linux/drivers/infiniband/core/addr.c
Jason Gunthorpe 2ee9bf346f RDMA/addr: Fix race with netevent_callback()/rdma_addr_cancel()
This three thread race can result in the work being run once the callback
becomes NULL:

       CPU1                 CPU2                   CPU3
 netevent_callback()
                     process_one_req()       rdma_addr_cancel()
                      [..]
     spin_lock_bh()
  	set_timeout()
     spin_unlock_bh()

						spin_lock_bh()
						list_del_init(&req->list);
						spin_unlock_bh()

		     req->callback = NULL
		     spin_lock_bh()
		       if (!list_empty(&req->list))
                         // Skipped!
		         // cancel_delayed_work(&req->work);
		     spin_unlock_bh()

		    process_one_req() // again
		     req->callback() // BOOM
						cancel_delayed_work_sync()

The solution is to always cancel the work once it is completed so any
in between set_timeout() does not result in it running again.

Cc: stable@vger.kernel.org
Fixes: 44e75052bc ("RDMA/rdma_cm: Make rdma_addr_cancel into a fence")
Link: https://lore.kernel.org/r/20200930072007.1009692-1-leon@kernel.org
Reported-by: Dan Aloni <dan@kernelim.com>
Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2020-09-30 15:29:05 -03:00

889 lines
22 KiB
C

/*
* Copyright (c) 2005 Voltaire Inc. All rights reserved.
* Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
* Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
* Copyright (c) 2005 Intel Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/mutex.h>
#include <linux/inetdevice.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/module.h>
#include <net/arp.h>
#include <net/neighbour.h>
#include <net/route.h>
#include <net/netevent.h>
#include <net/ipv6_stubs.h>
#include <net/ip6_route.h>
#include <rdma/ib_addr.h>
#include <rdma/ib_cache.h>
#include <rdma/ib_sa.h>
#include <rdma/ib.h>
#include <rdma/rdma_netlink.h>
#include <net/netlink.h>
#include "core_priv.h"
struct addr_req {
struct list_head list;
struct sockaddr_storage src_addr;
struct sockaddr_storage dst_addr;
struct rdma_dev_addr *addr;
void *context;
void (*callback)(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context);
unsigned long timeout;
struct delayed_work work;
bool resolve_by_gid_attr; /* Consider gid attr in resolve phase */
int status;
u32 seq;
};
static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
static DEFINE_SPINLOCK(lock);
static LIST_HEAD(req_list);
static struct workqueue_struct *addr_wq;
static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
.len = sizeof(struct rdma_nla_ls_gid)},
};
static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
{
struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
int ret;
if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
return false;
ret = nla_parse_deprecated(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
nlmsg_len(nlh), ib_nl_addr_policy, NULL);
if (ret)
return false;
return true;
}
static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
{
const struct nlattr *head, *curr;
union ib_gid gid;
struct addr_req *req;
int len, rem;
int found = 0;
head = (const struct nlattr *)nlmsg_data(nlh);
len = nlmsg_len(nlh);
nla_for_each_attr(curr, head, len, rem) {
if (curr->nla_type == LS_NLA_TYPE_DGID)
memcpy(&gid, nla_data(curr), nla_len(curr));
}
spin_lock_bh(&lock);
list_for_each_entry(req, &req_list, list) {
if (nlh->nlmsg_seq != req->seq)
continue;
/* We set the DGID part, the rest was set earlier */
rdma_addr_set_dgid(req->addr, &gid);
req->status = 0;
found = 1;
break;
}
spin_unlock_bh(&lock);
if (!found)
pr_info("Couldn't find request waiting for DGID: %pI6\n",
&gid);
}
int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
!(NETLINK_CB(skb).sk))
return -EPERM;
if (ib_nl_is_good_ip_resp(nlh))
ib_nl_process_good_ip_rsep(nlh);
return 0;
}
static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
const void *daddr,
u32 seq, u16 family)
{
struct sk_buff *skb = NULL;
struct nlmsghdr *nlh;
struct rdma_ls_ip_resolve_header *header;
void *data;
size_t size;
int attrtype;
int len;
if (family == AF_INET) {
size = sizeof(struct in_addr);
attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
} else {
size = sizeof(struct in6_addr);
attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
}
len = nla_total_size(sizeof(size));
len += NLMSG_ALIGN(sizeof(*header));
skb = nlmsg_new(len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
if (!data) {
nlmsg_free(skb);
return -ENODATA;
}
/* Construct the family header first */
header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
header->ifindex = dev_addr->bound_dev_if;
nla_put(skb, attrtype, size, daddr);
/* Repair the nlmsg header length */
nlmsg_end(skb, nlh);
rdma_nl_multicast(&init_net, skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
/* Make the request retry, so when we get the response from userspace
* we will have something.
