mirror of
https://github.com/torvalds/linux.git
synced 2024-11-17 01:22:07 +00:00
3d9e952697
When a program is attached to a map we increment the program refcnt
to ensure that the program is not removed while it is potentially
being referenced from sockmap side. However, if this same program
also references the map (this is a reasonably common pattern in
my programs) then the verifier will also increment the maps refcnt
from the verifier. This is to ensure the map doesn't get garbage
collected while the program has a reference to it.
So we are left in a state where the map holds the refcnt on the
program stopping it from being removed and releasing the map refcnt.
And vice versa the program holds a refcnt on the map stopping it
from releasing the refcnt on the prog.
All this is fine as long as users detach the program while the
map fd is still around. But, if the user omits this detach command
we are left with a dangling map we can no longer release.
To resolve this when the map fd is released decrement the program
references and remove any reference from the map to the program.
This fixes the issue with possibly dangling map and creates a
user side API constraint. That is, the map fd must be held open
for programs to be attached to a map.
Fixes: 174a79ff95
("bpf: sockmap with sk redirect support")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
938 lines
24 KiB
C
938 lines
24 KiB
C
/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of version 2 of the GNU General Public
|
|
* License as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*/
|
|
|
|
/* A BPF sock_map is used to store sock objects. This is primarly used
|
|
* for doing socket redirect with BPF helper routines.
|
|
*
|
|
* A sock map may have BPF programs attached to it, currently a program
|
|
* used to parse packets and a program to provide a verdict and redirect
|
|
* decision on the packet are supported. Any programs attached to a sock
|
|
* map are inherited by sock objects when they are added to the map. If
|
|
* no BPF programs are attached the sock object may only be used for sock
|
|
* redirect.
|
|
*
|
|
* A sock object may be in multiple maps, but can only inherit a single
|
|
* parse or verdict program. If adding a sock object to a map would result
|
|
* in having multiple parsing programs the update will return an EBUSY error.
|
|
*
|
|
* For reference this program is similar to devmap used in XDP context
|
|
* reviewing these together may be useful. For an example please review
|
|
* ./samples/bpf/sockmap/.
|
|
*/
|
|
#include <linux/bpf.h>
|
|
#include <net/sock.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/file.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/net.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/list.h>
|
|
#include <net/strparser.h>
|
|
#include <net/tcp.h>
|
|
|
|
#define SOCK_CREATE_FLAG_MASK \
|
|
(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
|
|
|
|
struct bpf_stab {
|
|
struct bpf_map map;
|
|
struct sock **sock_map;
|
|
struct bpf_prog *bpf_parse;
|
|
struct bpf_prog *bpf_verdict;
|
|
};
|
|
|
|
enum smap_psock_state {
|
|
SMAP_TX_RUNNING,
|
|
};
|
|
|
|
struct smap_psock_map_entry {
|
|
struct list_head list;
|
|
struct sock **entry;
|
|
};
|
|
|
|
struct smap_psock {
|
|
struct rcu_head rcu;
|
|
/* refcnt is used inside sk_callback_lock */
|
|
u32 refcnt;
|
|
|
|
/* datapath variables */
|
|
struct sk_buff_head rxqueue;
|
|
bool strp_enabled;
|
|
|
|
/* datapath error path cache across tx work invocations */
|
|
int save_rem;
|
|
int save_off;
|
|
struct sk_buff *save_skb;
|
|
|
|
struct strparser strp;
|
|
struct bpf_prog *bpf_parse;
