linux/kernel/crash_core.c
Andrew Morton 4e87ff59ce kernel/crash_core.c: make __crash_hotplug_lock static
sparse warnings:
kernel/crash_core.c:749:1: sparse: sparse: symbol '__crash_hotplug_lock' was not declared. Should it be static?

Fixes: e2a8f20dd8 ("Crash: add lock to serialize crash hotplug handling")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202401080654.IjjU5oK7-lkp@intel.com/
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-12 15:20:47 -08:00

1055 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* crash.c - kernel crash support code.
* Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
*/
#include <linux/buildid.h>
#include <linux/init.h>
#include <linux/utsname.h>
#include <linux/vmalloc.h>
#include <linux/sizes.h>
#include <linux/kexec.h>
#include <linux/memory.h>
#include <linux/cpuhotplug.h>
#include <linux/memblock.h>
#include <linux/kmemleak.h>
#include <asm/page.h>
#include <asm/sections.h>
#include <crypto/sha1.h>
#include "kallsyms_internal.h"
#include "kexec_internal.h"
/* Per cpu memory for storing cpu states in case of system crash. */
note_buf_t __percpu *crash_notes;
/* vmcoreinfo stuff */
unsigned char *vmcoreinfo_data;
size_t vmcoreinfo_size;
u32 *vmcoreinfo_note;
/* trusted vmcoreinfo, e.g. we can make a copy in the crash memory */
static unsigned char *vmcoreinfo_data_safecopy;
/* Location of the reserved area for the crash kernel */
struct resource crashk_res = {
.name = "Crash kernel",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
.desc = IORES_DESC_CRASH_KERNEL
};
struct resource crashk_low_res = {
.name = "Crash kernel",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
.desc = IORES_DESC_CRASH_KERNEL
};
/*
* parsing the "crashkernel" commandline
*
* this code is intended to be called from architecture specific code
*/
/*
* This function parses command lines in the format
*
* crashkernel=ramsize-range:size[,...][@offset]
*
* The function returns 0 on success and -EINVAL on failure.
*/
static int __init parse_crashkernel_mem(char *cmdline,
unsigned long long system_ram,
unsigned long long *crash_size,
unsigned long long *crash_base)
{
char *cur = cmdline, *tmp;
unsigned long long total_mem = system_ram;
/*
* Firmware sometimes reserves some memory regions for its own use,
* so the system memory size is less than the actual physical memory
* size. Work around this by rounding up the total size to 128M,
* which is enough for most test cases.
*/
total_mem = roundup(total_mem, SZ_128M);
/* for each entry of the comma-separated list */
do {
unsigned long long start, end = ULLONG_MAX, size;
/* get the start of the range */
start = memparse(cur, &tmp);
if (cur == tmp) {
pr_warn("crashkernel: Memory value expected\n");
return -EINVAL;
}
cur = tmp;
if (*cur != '-') {
pr_warn("crashkernel: '-' expected\n");
return -EINVAL;
}
cur++;
/* if no ':' is here, than we read the end */
if (*cur != ':') {
end = memparse(cur, &tmp);
if (cur == tmp) {
pr_warn("crashkernel: Memory value expected\n");
return -EINVAL;
}
cur = tmp;
if (end <= start) {
pr_warn("crashkernel: end <= start\n");
return -EINVAL;
}
}
if (*cur != ':') {
pr_warn("crashkernel: ':' expected\n");
return -EINVAL;
}
cur++;
size = memparse(cur, &tmp);
if (cur == tmp) {
pr_warn("Memory value expected\n");
return -EINVAL;
}
cur = tmp;
if (size >= total_mem) {
pr_warn("crashkernel: invalid size\n");
return -EINVAL;
}
/* match ? */
if (total_mem >= start && total_mem < end) {
*crash_size = size;
break;
}
} while (*cur++ == ',');
if (*crash_size > 0) {
while (*cur && *cur != ' ' && *cur != '@')
cur++;
if (*cur == '@') {
cur++;
*crash_base = memparse(cur, &tmp);
if (cur == tmp) {
pr_warn("Memory value expected after '@'\n");
return -EINVAL;
}
}
} else
pr_info("crashkernel size resulted in zero bytes\n");
return 0;
}
/*
* That function parses "simple" (old) crashkernel command lines like
*
* crashkernel=size[@offset]
*
* It returns 0 on success and -EINVAL on failure.
