_tp;
|
|
case BPF_FUNC_get_stackid:
|
|
return &bpf_get_stackid_proto_raw_tp;
|
|
case BPF_FUNC_get_stack:
|
|
return &bpf_get_stack_proto_raw_tp;
|
|
default:
|
|
return tracing_func_proto(func_id, prog);
|
|
}
|
|
}
|
|
|
|
static bool raw_tp_prog_is_valid_access(int off, int size,
|
|
enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
/* largest tracepoint in the kernel has 12 args */
|
|
if (off < 0 || off >= sizeof(__u64) * 12)
|
|
return false;
|
|
if (type != BPF_READ)
|
|
return false;
|
|
if (off % size != 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
|
|
.get_func_proto = raw_tp_prog_func_proto,
|
|
.is_valid_access = raw_tp_prog_is_valid_access,
|
|
};
|
|
|
|
const struct bpf_prog_ops raw_tracepoint_prog_ops = {
|
|
};
|
|
|
|
static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
const int size_u64 = sizeof(u64);
|
|
|
|
if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
|
|
return false;
|
|
if (type != BPF_READ)
|
|
return false;
|
|
if (off % size != 0) {
|
|
if (sizeof(unsigned long) != 4)
|
|
return false;
|
|
if (size != 8)
|
|
return false;
|
|
if (off % size != 4)
|
|
return false;
|
|
}
|
|
|
|
switch (off) {
|
|
case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
|
|
bpf_ctx_record_field_size(info, size_u64);
|
|
if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
|
|
return false;
|
|
break;
|
|
case bpf_ctx_range(struct bpf_perf_event_data, addr):
|
|
bpf_ctx_record_field_size(info, size_u64);
|
|
if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
|
|
return false;
|
|
break;
|
|
default:
|
|
if (size != sizeof(long))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
|
|
const struct bpf_insn *si,
|
|
struct bpf_insn *insn_buf,
|
|
struct bpf_prog *prog, u32 *target_size)
|
|
{
|
|
struct bpf_insn *insn = insn_buf;
|
|
|
|
switch (si->off) {
|
|
case offsetof(struct bpf_perf_event_data, sample_period):
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
|
|
data), si->dst_reg, si->src_reg,
|
|
offsetof(struct bpf_perf_event_data_kern, data));
|
|
*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
|
|
bpf_target_off(struct perf_sample_data, period, 8,
|
|
target_size));
|
|
break;
|
|
case offsetof(struct bpf_perf_event_data, addr):
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
|
|
data), si->dst_reg, si->src_reg,
|
|
offsetof(struct bpf_perf_event_data_kern, data));
|
|
*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
|
|
bpf_target_off(struct perf_sample_data, addr, 8,
|
|
target_size));
|
|
break;
|
|
default:
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
|
|
regs), si->dst_reg, si->src_reg,
|
|
offsetof(struct bpf_perf_event_data_kern, regs));
|
|
*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
|
|
si->off);
|
|
break;
|
|
}
|
|
|
|
return insn - insn_buf;
|
|
}
|
|
|
|
const struct bpf_verifier_ops perf_event_verifier_ops = {
|
|
.get_func_proto = pe_prog_func_proto,
|
|
.is_valid_access = pe_prog_is_valid_access,
|
|
.convert_ctx_access = pe_prog_convert_ctx_access,
|
|
};
|
|
|
|
const struct bpf_prog_ops perf_event_prog_ops = {
|
|
};
|
|
|
|
static DEFINE_MUTEX(bpf_event_mutex);
|
|
|
|
#define BPF_TRACE_MAX_PROGS 64
|
|
|
|
int perf_event_attach_bpf_prog(struct perf_event *event,
|
|
struct bpf_prog *prog)
|
|
{
|
|
struct bpf_prog_array __rcu *old_array;
|
|
struct bpf_prog_array *new_array;
|
|
int ret = -EEXIST;
|
|
|
|
/*
|
|
* Kprobe override only works if they are on the function entry,
|
|
* and only if they are on the opt-in list.