*/
return -ENODATA;
}
int rdma_addr_size(const struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
return sizeof(struct sockaddr_in);
case AF_INET6:
return sizeof(struct sockaddr_in6);
case AF_IB:
return sizeof(struct sockaddr_ib);
default:
return 0;
}
}
EXPORT_SYMBOL(rdma_addr_size);
int rdma_addr_size_in6(struct sockaddr_in6 *addr)
{
int ret = rdma_addr_size((struct sockaddr *) addr);
return ret <= sizeof(*addr) ? ret : 0;
}
EXPORT_SYMBOL(rdma_addr_size_in6);
int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
{
int ret = rdma_addr_size((struct sockaddr *) addr);
return ret <= sizeof(*addr) ? ret : 0;
}
EXPORT_SYMBOL(rdma_addr_size_kss);
/**
* rdma_copy_src_l2_addr - Copy netdevice source addresses
* @dev_addr: Destination address pointer where to copy the addresses
* @dev: Netdevice whose source addresses to copy
*
* rdma_copy_src_l2_addr() copies source addresses from the specified netdevice.
* This includes unicast address, broadcast address, device type and
* interface index.
*/
void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
const struct net_device *dev)
{
dev_addr->dev_type = dev->type;
memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
dev_addr->bound_dev_if = dev->ifindex;
}
EXPORT_SYMBOL(rdma_copy_src_l2_addr);
static struct net_device *
rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in)
{
struct net_device *dev = NULL;
int ret = -EADDRNOTAVAIL;
switch (src_in->sa_family) {
case AF_INET:
dev = __ip_dev_find(net,
((const struct sockaddr_in *)src_in)->sin_addr.s_addr,
false);
if (dev)
ret = 0;
break;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
for_each_netdev_rcu(net, dev) {
if (ipv6_chk_addr(net,
&((const struct sockaddr_in6 *)src_in)->sin6_addr,
dev, 1)) {
ret = 0;
break;
}
}
break;
#endif
}
return ret ? ERR_PTR(ret) : dev;
}
int rdma_translate_ip(const struct sockaddr *addr,
struct rdma_dev_addr *dev_addr)
{
struct net_device *dev;
if (dev_addr->bound_dev_if) {
dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
if (!dev)
return -ENODEV;
rdma_copy_src_l2_addr(dev_addr, dev);
dev_put(dev);
return 0;
}
rcu_read_lock();
dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr);
if (!IS_ERR(dev))
rdma_copy_src_l2_addr(dev_addr, dev);
rcu_read_unlock();
return PTR_ERR_OR_ZERO(dev);
}
EXPORT_SYMBOL(rdma_translate_ip);
static void set_timeout(struct addr_req *req, unsigned long time)
{
unsigned long delay;
delay = time - jiffies;
if ((long)delay < 0)
delay = 0;
mod_delayed_work(addr_wq, &req->work, delay);
}
static void queue_req(struct addr_req *req)
{
spin_lock_bh(&lock);
list_add_tail(&req->list, &req_list);
set_timeout(req, req->timeout);
spin_unlock_bh(&lock);
}
static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr,
const void *daddr, u32 seq, u16 family)
{
if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
return -EADDRNOTAVAIL;
return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
}
static int dst_fetch_ha(const struct dst_entry *dst,
struct rdma_dev_addr *dev_addr,
const void *daddr)
{
struct neighbour *n;
int ret = 0;
n = dst_neigh_lookup(dst, daddr);
if (!n)
return -ENODATA;
if (!(n->nud_state & NUD_VALID)) {
neigh_event_send(n, NULL);
ret = -ENODATA;
} else {
neigh_ha_snapshot(dev_addr->dst_dev_addr, n, dst->dev);
}
neigh_release(n);
return ret;
}
static bool has_gateway(const struct dst_entry *dst, sa_family_t family)
{