*/
static int __init parse_crashkernel_simple(char *cmdline,
unsigned long long *crash_size,
unsigned long long *crash_base)
{
char *cur = cmdline;
*crash_size = memparse(cmdline, &cur);
if (cmdline == cur) {
pr_warn("crashkernel: memory value expected\n");
return -EINVAL;
}
if (*cur == '@')
*crash_base = memparse(cur+1, &cur);
else if (*cur != ' ' && *cur != '\0') {
pr_warn("crashkernel: unrecognized char: %c\n", *cur);
return -EINVAL;
}
return 0;
}
#define SUFFIX_HIGH 0
#define SUFFIX_LOW 1
#define SUFFIX_NULL 2
static __initdata char *suffix_tbl[] = {
[SUFFIX_HIGH] = ",high",
[SUFFIX_LOW] = ",low",
[SUFFIX_NULL] = NULL,
};
/*
* That function parses "suffix" crashkernel command lines like
*
* crashkernel=size,[high|low]
*
* It returns 0 on success and -EINVAL on failure.
*/
static int __init parse_crashkernel_suffix(char *cmdline,
unsigned long long *crash_size,
const char *suffix)
{
char *cur = cmdline;
*crash_size = memparse(cmdline, &cur);
if (cmdline == cur) {
pr_warn("crashkernel: memory value expected\n");
return -EINVAL;
}
/* check with suffix */
if (strncmp(cur, suffix, strlen(suffix))) {
pr_warn("crashkernel: unrecognized char: %c\n", *cur);
return -EINVAL;
}
cur += strlen(suffix);
if (*cur != ' ' && *cur != '\0') {
pr_warn("crashkernel: unrecognized char: %c\n", *cur);
return -EINVAL;
}
return 0;
}
static __init char *get_last_crashkernel(char *cmdline,
const char *name,
const char *suffix)
{
char *p = cmdline, *ck_cmdline = NULL;
/* find crashkernel and use the last one if there are more */
p = strstr(p, name);
while (p) {
char *end_p = strchr(p, ' ');
char *q;
if (!end_p)
end_p = p + strlen(p);
if (!suffix) {
int i;
/* skip the one with any known suffix */
for (i = 0; suffix_tbl[i]; i++) {
q = end_p - strlen(suffix_tbl[i]);
if (!strncmp(q, suffix_tbl[i],
strlen(suffix_tbl[i])))
goto next;
}
ck_cmdline = p;
} else {
q = end_p - strlen(suffix);
if (!strncmp(q, suffix, strlen(suffix)))
ck_cmdline = p;
}
next:
p = strstr(p+1, name);
}
return ck_cmdline;
}
static int __init __parse_crashkernel(char *cmdline,
unsigned long long system_ram,
unsigned long long *crash_size,
unsigned long long *crash_base,
const char *suffix)
{
char *first_colon, *first_space;
char *ck_cmdline;
char *name = "crashkernel=";
BUG_ON(!crash_size || !crash_base);
*crash_size = 0;
*crash_base = 0;
ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
if (!ck_cmdline)
return -ENOENT;
ck_cmdline += strlen(name);
if (suffix)
return parse_crashkernel_suffix(ck_cmdline, crash_size,
suffix);
/*
* if the commandline contains a ':', then that's the extended
* syntax -- if not, it must be the classic syntax
*/
first_colon = strchr(ck_cmdline, ':');
first_space = strchr(ck_cmdline, ' ');
if (first_colon && (!first_space || first_colon < first_space))
return parse_crashkernel_mem(ck_cmdline, system_ram,
crash_size, crash_base);
return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
}
/*
* That function is the entry point for command line parsing and should be
* called from the arch-specific code.
*
* If crashkernel=,high|low is supported on architecture, non-NULL values
* should be passed to parameters 'low_size' and 'high'.
*/
int __init parse_crashkernel(char *cmdline,
unsigned long long system_ram,
unsigned long long *crash_size,
unsigned long long *crash_base,
unsigned long long *low_size,
bool *high)
{
int ret;
/* crashkernel=X[@offset] */
ret = __parse_crashkernel(cmdline, system_ram, crash_size,
crash_base, NULL);
#ifdef CONFIG_ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
/*
* If non-NULL 'high' passed in and no normal crashkernel
* setting detected, try parsing crashkernel=,high|low.