|
|
struct bpf_prog *bpf_verdict;
|
|
struct list_head maps;
|
|
|
|
/* Back reference used when sock callback trigger sockmap operations */
|
|
struct sock *sock;
|
|
unsigned long state;
|
|
|
|
struct work_struct tx_work;
|
|
struct work_struct gc_work;
|
|
|
|
struct proto *sk_proto;
|
|
void (*save_close)(struct sock *sk, long timeout);
|
|
void (*save_data_ready)(struct sock *sk);
|
|
void (*save_write_space)(struct sock *sk);
|
|
};
|
|
|
|
static inline struct smap_psock *smap_psock_sk(const struct sock *sk)
|
|
{
|
|
return rcu_dereference_sk_user_data(sk);
|
|
}
|
|
|
|
static struct proto tcp_bpf_proto;
|
|
static int bpf_tcp_init(struct sock *sk)
|
|
{
|
|
struct smap_psock *psock;
|
|
|
|
rcu_read_lock();
|
|
psock = smap_psock_sk(sk);
|
|
if (unlikely(!psock)) {
|
|
rcu_read_unlock();
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (unlikely(psock->sk_proto)) {
|
|
rcu_read_unlock();
|
|
return -EBUSY;
|
|
}
|
|
|
|
psock->save_close = sk->sk_prot->close;
|
|
psock->sk_proto = sk->sk_prot;
|
|
sk->sk_prot = &tcp_bpf_proto;
|
|
rcu_read_unlock();
|
|
return 0;
|
|
}
|
|
|
|
static void bpf_tcp_release(struct sock *sk)
|
|
{
|
|
struct smap_psock *psock;
|
|
|
|
rcu_read_lock();
|
|
psock = smap_psock_sk(sk);
|
|
|
|
if (likely(psock)) {
|
|
sk->sk_prot = psock->sk_proto;
|
|
psock->sk_proto = NULL;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
|
|
|
|
static void bpf_tcp_close(struct sock *sk, long timeout)
|
|
{
|
|
void (*close_fun)(struct sock *sk, long timeout);
|
|
struct smap_psock_map_entry *e, *tmp;
|
|
struct smap_psock *psock;
|
|
struct sock *osk;
|
|
|
|
rcu_read_lock();
|
|
psock = smap_psock_sk(sk);
|
|
if (unlikely(!psock)) {
|
|
rcu_read_unlock();
|
|
return sk->sk_prot->close(sk, timeout);
|
|
}
|
|
|
|
/* The psock may be destroyed anytime after exiting the RCU critial
|
|
* section so by the time we use close_fun the psock may no longer
|
|
* be valid. However, bpf_tcp_close is called with the sock lock
|
|
* held so the close hook and sk are still valid.
|
|
*/
|
|
close_fun = psock->save_close;
|
|
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
list_for_each_entry_safe(e, tmp, &psock->maps, list) {
|
|
osk = cmpxchg(e->entry, sk, NULL);
|
|
if (osk == sk) {
|
|
list_del(&e->list);
|
|
smap_release_sock(psock, sk);
|
|
}
|
|
}
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
rcu_read_unlock();
|
|
close_fun(sk, timeout);
|
|
}
|
|
|
|
enum __sk_action {
|
|
__SK_DROP = 0,
|
|
__SK_PASS,
|
|
__SK_REDIRECT,
|
|
};
|
|
|
|
static struct tcp_ulp_ops bpf_tcp_ulp_ops __read_mostly = {
|
|
.name = "bpf_tcp",
|
|
.uid = TCP_ULP_BPF,
|
|
.user_visible = false,
|
|
.owner = NULL,
|
|
.init = bpf_tcp_init,
|
|
.release = bpf_tcp_release,
|
|
};
|
|
|
|
static int bpf_tcp_ulp_register(void)
|
|
{
|
|
tcp_bpf_proto = tcp_prot;
|
|
tcp_bpf_proto.close = bpf_tcp_close;
|
|
return tcp_register_ulp(&bpf_tcp_ulp_ops);
|
|
}
|
|
|
|
static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb)
|
|
{
|
|
struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict);
|
|
int rc;
|
|
|
|
if (unlikely(!prog))
|
|
return __SK_DROP;
|
|
|
|
skb_orphan(skb);
|
|
/* We need to ensure that BPF metadata for maps is also cleared
|
|
* when we orphan the skb so that we don't have the possibility
|
|
* to reference a stale map.
|
|
*/
|
|
TCP_SKB_CB(skb)->bpf.map = NULL;
|
|
skb->sk = psock->sock;
|
|
bpf_compute_data_pointers(skb);
|
|
preempt_disable();
|
|
rc = (*prog->bpf_func)(skb, prog->insnsi);
|
|
preempt_enable();
|
|
skb->sk = NULL;
|
|
|
|
/* Moving return codes from UAPI namespace into internal namespace */
|
|
return rc == SK_PASS ?