|
|
*/
|
|
if (prog->kprobe_override &&
|
|
(!trace_kprobe_on_func_entry(event->tp_event) ||
|
|
!trace_kprobe_error_injectable(event->tp_event)))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&bpf_event_mutex);
|
|
|
|
if (event->prog)
|
|
goto unlock;
|
|
|
|
old_array = event->tp_event->prog_array;
|
|
if (old_array &&
|
|
bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
|
|
ret = -E2BIG;
|
|
goto unlock;
|
|
}
|
|
|
|
ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
|
|
if (ret < 0)
|
|
goto unlock;
|
|
|
|
/* set the new array to event->tp_event and set event->prog */
|
|
event->prog = prog;
|
|
rcu_assign_pointer(event->tp_event->prog_array, new_array);
|
|
bpf_prog_array_free(old_array);
|
|
|
|
unlock:
|
|
mutex_unlock(&bpf_event_mutex);
|
|
return ret;
|
|
}
|
|
|
|
void perf_event_detach_bpf_prog(struct perf_event *event)
|
|
{
|
|
struct bpf_prog_array __rcu *old_array;
|
|
struct bpf_prog_array *new_array;
|
|
int ret;
|
|
|
|
mutex_lock(&bpf_event_mutex);
|
|
|
|
if (!event->prog)
|
|
goto unlock;
|
|
|
|
old_array = event->tp_event->prog_array;
|
|
ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
|
|
if (ret == -ENOENT)
|
|
goto unlock;
|
|
if (ret < 0) {
|
|
bpf_prog_array_delete_safe(old_array, event->prog);
|
|
} else {
|
|
rcu_assign_pointer(event->tp_event->prog_array, new_array);
|
|
bpf_prog_array_free(old_array);
|
|
}
|
|
|
|
bpf_prog_put(event->prog);
|
|
event->prog = NULL;
|
|
|
|
unlock:
|
|
mutex_unlock(&bpf_event_mutex);
|
|
}
|
|
|
|
int perf_event_query_prog_array(struct perf_event *event, void __user *info)
|
|
{
|
|
struct perf_event_query_bpf __user *uquery = info;
|
|
struct perf_event_query_bpf query = {};
|
|
u32 *ids, prog_cnt, ids_len;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (event->attr.type != PERF_TYPE_TRACEPOINT)
|
|
return -EINVAL;
|
|
if (copy_from_user(&query, uquery, sizeof(query)))
|
|
return -EFAULT;
|
|
|
|
ids_len = query.ids_len;
|
|
if (ids_len > BPF_TRACE_MAX_PROGS)
|
|
return -E2BIG;
|
|
ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
|
|
if (!ids)
|
|
return -ENOMEM;
|
|
/*
|
|
* The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
|
|
* is required when user only wants to check for uquery->prog_cnt.
|
|
* There is no need to check for it since the case is handled
|
|
* gracefully in bpf_prog_array_copy_info.
|
|
*/
|
|
|
|
mutex_lock(&bpf_event_mutex);
|
|
ret = bpf_prog_array_copy_info(event->tp_event->prog_array,
|
|
ids,
|
|
ids_len,
|
|
&prog_cnt);
|
|
mutex_unlock(&bpf_event_mutex);
|
|
|
|
if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
|
|
copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(ids);
|
|
return ret;
|
|
}
|
|
|
|
extern struct bpf_raw_event_map __start__bpf_raw_tp[];
|
|
extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
|
|
|
|
struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
|
|
{
|
|
struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
|
|
|
|
for (; btp < __stop__bpf_raw_tp; btp++) {
|
|
if (!strcmp(btp->tp->name, name))
|
|
return btp;
|
|
}
|
|
|
|
return bpf_get_raw_tracepoint_module(name);
|
|
}
|
|
|
|
void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
|
|
{
|
|
struct module *mod = __module_address((unsigned long)btp);
|
|
|
|
if (mod)
|
|
module_put(mod);
|
|
}
|
|
|
|
static __always_inline
|
|
void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
|
|
{
|
|
rcu_read_lock();
|
|
preempt_disable();
|
|
(void) BPF_PROG_RUN(prog, args);
|
|
preempt_enable();
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
#define UNPACK(...) __VA_ARGS__
|
|
#define REPEAT_1(FN, DL, X, ...) FN(X)
|
|
#define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
|
|
#define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__)
|
|
|
|
#define SARG(X) u64 arg##X
|
|
#define COPY(X) args[X] = arg##X
|
|
|
|
#define __DL_COM (,)
|
|
#define __DL_SEM (;)
|
|
|
|
#define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