*/
if (high && ret == -ENOENT) {
ret = __parse_crashkernel(cmdline, 0, crash_size,
crash_base, suffix_tbl[SUFFIX_HIGH]);
if (ret || !*crash_size)
return -EINVAL;
/*
* crashkernel=Y,low can be specified or not, but invalid value
* is not allowed.
*/
ret = __parse_crashkernel(cmdline, 0, low_size,
crash_base, suffix_tbl[SUFFIX_LOW]);
if (ret == -ENOENT) {
*low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE;
ret = 0;
} else if (ret) {
return ret;
}
*high = true;
}
#endif
if (!*crash_size)
ret = -EINVAL;
return ret;
}
/*
* Add a dummy early_param handler to mark crashkernel= as a known command line
* parameter and suppress incorrect warnings in init/main.c.
*/
static int __init parse_crashkernel_dummy(char *arg)
{
return 0;
}
early_param("crashkernel", parse_crashkernel_dummy);
#ifdef CONFIG_ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
static int __init reserve_crashkernel_low(unsigned long long low_size)
{
#ifdef CONFIG_64BIT
unsigned long long low_base;
low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
if (!low_base) {
pr_err("cannot allocate crashkernel low memory (size:0x%llx).\n", low_size);
return -ENOMEM;
}
pr_info("crashkernel low memory reserved: 0x%08llx - 0x%08llx (%lld MB)\n",
low_base, low_base + low_size, low_size >> 20);
crashk_low_res.start = low_base;
crashk_low_res.end = low_base + low_size - 1;
#endif
return 0;
}
void __init reserve_crashkernel_generic(char *cmdline,
unsigned long long crash_size,
unsigned long long crash_base,
unsigned long long crash_low_size,
bool high)
{
unsigned long long search_end = CRASH_ADDR_LOW_MAX, search_base = 0;
bool fixed_base = false;
/* User specifies base address explicitly. */
if (crash_base) {
fixed_base = true;
search_base = crash_base;
search_end = crash_base + crash_size;
} else if (high) {
search_base = CRASH_ADDR_LOW_MAX;
search_end = CRASH_ADDR_HIGH_MAX;
}
retry:
crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
search_base, search_end);
if (!crash_base) {
/*
* For crashkernel=size[KMG]@offset[KMG], print out failure
* message if can't reserve the specified region.
*/
if (fixed_base) {
pr_warn("crashkernel reservation failed - memory is in use.\n");
return;
}
/*
* For crashkernel=size[KMG], if the first attempt was for
* low memory, fall back to high memory, the minimum required
* low memory will be reserved later.
*/
if (!high && search_end == CRASH_ADDR_LOW_MAX) {
search_end = CRASH_ADDR_HIGH_MAX;
search_base = CRASH_ADDR_LOW_MAX;
crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE;
goto retry;
}
/*
* For crashkernel=size[KMG],high, if the first attempt was
* for high memory, fall back to low memory.
*/
if (high && search_end == CRASH_ADDR_HIGH_MAX) {
search_end = CRASH_ADDR_LOW_MAX;
search_base = 0;
goto retry;
}
pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
crash_size);
return;
}
if ((crash_base >= CRASH_ADDR_LOW_MAX) &&
crash_low_size && reserve_crashkernel_low(crash_low_size)) {
memblock_phys_free(crash_base, crash_size);
return;
}
pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
crash_base, crash_base + crash_size, crash_size >> 20);
/*
* The crashkernel memory will be removed from the kernel linear
* map. Inform kmemleak so that it won't try to access it.
*/
kmemleak_ignore_phys(crash_base);
if (crashk_low_res.end)
kmemleak_ignore_phys(crashk_low_res.start);
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
}
static __init int insert_crashkernel_resources(void)
{
if (crashk_res.start < crashk_res.end)
insert_resource(&iomem_resource, &crashk_res);
if (crashk_low_res.start < crashk_low_res.end)
insert_resource(&iomem_resource, &crashk_low_res);
return 0;
}
early_initcall(insert_crashkernel_resources);
#endif
int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
void **addr, unsigned long *sz)
{
Elf64_Ehdr *ehdr;
Elf64_Phdr *phdr;
unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
unsigned char *buf;
unsigned int cpu, i;
unsigned long long notes_addr;
unsigned long mstart, mend;
/* extra phdr for vmcoreinfo ELF note */
nr_phdr = nr_cpus + 1;
nr_phdr += mem->nr_ranges;
/*
* kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
* area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
* I think this is required by tools like gdb. So same physical
* memory will be mapped in two ELF headers. One will contain kernel
* text virtual addresses and other will have __va(physical) addresses.