|
|
(TCP_SKB_CB(skb)->bpf.map ? __SK_REDIRECT : __SK_PASS) :
|
|
__SK_DROP;
|
|
}
|
|
|
|
static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb)
|
|
{
|
|
struct sock *sk;
|
|
int rc;
|
|
|
|
rc = smap_verdict_func(psock, skb);
|
|
switch (rc) {
|
|
case __SK_REDIRECT:
|
|
sk = do_sk_redirect_map(skb);
|
|
if (likely(sk)) {
|
|
struct smap_psock *peer = smap_psock_sk(sk);
|
|
|
|
if (likely(peer &&
|
|
test_bit(SMAP_TX_RUNNING, &peer->state) &&
|
|
!sock_flag(sk, SOCK_DEAD) &&
|
|
sock_writeable(sk))) {
|
|
skb_set_owner_w(skb, sk);
|
|
skb_queue_tail(&peer->rxqueue, skb);
|
|
schedule_work(&peer->tx_work);
|
|
break;
|
|
}
|
|
}
|
|
/* Fall through and free skb otherwise */
|
|
case __SK_DROP:
|
|
default:
|
|
kfree_skb(skb);
|
|
}
|
|
}
|
|
|
|
static void smap_report_sk_error(struct smap_psock *psock, int err)
|
|
{
|
|
struct sock *sk = psock->sock;
|
|
|
|
sk->sk_err = err;
|
|
sk->sk_error_report(sk);
|
|
}
|
|
|
|
static void smap_read_sock_strparser(struct strparser *strp,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct smap_psock *psock;
|
|
|
|
rcu_read_lock();
|
|
psock = container_of(strp, struct smap_psock, strp);
|
|
smap_do_verdict(psock, skb);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* Called with lock held on socket */
|
|
static void smap_data_ready(struct sock *sk)
|
|
{
|
|
struct smap_psock *psock;
|
|
|
|
rcu_read_lock();
|
|
psock = smap_psock_sk(sk);
|
|
if (likely(psock)) {
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
strp_data_ready(&psock->strp);
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void smap_tx_work(struct work_struct *w)
|
|
{
|
|
struct smap_psock *psock;
|
|
struct sk_buff *skb;
|
|
int rem, off, n;
|
|
|
|
psock = container_of(w, struct smap_psock, tx_work);
|
|
|
|
/* lock sock to avoid losing sk_socket at some point during loop */
|
|
lock_sock(psock->sock);
|
|
if (psock->save_skb) {
|
|
skb = psock->save_skb;
|
|
rem = psock->save_rem;
|
|
off = psock->save_off;
|
|
psock->save_skb = NULL;
|
|
goto start;
|
|
}
|
|
|
|
while ((skb = skb_dequeue(&psock->rxqueue))) {
|
|
rem = skb->len;
|
|
off = 0;
|
|
start:
|
|
do {
|
|
if (likely(psock->sock->sk_socket))
|
|
n = skb_send_sock_locked(psock->sock,
|
|
skb, off, rem);
|
|
else
|
|
n = -EINVAL;
|
|
if (n <= 0) {
|
|
if (n == -EAGAIN) {
|
|
/* Retry when space is available */
|
|
psock->save_skb = skb;
|
|
psock->save_rem = rem;
|
|
psock->save_off = off;
|
|
goto out;
|
|
}
|
|
/* Hard errors break pipe and stop xmit */
|
|
smap_report_sk_error(psock, n ? -n : EPIPE);
|
|
clear_bit(SMAP_TX_RUNNING, &psock->state);
|
|
kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
rem -= n;
|
|
off += n;
|
|
} while (rem);
|
|
kfree_skb(skb);
|
|
}
|
|
out:
|
|
release_sock(psock->sock);
|
|
}
|
|
|
|
static void smap_write_space(struct sock *sk)
|
|
{
|
|
struct smap_psock *psock;
|
|
|
|
rcu_read_lock();
|
|
psock = smap_psock_sk(sk);
|
|
if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state)))
|
|
schedule_work(&psock->tx_work);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void smap_stop_sock(struct smap_psock *psock, struct sock *sk)
|
|
{
|
|
if (!psock->strp_enabled)
|
|
return;
|
|
sk->sk_data_ready = psock->save_data_ready;
|
|
sk->sk_write_space = psock->save_write_space;
|
|
psock->save_data_ready = NULL;
|
|
psock->save_write_space = NULL;
|
|
strp_stop(&psock->strp);
|
|
psock->strp_enabled = false;