|
|
|
|
#define BPF_TRACE_DEFN_x(x) \
|
|
void bpf_trace_run##x(struct bpf_prog *prog, \
|
|
REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
|
|
{ \
|
|
u64 args[x]; \
|
|
REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
|
|
__bpf_trace_run(prog, args); \
|
|
} \
|
|
EXPORT_SYMBOL_GPL(bpf_trace_run##x)
|
|
BPF_TRACE_DEFN_x(1);
|
|
BPF_TRACE_DEFN_x(2);
|
|
BPF_TRACE_DEFN_x(3);
|
|
BPF_TRACE_DEFN_x(4);
|
|
BPF_TRACE_DEFN_x(5);
|
|
BPF_TRACE_DEFN_x(6);
|
|
BPF_TRACE_DEFN_x(7);
|
|
BPF_TRACE_DEFN_x(8);
|
|
BPF_TRACE_DEFN_x(9);
|
|
BPF_TRACE_DEFN_x(10);
|
|
BPF_TRACE_DEFN_x(11);
|
|
BPF_TRACE_DEFN_x(12);
|
|
|
|
static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
|
|
{
|
|
struct tracepoint *tp = btp->tp;
|
|
|
|
/*
|
|
* check that program doesn't access arguments beyond what's
|
|
* available in this tracepoint
|
|
*/
|
|
if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
|
|
return -EINVAL;
|
|
|
|
return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
|
|
}
|
|
|
|
int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
|
|
{
|
|
int err;
|
|
|
|
mutex_lock(&bpf_event_mutex);
|
|
err = __bpf_probe_register(btp, prog);
|
|
mutex_unlock(&bpf_event_mutex);
|
|
return err;
|
|
}
|
|
|
|
int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
|
|
{
|
|
int err;
|
|
|
|
mutex_lock(&bpf_event_mutex);
|
|
err = tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
|
|
mutex_unlock(&bpf_event_mutex);
|
|
return err;
|
|
}
|
|
|
|
int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
|
|
u32 *fd_type, const char **buf,
|
|
u64 *probe_offset, u64 *probe_addr)
|
|
{
|
|
bool is_tracepoint, is_syscall_tp;
|
|
struct bpf_prog *prog;
|
|
int flags, err = 0;
|
|
|
|
prog = event->prog;
|
|
if (!prog)
|
|
return -ENOENT;
|
|
|
|
/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
|
|
if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
|
|
return -EOPNOTSUPP;
|
|
|
|
*prog_id = prog->aux->id;
|
|
flags = event->tp_event->flags;
|
|
is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
|
|
is_syscall_tp = is_syscall_trace_event(event->tp_event);
|
|
|
|
if (is_tracepoint || is_syscall_tp) {
|
|
*buf = is_tracepoint ? event->tp_event->tp->name
|
|
: event->tp_event->name;
|
|
*fd_type = BPF_FD_TYPE_TRACEPOINT;
|
|
*probe_offset = 0x0;
|
|
*probe_addr = 0x0;
|
|
} else {
|
|
/* kprobe/uprobe */
|
|
err = -EOPNOTSUPP;
|
|
#ifdef CONFIG_KPROBE_EVENTS
|
|
if (flags & TRACE_EVENT_FL_KPROBE)
|
|
err = bpf_get_kprobe_info(event, fd_type, buf,
|
|
probe_offset, probe_addr,
|
|
event->attr.type == PERF_TYPE_TRACEPOINT);
|
|
#endif
|
|
#ifdef CONFIG_UPROBE_EVENTS
|
|
if (flags & TRACE_EVENT_FL_UPROBE)
|
|
err = bpf_get_uprobe_info(event, fd_type, buf,
|
|
probe_offset,
|
|
event->attr.type == PERF_TYPE_TRACEPOINT);
|
|
#endif
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_MODULES
|
|
int bpf_event_notify(struct notifier_block *nb, unsigned long op, void *module)
|
|
{
|
|
struct bpf_trace_module *btm, *tmp;
|
|
struct module *mod = module;
|
|
|
|
if (mod->num_bpf_raw_events == 0 ||
|
|
(op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
|
|
return 0;
|
|
|
|
mutex_lock(&bpf_module_mutex);
|
|
|
|
switch (op) {
|
|
case MODULE_STATE_COMING:
|
|
btm = kzalloc(sizeof(*btm), GFP_KERNEL);
|
|
if (btm) {
|
|
btm->module = module;
|
|
list_add(&btm->list, &bpf_trace_modules);
|
|
}
|
|
break;
|
|
case MODULE_STATE_GOING:
|
|
list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
|
|
if (btm->module == module) {
|
|
list_del(&btm->list);
|
|
kfree(btm);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&bpf_module_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block bpf_module_nb = {
|
|
.notifier_call = bpf_event_notify,
|
|
};
|
|
|
|
int __init bpf_event_init(void)
|
|
{
|
|
register_module_notifier(&bpf_module_nb);
|
|
return 0;
|
|
}
|
|
|
|
fs_initcall(bpf_event_init);
|
|
#endif /* CONFIG_MODULES */
|