*/
nr_phdr++;
elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
buf = vzalloc(elf_sz);
if (!buf)
return -ENOMEM;
ehdr = (Elf64_Ehdr *)buf;
phdr = (Elf64_Phdr *)(ehdr + 1);
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
ehdr->e_ident[EI_CLASS] = ELFCLASS64;
ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
ehdr->e_ident[EI_OSABI] = ELF_OSABI;
memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
ehdr->e_type = ET_CORE;
ehdr->e_machine = ELF_ARCH;
ehdr->e_version = EV_CURRENT;
ehdr->e_phoff = sizeof(Elf64_Ehdr);
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
ehdr->e_phentsize = sizeof(Elf64_Phdr);
/* Prepare one phdr of type PT_NOTE for each possible CPU */
for_each_possible_cpu(cpu) {
phdr->p_type = PT_NOTE;
notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
phdr->p_offset = phdr->p_paddr = notes_addr;
phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
(ehdr->e_phnum)++;
phdr++;
}
/* Prepare one PT_NOTE header for vmcoreinfo */
phdr->p_type = PT_NOTE;
phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
(ehdr->e_phnum)++;
phdr++;
/* Prepare PT_LOAD type program header for kernel text region */
if (need_kernel_map) {
phdr->p_type = PT_LOAD;
phdr->p_flags = PF_R|PF_W|PF_X;
phdr->p_vaddr = (unsigned long) _text;
phdr->p_filesz = phdr->p_memsz = _end - _text;
phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
ehdr->e_phnum++;
phdr++;
}
/* Go through all the ranges in mem->ranges[] and prepare phdr */
for (i = 0; i < mem->nr_ranges; i++) {
mstart = mem->ranges[i].start;
mend = mem->ranges[i].end;
phdr->p_type = PT_LOAD;
phdr->p_flags = PF_R|PF_W|PF_X;
phdr->p_offset = mstart;
phdr->p_paddr = mstart;
phdr->p_vaddr = (unsigned long) __va(mstart);
phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
phdr->p_align = 0;
ehdr->e_phnum++;
#ifdef CONFIG_KEXEC_FILE
kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
ehdr->e_phnum, phdr->p_offset);
#endif
phdr++;
}
*addr = buf;
*sz = elf_sz;
return 0;
}
int crash_exclude_mem_range(struct crash_mem *mem,
unsigned long long mstart, unsigned long long mend)
{
int i;
unsigned long long start, end, p_start, p_end;
for (i = 0; i < mem->nr_ranges; i++) {
start = mem->ranges[i].start;
end = mem->ranges[i].end;
p_start = mstart;
p_end = mend;
if (p_start > end)
continue;
/*
* Because the memory ranges in mem->ranges are stored in
* ascending order, when we detect `p_end < start`, we can
* immediately exit the for loop, as the subsequent memory
* ranges will definitely be outside the range we are looking
* for.