struct rtable *rt;
struct rt6_info *rt6;
if (family == AF_INET) {
rt = container_of(dst, struct rtable, dst);
return rt->rt_uses_gateway;
}
rt6 = container_of(dst, struct rt6_info, dst);
return rt6->rt6i_flags & RTF_GATEWAY;
}
static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
const struct sockaddr *dst_in, u32 seq)
{
const struct sockaddr_in *dst_in4 =
(const struct sockaddr_in *)dst_in;
const struct sockaddr_in6 *dst_in6 =
(const struct sockaddr_in6 *)dst_in;
const void *daddr = (dst_in->sa_family == AF_INET) ?
(const void *)&dst_in4->sin_addr.s_addr :
(const void *)&dst_in6->sin6_addr;
sa_family_t family = dst_in->sa_family;
might_sleep();
/* If we have a gateway in IB mode then it must be an IB network */
if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB)
return ib_nl_fetch_ha(dev_addr, daddr, seq, family);
else
return dst_fetch_ha(dst, dev_addr, daddr);
}
static int addr4_resolve(struct sockaddr *src_sock,
const struct sockaddr *dst_sock,
struct rdma_dev_addr *addr,
struct rtable **prt)
{
struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock;
const struct sockaddr_in *dst_in =
(const struct sockaddr_in *)dst_sock;
__be32 src_ip = src_in->sin_addr.s_addr;
__be32 dst_ip = dst_in->sin_addr.s_addr;
struct rtable *rt;
struct flowi4 fl4;
int ret;
memset(&fl4, 0, sizeof(fl4));
fl4.daddr = dst_ip;
fl4.saddr = src_ip;
fl4.flowi4_oif = addr->bound_dev_if;
rt = ip_route_output_key(addr->net, &fl4);
ret = PTR_ERR_OR_ZERO(rt);
if (ret)
return ret;
src_in->sin_addr.s_addr = fl4.saddr;
addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
*prt = rt;
return 0;
}
#if IS_ENABLED(CONFIG_IPV6)
static int addr6_resolve(struct sockaddr *src_sock,
const struct sockaddr *dst_sock,
struct rdma_dev_addr *addr,
struct dst_entry **pdst)
{
struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock;
const struct sockaddr_in6 *dst_in =
(const struct sockaddr_in6 *)dst_sock;
struct flowi6 fl6;
struct dst_entry *dst;
memset(&fl6, 0, sizeof fl6);
fl6.daddr = dst_in->sin6_addr;
fl6.saddr = src_in->sin6_addr;
fl6.flowi6_oif = addr->bound_dev_if;
dst = ipv6_stub->ipv6_dst_lookup_flow(addr->net, NULL, &fl6, NULL);
if (IS_ERR(dst))
return PTR_ERR(dst);
if (ipv6_addr_any(&src_in->sin6_addr))
src_in->sin6_addr = fl6.saddr;
addr->hoplimit = ip6_dst_hoplimit(dst);
*pdst = dst;
return 0;
}
#else
static int addr6_resolve(struct sockaddr *src_sock,
const struct sockaddr *dst_sock,
struct rdma_dev_addr *addr,
struct dst_entry **pdst)
{
return -EADDRNOTAVAIL;
}
#endif
static int addr_resolve_neigh(const struct dst_entry *dst,
const struct sockaddr *dst_in,
struct rdma_dev_addr *addr,
unsigned int ndev_flags,
u32 seq)
{
int ret = 0;
if (ndev_flags & IFF_LOOPBACK) {
memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
} else {
if (!(ndev_flags & IFF_NOARP)) {
/* If the device doesn't do ARP internally */
ret = fetch_ha(dst, addr, dst_in, seq);
}
}
return ret;
}
static int copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
const struct sockaddr *dst_in,
const struct dst_entry *dst,
const struct net_device *ndev)
{
int ret = 0;
if (dst->dev->flags & IFF_LOOPBACK)
ret = rdma_translate_ip(dst_in, dev_addr);
else
rdma_copy_src_l2_addr(dev_addr, dst->dev);
/*
* If there's a gateway and type of device not ARPHRD_INFINIBAND,
* we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the
* network type accordingly.