|
|
}
|
|
|
|
static void smap_destroy_psock(struct rcu_head *rcu)
|
|
{
|
|
struct smap_psock *psock = container_of(rcu,
|
|
struct smap_psock, rcu);
|
|
|
|
/* Now that a grace period has passed there is no longer
|
|
* any reference to this sock in the sockmap so we can
|
|
* destroy the psock, strparser, and bpf programs. But,
|
|
* because we use workqueue sync operations we can not
|
|
* do it in rcu context
|
|
*/
|
|
schedule_work(&psock->gc_work);
|
|
}
|
|
|
|
static void smap_release_sock(struct smap_psock *psock, struct sock *sock)
|
|
{
|
|
psock->refcnt--;
|
|
if (psock->refcnt)
|
|
return;
|
|
|
|
tcp_cleanup_ulp(sock);
|
|
smap_stop_sock(psock, sock);
|
|
clear_bit(SMAP_TX_RUNNING, &psock->state);
|
|
rcu_assign_sk_user_data(sock, NULL);
|
|
call_rcu_sched(&psock->rcu, smap_destroy_psock);
|
|
}
|
|
|
|
static int smap_parse_func_strparser(struct strparser *strp,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct smap_psock *psock;
|
|
struct bpf_prog *prog;
|
|
int rc;
|
|
|
|
rcu_read_lock();
|
|
psock = container_of(strp, struct smap_psock, strp);
|
|
prog = READ_ONCE(psock->bpf_parse);
|
|
|
|
if (unlikely(!prog)) {
|
|
rcu_read_unlock();
|
|
return skb->len;
|
|
}
|
|
|
|
/* Attach socket for bpf program to use if needed we can do this
|
|
* because strparser clones the skb before handing it to a upper
|
|
* layer, meaning skb_orphan has been called. We NULL sk on the
|
|
* way out to ensure we don't trigger a BUG_ON in skb/sk operations
|
|
* later and because we are not charging the memory of this skb to
|
|
* any socket yet.
|
|
*/
|
|
skb->sk = psock->sock;
|
|
bpf_compute_data_pointers(skb);
|
|
rc = (*prog->bpf_func)(skb, prog->insnsi);
|
|
skb->sk = NULL;
|
|
rcu_read_unlock();
|
|
return rc;
|
|
}
|
|
|
|
|
|
static int smap_read_sock_done(struct strparser *strp, int err)
|
|
{
|
|
return err;
|
|
}
|
|
|
|
static int smap_init_sock(struct smap_psock *psock,
|
|
struct sock *sk)
|
|
{
|
|
static const struct strp_callbacks cb = {
|
|
.rcv_msg = smap_read_sock_strparser,
|
|
.parse_msg = smap_parse_func_strparser,
|
|
.read_sock_done = smap_read_sock_done,
|
|
};
|
|
|
|
return strp_init(&psock->strp, sk, &cb);
|
|
}
|
|
|
|
static void smap_init_progs(struct smap_psock *psock,
|
|
struct bpf_stab *stab,
|
|
struct bpf_prog *verdict,
|
|
struct bpf_prog *parse)
|
|
{
|
|
struct bpf_prog *orig_parse, *orig_verdict;
|
|
|
|
orig_parse = xchg(&psock->bpf_parse, parse);
|
|
orig_verdict = xchg(&psock->bpf_verdict, verdict);
|
|
|
|
if (orig_verdict)
|
|
bpf_prog_put(orig_verdict);
|
|
if (orig_parse)
|
|
bpf_prog_put(orig_parse);
|
|
}
|
|
|
|
static void smap_start_sock(struct smap_psock *psock, struct sock *sk)
|
|
{
|
|
if (sk->sk_data_ready == smap_data_ready)
|
|
return;
|
|
psock->save_data_ready = sk->sk_data_ready;
|
|
psock->save_write_space = sk->sk_write_space;
|
|
sk->sk_data_ready = smap_data_ready;
|
|
sk->sk_write_space = smap_write_space;
|
|
psock->strp_enabled = true;
|
|
}
|
|
|
|
static void sock_map_remove_complete(struct bpf_stab *stab)
|
|
{
|
|
bpf_map_area_free(stab->sock_map);
|
|
kfree(stab);
|
|
}
|
|
|
|
static void smap_gc_work(struct work_struct *w)
|
|
{
|
|
struct smap_psock_map_entry *e, *tmp;
|
|
struct smap_psock *psock;
|
|
|
|
psock = container_of(w, struct smap_psock, gc_work);
|
|
|
|
/* no callback lock needed because we already detached sockmap ops */
|