*/
if (p_end < start)
break;
/* Truncate any area outside of range */
if (p_start < start)
p_start = start;
if (p_end > end)
p_end = end;
/* Found completely overlapping range */
if (p_start == start && p_end == end) {
memmove(&mem->ranges[i], &mem->ranges[i + 1],
(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
i--;
mem->nr_ranges--;
} else if (p_start > start && p_end < end) {
/* Split original range */
if (mem->nr_ranges >= mem->max_nr_ranges)
return -ENOMEM;
memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
mem->ranges[i].end = p_start - 1;
mem->ranges[i + 1].start = p_end + 1;
mem->ranges[i + 1].end = end;
i++;
mem->nr_ranges++;
} else if (p_start != start)
mem->ranges[i].end = p_start - 1;
else
mem->ranges[i].start = p_end + 1;
}
return 0;
}
Elf_Word *append_elf_note(Elf_Word *buf, char *name, unsigned int type,
void *data, size_t data_len)
{
struct elf_note *note = (struct elf_note *)buf;
note->n_namesz = strlen(name) + 1;
note->n_descsz = data_len;
note->n_type = type;
buf += DIV_ROUND_UP(sizeof(*note), sizeof(Elf_Word));
memcpy(buf, name, note->n_namesz);
buf += DIV_ROUND_UP(note->n_namesz, sizeof(Elf_Word));
memcpy(buf, data, data_len);
buf += DIV_ROUND_UP(data_len, sizeof(Elf_Word));
return buf;
}
void final_note(Elf_Word *buf)
{
memset(buf, 0, sizeof(struct elf_note));
}
static void update_vmcoreinfo_note(void)
{
u32 *buf = vmcoreinfo_note;
if (!vmcoreinfo_size)
return;
buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
vmcoreinfo_size);
final_note(buf);
}
void crash_update_vmcoreinfo_safecopy(void *ptr)
{
if (ptr)
memcpy(ptr, vmcoreinfo_data, vmcoreinfo_size);
vmcoreinfo_data_safecopy = ptr;
}
void crash_save_vmcoreinfo(void)
{
if (!vmcoreinfo_note)
return;
/* Use the safe copy to generate vmcoreinfo note if have */
if (vmcoreinfo_data_safecopy)
vmcoreinfo_data = vmcoreinfo_data_safecopy;
vmcoreinfo_append_str("CRASHTIME=%lld\n", ktime_get_real_seconds());
update_vmcoreinfo_note();
}
void vmcoreinfo_append_str(const char *fmt, ...)
{
va_list args;
char buf[0x50];
size_t r;
va_start(args, fmt);
r = vscnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
r = min(r, (size_t)VMCOREINFO_BYTES - vmcoreinfo_size);
memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
vmcoreinfo_size += r;
WARN_ONCE(vmcoreinfo_size == VMCOREINFO_BYTES,
"vmcoreinfo data exceeds allocated size, truncating");
}
/*
* provide an empty default implementation here -- architecture
* code may override this
*/
void __weak arch_crash_save_vmcoreinfo(void)
{}
phys_addr_t __weak paddr_vmcoreinfo_note(void)
{
return __pa(vmcoreinfo_note);
}
EXPORT_SYMBOL(paddr_vmcoreinfo_note);
static int __init crash_save_vmcoreinfo_init(void)
{
vmcoreinfo_data = (unsigned char *)get_zeroed_page(GFP_KERNEL);
if (!vmcoreinfo_data) {
pr_warn("Memory allocation for vmcoreinfo_data failed\n");
return -ENOMEM;
}
vmcoreinfo_note = alloc_pages_exact(VMCOREINFO_NOTE_SIZE,
GFP_KERNEL | __GFP_ZERO);
if (!vmcoreinfo_note) {
free_page((unsigned long)vmcoreinfo_data);
vmcoreinfo_data = NULL;
pr_warn("Memory allocation for vmcoreinfo_note failed\n");
return -ENOMEM;
}
VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
VMCOREINFO_BUILD_ID();
VMCOREINFO_PAGESIZE(PAGE_SIZE);
VMCOREINFO_SYMBOL(init_uts_ns);
VMCOREINFO_OFFSET(uts_namespace, name);
VMCOREINFO_SYMBOL(node_online_map);
#ifdef CONFIG_MMU
VMCOREINFO_SYMBOL_ARRAY(swapper_pg_dir);
#endif
VMCOREINFO_SYMBOL(_stext);
VMCOREINFO_SYMBOL(vmap_area_list);
#ifndef CONFIG_NUMA
VMCOREINFO_SYMBOL(mem_map);
VMCOREINFO_SYMBOL(contig_page_data);
#endif
#ifdef CONFIG_SPARSEMEM
VMCOREINFO_SYMBOL_ARRAY(mem_section);
VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
VMCOREINFO_STRUCT_SIZE(mem_section);
VMCOREINFO_OFFSET(mem_section, section_mem_map);
VMCOREINFO_NUMBER(SECTION_SIZE_BITS);