*/
if (has_gateway(dst, dst_in->sa_family) &&
ndev->type != ARPHRD_INFINIBAND)
dev_addr->network = dst_in->sa_family == AF_INET ?
RDMA_NETWORK_IPV4 :
RDMA_NETWORK_IPV6;
else
dev_addr->network = RDMA_NETWORK_IB;
return ret;
}
static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr,
unsigned int *ndev_flags,
const struct sockaddr *dst_in,
const struct dst_entry *dst)
{
struct net_device *ndev = READ_ONCE(dst->dev);
*ndev_flags = ndev->flags;
/* A physical device must be the RDMA device to use */
if (ndev->flags & IFF_LOOPBACK) {
/*
* RDMA (IB/RoCE, iWarp) doesn't run on lo interface or
* loopback IP address. So if route is resolved to loopback
* interface, translate that to a real ndev based on non
* loopback IP address.
*/
ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in);
if (IS_ERR(ndev))
return -ENODEV;
}
return copy_src_l2_addr(dev_addr, dst_in, dst, ndev);
}
static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr)
{
struct net_device *ndev;
ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr);
if (IS_ERR(ndev))
return PTR_ERR(ndev);
/*
* Since we are holding the rcu, reading net and ifindex
* are safe without any additional reference; because
* change_net_namespace() in net/core/dev.c does rcu sync
* after it changes the state to IFF_DOWN and before
* updating netdev fields {net, ifindex}.
*/
addr->net = dev_net(ndev);
addr->bound_dev_if = ndev->ifindex;
return 0;
}
static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr)
{
addr->net = &init_net;
addr->bound_dev_if = 0;
}
static int addr_resolve(struct sockaddr *src_in,
const struct sockaddr *dst_in,
struct rdma_dev_addr *addr,
bool resolve_neigh,
bool resolve_by_gid_attr,
u32 seq)
{
struct dst_entry *dst = NULL;
unsigned int ndev_flags = 0;
struct rtable *rt = NULL;
int ret;
if (!addr->net) {
pr_warn_ratelimited("%s: missing namespace\n", __func__);
return -EINVAL;
}
rcu_read_lock();
if (resolve_by_gid_attr) {
if (!addr->sgid_attr) {
rcu_read_unlock();
pr_warn_ratelimited("%s: missing gid_attr\n", __func__);
return -EINVAL;
}
/*
* If the request is for a specific gid attribute of the
* rdma_dev_addr, derive net from the netdevice of the
* GID attribute.