|
if (psock->strp_enabled)
|
|
strp_done(&psock->strp);
|
|
|
|
cancel_work_sync(&psock->tx_work);
|
|
__skb_queue_purge(&psock->rxqueue);
|
|
|
|
/* At this point all strparser and xmit work must be complete */
|
|
if (psock->bpf_parse)
|
|
bpf_prog_put(psock->bpf_parse);
|
|
if (psock->bpf_verdict)
|
|
bpf_prog_put(psock->bpf_verdict);
|
|
|
|
list_for_each_entry_safe(e, tmp, &psock->maps, list) {
|
|
list_del(&e->list);
|
|
kfree(e);
|
|
}
|
|
|
|
sock_put(psock->sock);
|
|
kfree(psock);
|
|
}
|
|
|
|
static struct smap_psock *smap_init_psock(struct sock *sock,
|
|
struct bpf_stab *stab)
|
|
{
|
|
struct smap_psock *psock;
|
|
|
|
psock = kzalloc_node(sizeof(struct smap_psock),
|
|
GFP_ATOMIC | __GFP_NOWARN,
|
|
stab->map.numa_node);
|
|
if (!psock)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
psock->sock = sock;
|
|
skb_queue_head_init(&psock->rxqueue);
|
|
INIT_WORK(&psock->tx_work, smap_tx_work);
|
|
INIT_WORK(&psock->gc_work, smap_gc_work);
|
|
INIT_LIST_HEAD(&psock->maps);
|
|
psock->refcnt = 1;
|
|
|
|
rcu_assign_sk_user_data(sock, psock);
|
|
sock_hold(sock);
|
|
return psock;
|
|
}
|
|
|
|
static struct bpf_map *sock_map_alloc(union bpf_attr *attr)
|
|
{
|
|
struct bpf_stab *stab;
|
|
int err = -EINVAL;
|
|
u64 cost;
|
|
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return ERR_PTR(-EPERM);
|
|
|
|
/* check sanity of attributes */
|
|
if (attr->max_entries == 0 || attr->key_size != 4 ||
|
|
attr->value_size != 4 || attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (attr->value_size > KMALLOC_MAX_SIZE)
|
|
return ERR_PTR(-E2BIG);
|
|
|
|
err = bpf_tcp_ulp_register();
|
|
if (err && err != -EEXIST)
|
|
return ERR_PTR(err);
|
|
|
|
stab = kzalloc(sizeof(*stab), GFP_USER);
|
|
if (!stab)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
bpf_map_init_from_attr(&stab->map, attr);
|
|
|
|
/* make sure page count doesn't overflow */
|
|
cost = (u64) stab->map.max_entries * sizeof(struct sock *);
|
|
if (cost >= U32_MAX - PAGE_SIZE)
|
|
goto free_stab;
|
|
|
|
stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
|
|
|
|
/* if map size is larger than memlock limit, reject it early */
|
|
err = bpf_map_precharge_memlock(stab->map.pages);
|
|
if (err)
|
|
goto free_stab;
|
|
|
|
err = -ENOMEM;
|
|
stab->sock_map = bpf_map_area_alloc(stab->map.max_entries *
|
|
sizeof(struct sock *),
|
|
stab->map.numa_node);
|
|
if (!stab->sock_map)
|
|
goto free_stab;
|
|
|
|
return &stab->map;
|
|
free_stab:
|
|
kfree(stab);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void smap_list_remove(struct smap_psock *psock, struct sock **entry)
|
|
{
|
|
struct smap_psock_map_entry *e, *tmp;
|
|
|
|
list_for_each_entry_safe(e, tmp, &psock->maps, list) {
|
|
if (e->entry == entry) {
|
|
list_del(&e->list);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void sock_map_free(struct bpf_map *map)
|
|
{
|
|
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
|
|
int i;
|
|
|
|
synchronize_rcu();
|
|
|
|
/* At this point no update, lookup or delete operations can happen.
|
|
* However, be aware we can still get a socket state event updates,
|
|
* and data ready callabacks that reference the psock from sk_user_data
|
|
* Also psock worker threads are still in-flight. So smap_release_sock
|
|
* will only free the psock after cancel_sync on the worker threads
|
|
* and a grace period expire to ensure psock is really safe to remove.