VMCOREINFO_NUMBER(MAX_PHYSMEM_BITS);
#endif
VMCOREINFO_STRUCT_SIZE(page);
VMCOREINFO_STRUCT_SIZE(pglist_data);
VMCOREINFO_STRUCT_SIZE(zone);
VMCOREINFO_STRUCT_SIZE(free_area);
VMCOREINFO_STRUCT_SIZE(list_head);
VMCOREINFO_SIZE(nodemask_t);
VMCOREINFO_OFFSET(page, flags);
VMCOREINFO_OFFSET(page, _refcount);
VMCOREINFO_OFFSET(page, mapping);
VMCOREINFO_OFFSET(page, lru);
VMCOREINFO_OFFSET(page, _mapcount);
VMCOREINFO_OFFSET(page, private);
VMCOREINFO_OFFSET(page, compound_head);
VMCOREINFO_OFFSET(pglist_data, node_zones);
VMCOREINFO_OFFSET(pglist_data, nr_zones);
#ifdef CONFIG_FLATMEM
VMCOREINFO_OFFSET(pglist_data, node_mem_map);
#endif
VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
VMCOREINFO_OFFSET(pglist_data, node_id);
VMCOREINFO_OFFSET(zone, free_area);
VMCOREINFO_OFFSET(zone, vm_stat);
VMCOREINFO_OFFSET(zone, spanned_pages);
VMCOREINFO_OFFSET(free_area, free_list);
VMCOREINFO_OFFSET(list_head, next);
VMCOREINFO_OFFSET(list_head, prev);
VMCOREINFO_OFFSET(vmap_area, va_start);
VMCOREINFO_OFFSET(vmap_area, list);
VMCOREINFO_LENGTH(zone.free_area, NR_PAGE_ORDERS);
log_buf_vmcoreinfo_setup();
VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
VMCOREINFO_NUMBER(NR_FREE_PAGES);
VMCOREINFO_NUMBER(PG_lru);
VMCOREINFO_NUMBER(PG_private);
VMCOREINFO_NUMBER(PG_swapcache);
VMCOREINFO_NUMBER(PG_swapbacked);
VMCOREINFO_NUMBER(PG_slab);
#ifdef CONFIG_MEMORY_FAILURE
VMCOREINFO_NUMBER(PG_hwpoison);
#endif
VMCOREINFO_NUMBER(PG_head_mask);
#define PAGE_BUDDY_MAPCOUNT_VALUE (~PG_buddy)
VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
#ifdef CONFIG_HUGETLB_PAGE
VMCOREINFO_NUMBER(PG_hugetlb);
#define PAGE_OFFLINE_MAPCOUNT_VALUE (~PG_offline)
VMCOREINFO_NUMBER(PAGE_OFFLINE_MAPCOUNT_VALUE);
#endif
#ifdef CONFIG_KALLSYMS
VMCOREINFO_SYMBOL(kallsyms_names);
VMCOREINFO_SYMBOL(kallsyms_num_syms);
VMCOREINFO_SYMBOL(kallsyms_token_table);
VMCOREINFO_SYMBOL(kallsyms_token_index);
#ifdef CONFIG_KALLSYMS_BASE_RELATIVE
VMCOREINFO_SYMBOL(kallsyms_offsets);
VMCOREINFO_SYMBOL(kallsyms_relative_base);
#else
VMCOREINFO_SYMBOL(kallsyms_addresses);
#endif /* CONFIG_KALLSYMS_BASE_RELATIVE */
#endif /* CONFIG_KALLSYMS */
arch_crash_save_vmcoreinfo();
update_vmcoreinfo_note();
return 0;
}
subsys_initcall(crash_save_vmcoreinfo_init);
static int __init crash_notes_memory_init(void)
{
/* Allocate memory for saving cpu registers. */
size_t size, align;
/*
* crash_notes could be allocated across 2 vmalloc pages when percpu
* is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
* pages are also on 2 continuous physical pages. In this case the
* 2nd part of crash_notes in 2nd page could be lost since only the
* starting address and size of crash_notes are exported through sysfs.
* Here round up the size of crash_notes to the nearest power of two
* and pass it to __alloc_percpu as align value. This can make sure
* crash_notes is allocated inside one physical page.
*/
size = sizeof(note_buf_t);
align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
/*
* Break compile if size is bigger than PAGE_SIZE since crash_notes
* definitely will be in 2 pages with that.
*/
BUILD_BUG_ON(size > PAGE_SIZE);
crash_notes = __alloc_percpu(size, align);
if (!crash_notes) {
pr_warn("Memory allocation for saving cpu register states failed\n");
return -ENOMEM;
}
return 0;
}
subsys_initcall(crash_notes_memory_init);
#ifdef CONFIG_CRASH_HOTPLUG
#undef pr_fmt
#define pr_fmt(fmt) "crash hp: " fmt
/*
* Different than kexec/kdump loading/unloading/jumping/shrinking which
* usually rarely happen, there will be many crash hotplug events notified
* during one short period, e.g one memory board is hot added and memory
* regions are online. So mutex lock __crash_hotplug_lock is used to
* serialize the crash hotplug handling specifically.