*/
ret = set_addr_netns_by_gid_rcu(addr);
if (ret) {
rcu_read_unlock();
return ret;
}
}
if (src_in->sa_family == AF_INET) {
ret = addr4_resolve(src_in, dst_in, addr, &rt);
dst = &rt->dst;
} else {
ret = addr6_resolve(src_in, dst_in, addr, &dst);
}
if (ret) {
rcu_read_unlock();
goto done;
}
ret = rdma_set_src_addr_rcu(addr, &ndev_flags, dst_in, dst);
rcu_read_unlock();
/*
* Resolve neighbor destination address if requested and
* only if src addr translation didn't fail.
*/
if (!ret && resolve_neigh)
ret = addr_resolve_neigh(dst, dst_in, addr, ndev_flags, seq);
if (src_in->sa_family == AF_INET)
ip_rt_put(rt);
else
dst_release(dst);
done:
/*
* Clear the addr net to go back to its original state, only if it was
* derived from GID attribute in this context.
*/
if (resolve_by_gid_attr)
rdma_addr_set_net_defaults(addr);
return ret;
}
static void process_one_req(struct work_struct *_work)
{
struct addr_req *req;
struct sockaddr *src_in, *dst_in;
req = container_of(_work, struct addr_req, work.work);
if (req->status == -ENODATA) {
src_in = (struct sockaddr *)&req->src_addr;
dst_in = (struct sockaddr *)&req->dst_addr;
req->status = addr_resolve(src_in, dst_in, req->addr,
true, req->resolve_by_gid_attr,
req->seq);
if (req->status && time_after_eq(jiffies, req->timeout)) {
req->status = -ETIMEDOUT;
} else if (req->status == -ENODATA) {
/* requeue the work for retrying again */
spin_lock_bh(&lock);
if (!list_empty(&req->list))
set_timeout(req, req->timeout);
spin_unlock_bh(&lock);
return;
}
}
req->callback(req->status, (struct sockaddr *)&req->src_addr,
req->addr, req->context);
req->callback = NULL;
spin_lock_bh(&lock);
/*
* Although the work will normally have been canceled by the workqueue,
* it can still be requeued as long as it is on the req_list.
*/
cancel_delayed_work(&req->work);
if (!list_empty(&req->list)) {
list_del_init(&req->list);
kfree(req);
}
spin_unlock_bh(&lock);
}
int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr,
struct rdma_dev_addr *addr, unsigned long timeout_ms,
void (*callback)(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context),
bool resolve_by_gid_attr, void *context)
{
struct sockaddr *src_in, *dst_in;
struct addr_req *req;
int ret = 0;
req = kzalloc(sizeof *req, GFP_KERNEL);
if (!req)
return -ENOMEM;
src_in = (struct sockaddr *) &req->src_addr;
dst_in = (struct sockaddr *) &req->dst_addr;
if (src_addr) {
if (src_addr->sa_family != dst_addr->sa_family) {
ret = -EINVAL;
goto err;
}
memcpy(src_in, src_addr, rdma_addr_size(src_addr));
} else {
src_in->sa_family = dst_addr->sa_family;
}
memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
req->addr = addr;
req->callback = callback;
req->context = context;
req->resolve_by_gid_attr = resolve_by_gid_attr;
INIT_DELAYED_WORK(&req->work, process_one_req);
req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
req->status = addr_resolve(src_in, dst_in, addr, true,
req->resolve_by_gid_attr, req->seq);
switch (req->status) {
case 0:
req->timeout = jiffies;
queue_req(req);
break;
case -ENODATA:
req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
queue_req(req);
break;
default:
ret = req->status;
goto err;
}
return ret;
err:
kfree(req);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_ip);
int roce_resolve_route_from_path(struct sa_path_rec *rec,
const struct ib_gid_attr *attr)
{
union {
struct sockaddr _sockaddr;
struct sockaddr_in _sockaddr_in;
struct sockaddr_in6 _sockaddr_in6;
} sgid, dgid;
struct rdma_dev_addr dev_addr = {};
int ret;
might_sleep();
if (rec->roce.route_resolved)
return 0;
rdma_gid2ip((struct sockaddr *)&sgid, &rec->sgid);
rdma_gid2ip((struct sockaddr *)&dgid, &rec->dgid);
if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family)
return -EINVAL;
if (!attr || !attr->ndev)
return -EINVAL;
dev_addr.net = &init_net;
dev_addr.sgid_attr = attr;
ret = addr_resolve((struct sockaddr *)&sgid, (struct sockaddr *)&dgid,
&dev_addr, false, true, 0);
if (ret)
return ret;
if ((dev_addr.network == RDMA_NETWORK_IPV4 ||
dev_addr.network == RDMA_NETWORK_IPV6) &&
rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2)
return -EINVAL;
rec->roce.route_resolved = true;
return 0;
}
/**
* rdma_addr_cancel - Cancel resolve ip request
* @addr: Pointer to address structure given previously
* during rdma_resolve_ip().