|
|
*/
|
|
rcu_read_lock();
|
|
for (i = 0; i < stab->map.max_entries; i++) {
|
|
struct smap_psock *psock;
|
|
struct sock *sock;
|
|
|
|
sock = xchg(&stab->sock_map[i], NULL);
|
|
if (!sock)
|
|
continue;
|
|
|
|
write_lock_bh(&sock->sk_callback_lock);
|
|
psock = smap_psock_sk(sock);
|
|
/* This check handles a racing sock event that can get the
|
|
* sk_callback_lock before this case but after xchg happens
|
|
* causing the refcnt to hit zero and sock user data (psock)
|
|
* to be null and queued for garbage collection.
|
|
*/
|
|
if (likely(psock)) {
|
|
smap_list_remove(psock, &stab->sock_map[i]);
|
|
smap_release_sock(psock, sock);
|
|
}
|
|
write_unlock_bh(&sock->sk_callback_lock);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
sock_map_remove_complete(stab);
|
|
}
|
|
|
|
static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
|
|
{
|
|
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
|
|
u32 i = key ? *(u32 *)key : U32_MAX;
|
|
u32 *next = (u32 *)next_key;
|
|
|
|
if (i >= stab->map.max_entries) {
|
|
*next = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (i == stab->map.max_entries - 1)
|
|
return -ENOENT;
|
|
|
|
*next = i + 1;
|
|
return 0;
|
|
}
|
|
|
|
struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
|
|
{
|
|
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
|
|
|
|
if (key >= map->max_entries)
|
|
return NULL;
|
|
|
|
return READ_ONCE(stab->sock_map[key]);
|
|
}
|
|
|
|
static int sock_map_delete_elem(struct bpf_map *map, void *key)
|
|
{
|
|
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
|
|
struct smap_psock *psock;
|
|
int k = *(u32 *)key;
|
|
struct sock *sock;
|
|
|
|
if (k >= map->max_entries)
|
|
return -EINVAL;
|
|
|
|
sock = xchg(&stab->sock_map[k], NULL);
|
|
if (!sock)
|
|
return -EINVAL;
|
|
|
|
write_lock_bh(&sock->sk_callback_lock);
|
|
psock = smap_psock_sk(sock);
|
|
if (!psock)
|
|
goto out;
|
|
|
|
if (psock->bpf_parse)
|
|
smap_stop_sock(psock, sock);
|
|
smap_list_remove(psock, &stab->sock_map[k]);
|
|
smap_release_sock(psock, sock);
|
|
out:
|
|
write_unlock_bh(&sock->sk_callback_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* Locking notes: Concurrent updates, deletes, and lookups are allowed and are
|
|
* done inside rcu critical sections. This ensures on updates that the psock
|
|
* will not be released via smap_release_sock() until concurrent updates/deletes
|
|
* complete. All operations operate on sock_map using cmpxchg and xchg
|
|
* operations to ensure we do not get stale references. Any reads into the
|
|
* map must be done with READ_ONCE() because of this.
|
|
*
|
|
* A psock is destroyed via call_rcu and after any worker threads are cancelled
|
|
* and syncd so we are certain all references from the update/lookup/delete
|
|
* operations as well as references in the data path are no longer in use.
|
|
*
|
|
* Psocks may exist in multiple maps, but only a single set of parse/verdict
|
|
* programs may be inherited from the maps it belongs to. A reference count
|
|
* is kept with the total number of references to the psock from all maps. The
|
|
* psock will not be released until this reaches zero. The psock and sock
|
|
* user data data use the sk_callback_lock to protect critical data structures
|
|
* from concurrent access. This allows us to avoid two updates from modifying
|
|
* the user data in sock and the lock is required anyways for modifying
|
|
* callbacks, we simply increase its scope slightly.
|
|
*
|
|
* Rules to follow,
|
|
* - psock must always be read inside RCU critical section
|
|
* - sk_user_data must only be modified inside sk_callback_lock and read
|
|
* inside RCU critical section.