*/
static DEFINE_MUTEX(__crash_hotplug_lock);
#define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
#define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
/*
* This routine utilized when the crash_hotplug sysfs node is read.
* It reflects the kernel's ability/permission to update the crash
* elfcorehdr directly.
*/
int crash_check_update_elfcorehdr(void)
{
int rc = 0;
crash_hotplug_lock();
/* Obtain lock while reading crash information */
if (!kexec_trylock()) {
pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
crash_hotplug_unlock();
return 0;
}
if (kexec_crash_image) {
if (kexec_crash_image->file_mode)
rc = 1;
else
rc = kexec_crash_image->update_elfcorehdr;
}
/* Release lock now that update complete */
kexec_unlock();
crash_hotplug_unlock();
return rc;
}
/*
* To accurately reflect hot un/plug changes of cpu and memory resources
* (including onling and offlining of those resources), the elfcorehdr
* (which is passed to the crash kernel via the elfcorehdr= parameter)
* must be updated with the new list of CPUs and memories.
*
* In order to make changes to elfcorehdr, two conditions are needed:
* First, the segment containing the elfcorehdr must be large enough
* to permit a growing number of resources; the elfcorehdr memory size
* is based on NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES.
* Second, purgatory must explicitly exclude the elfcorehdr from the
* list of segments it checks (since the elfcorehdr changes and thus
* would require an update to purgatory itself to update the digest).
*/
static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu)
{
struct kimage *image;
crash_hotplug_lock();
/* Obtain lock while changing crash information */
if (!kexec_trylock()) {
pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
crash_hotplug_unlock();
return;
}
/* Check kdump is not loaded */
if (!kexec_crash_image)
goto out;
image = kexec_crash_image;
/* Check that updating elfcorehdr is permitted */
if (!(image->file_mode || image->update_elfcorehdr))
goto out;
if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
else
pr_debug("hp_action %u\n", hp_action);
/*
* The elfcorehdr_index is set to -1 when the struct kimage
* is allocated. Find the segment containing the elfcorehdr,
* if not already found.
*/
if (image->elfcorehdr_index < 0) {
unsigned long mem;
unsigned char *ptr;
unsigned int n;
for (n = 0; n < image->nr_segments; n++) {
mem = image->segment[n].mem;
ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
if (ptr) {
/* The segment containing elfcorehdr */
if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
image->elfcorehdr_index = (int)n;
kunmap_local(ptr);
}
}
}
if (image->elfcorehdr_index < 0) {
pr_err("unable to locate elfcorehdr segment");
goto out;
}
/* Needed in order for the segments to be updated */
arch_kexec_unprotect_crashkres();
/* Differentiate between normal load and hotplug update */
image->hp_action = hp_action;
/* Now invoke arch-specific update handler */
arch_crash_handle_hotplug_event(image);
/* No longer handling a hotplug event */
image->hp_action = KEXEC_CRASH_HP_NONE;
image->elfcorehdr_updated = true;
/* Change back to read-only */
arch_kexec_protect_crashkres();
/* Errors in the callback is not a reason to rollback state */
out:
/* Release lock now that update complete */
kexec_unlock();
crash_hotplug_unlock();
}
static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *v)
{
switch (val) {
case MEM_ONLINE:
crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
KEXEC_CRASH_HP_INVALID_CPU);
break;
case MEM_OFFLINE:
crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
KEXEC_CRASH_HP_INVALID_CPU);
break;
}
return NOTIFY_OK;
}
static struct notifier_block crash_memhp_nb = {
.notifier_call = crash_memhp_notifier,
.priority = 0
};
static int crash_cpuhp_online(unsigned int cpu)
{
crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu);
return 0;
}
static int crash_cpuhp_offline(unsigned int cpu)
{
crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu);
return 0;
}
static int __init crash_hotplug_init(void)
{
int result = 0;
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
register_memory_notifier(&crash_memhp_nb);
if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
"crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
}
return result;
}
subsys_initcall(crash_hotplug_init);
#endif