* rdma_addr_cancel() is synchronous function which cancels any pending
* request if there is any.
*/
void rdma_addr_cancel(struct rdma_dev_addr *addr)
{
struct addr_req *req, *temp_req;
struct addr_req *found = NULL;
spin_lock_bh(&lock);
list_for_each_entry_safe(req, temp_req, &req_list, list) {
if (req->addr == addr) {
/*
* Removing from the list means we take ownership of
* the req
*/
list_del_init(&req->list);
found = req;
break;
}
}
spin_unlock_bh(&lock);
if (!found)
return;
/*
* sync canceling the work after removing it from the req_list
* guarentees no work is running and none will be started.
*/
cancel_delayed_work_sync(&found->work);
kfree(found);
}
EXPORT_SYMBOL(rdma_addr_cancel);
struct resolve_cb_context {
struct completion comp;
int status;
};
static void resolve_cb(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context)
{
((struct resolve_cb_context *)context)->status = status;
complete(&((struct resolve_cb_context *)context)->comp);
}
int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
const union ib_gid *dgid,
u8 *dmac, const struct ib_gid_attr *sgid_attr,
int *hoplimit)
{
struct rdma_dev_addr dev_addr;
struct resolve_cb_context ctx;
union {
struct sockaddr_in _sockaddr_in;
struct sockaddr_in6 _sockaddr_in6;
} sgid_addr, dgid_addr;
int ret;
rdma_gid2ip((struct sockaddr *)&sgid_addr, sgid);
rdma_gid2ip((struct sockaddr *)&dgid_addr, dgid);
memset(&dev_addr, 0, sizeof(dev_addr));
dev_addr.net = &init_net;
dev_addr.sgid_attr = sgid_attr;
init_completion(&ctx.comp);
ret = rdma_resolve_ip((struct sockaddr *)&sgid_addr,
(struct sockaddr *)&dgid_addr, &dev_addr, 1000,
resolve_cb, true, &ctx);
if (ret)
return ret;
wait_for_completion(&ctx.comp);
ret = ctx.status;
if (ret)
return ret;
memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
*hoplimit = dev_addr.hoplimit;
return 0;
}
static int netevent_callback(struct notifier_block *self, unsigned long event,
void *ctx)
{
struct addr_req *req;
if (event == NETEVENT_NEIGH_UPDATE) {
struct neighbour *neigh = ctx;
if (neigh->nud_state & NUD_VALID) {
spin_lock_bh(&lock);
list_for_each_entry(req, &req_list, list)
set_timeout(req, jiffies);
spin_unlock_bh(&lock);
}
}
return 0;
}
static struct notifier_block nb = {
.notifier_call = netevent_callback
};
int addr_init(void)
{
addr_wq = alloc_ordered_workqueue("ib_addr", 0);
if (!addr_wq)
return -ENOMEM;
register_netevent_notifier(&nb);
return 0;
}
void addr_cleanup(void)
{
unregister_netevent_notifier(&nb);
destroy_workqueue(addr_wq);
WARN_ON(!list_empty(&req_list));
}