|
|
* - psock->maps list must only be read & modified inside sk_callback_lock
|
|
* - sock_map must use READ_ONCE and (cmp)xchg operations
|
|
* - BPF verdict/parse programs must use READ_ONCE and xchg operations
|
|
*/
|
|
static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops,
|
|
struct bpf_map *map,
|
|
void *key, u64 flags)
|
|
{
|
|
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
|
|
struct smap_psock_map_entry *e = NULL;
|
|
struct bpf_prog *verdict, *parse;
|
|
struct sock *osock, *sock;
|
|
struct smap_psock *psock;
|
|
u32 i = *(u32 *)key;
|
|
int err;
|
|
|
|
if (unlikely(flags > BPF_EXIST))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(i >= stab->map.max_entries))
|
|
return -E2BIG;
|
|
|
|
sock = READ_ONCE(stab->sock_map[i]);
|
|
if (flags == BPF_EXIST && !sock)
|
|
return -ENOENT;
|
|
else if (flags == BPF_NOEXIST && sock)
|
|
return -EEXIST;
|
|
|
|
sock = skops->sk;
|
|
|
|
/* 1. If sock map has BPF programs those will be inherited by the
|
|
* sock being added. If the sock is already attached to BPF programs
|
|
* this results in an error.
|
|
*/
|
|
verdict = READ_ONCE(stab->bpf_verdict);
|
|
parse = READ_ONCE(stab->bpf_parse);
|
|
|
|
if (parse && verdict) {
|
|
/* bpf prog refcnt may be zero if a concurrent attach operation
|
|
* removes the program after the above READ_ONCE() but before
|
|
* we increment the refcnt. If this is the case abort with an
|
|
* error.
|
|
*/
|
|
verdict = bpf_prog_inc_not_zero(stab->bpf_verdict);
|
|
if (IS_ERR(verdict))
|
|
return PTR_ERR(verdict);
|
|
|
|
parse = bpf_prog_inc_not_zero(stab->bpf_parse);
|
|
if (IS_ERR(parse)) {
|
|
bpf_prog_put(verdict);
|
|
return PTR_ERR(parse);
|
|
}
|
|
}
|
|
|
|
write_lock_bh(&sock->sk_callback_lock);
|
|
psock = smap_psock_sk(sock);
|
|
|
|
/* 2. Do not allow inheriting programs if psock exists and has
|
|
* already inherited programs. This would create confusion on
|
|
* which parser/verdict program is running. If no psock exists
|
|
* create one. Inside sk_callback_lock to ensure concurrent create
|
|
* doesn't update user data.
|
|
*/
|
|
if (psock) {
|
|
if (READ_ONCE(psock->bpf_parse) && parse) {
|
|
err = -EBUSY;
|
|
goto out_progs;
|
|
}
|
|
psock->refcnt++;
|
|
} else {
|
|
psock = smap_init_psock(sock, stab);
|
|
if (IS_ERR(psock)) {
|
|
err = PTR_ERR(psock);
|
|
goto out_progs;
|
|
}
|
|
|
|
err = tcp_set_ulp_id(sock, TCP_ULP_BPF);
|
|
if (err)
|
|
goto out_progs;
|
|
|
|
set_bit(SMAP_TX_RUNNING, &psock->state);
|
|
}
|
|
|
|
e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
|
|
if (!e) {
|
|
err = -ENOMEM;
|
|
goto out_progs;
|
|
}
|
|
e->entry = &stab->sock_map[i];
|
|
|
|
/* 3. At this point we have a reference to a valid psock that is
|
|
* running. Attach any BPF programs needed.
|
|
*/
|
|
if (parse && verdict && !psock->strp_enabled) {
|
|
err = smap_init_sock(psock, sock);
|
|
if (err)
|
|
goto out_free;
|
|
smap_init_progs(psock, stab, verdict, parse);
|
|
smap_start_sock(psock, sock);
|
|
}
|
|
|
|
/* 4. Place psock in sockmap for use and stop any programs on
|
|
* the old sock assuming its not the same sock we are replacing
|
|
* it with. Because we can only have a single set of programs if
|
|
* old_sock has a strp we can stop it.
|
|
*/
|
|
list_add_tail(&e->list, &psock->maps);
|
|
write_unlock_bh(&sock->sk_callback_lock);
|
|
|
|
osock = xchg(&stab->sock_map[i], sock);
|
|
if (osock) {
|
|
struct smap_psock *opsock = smap_psock_sk(osock);
|
|
|
|
write_lock_bh(&osock->sk_callback_lock);
|
|
if (osock != sock && parse)
|
|
smap_stop_sock(opsock, osock);
|
|
smap_list_remove(opsock, &stab->sock_map[i]);
|
|
smap_release_sock(opsock, osock);
|
|
write_unlock_bh(&osock->sk_callback_lock);
|
|
}
|
|
return 0;
|
|
out_free:
|
|
smap_release_sock(psock, sock);
|
|
out_progs:
|
|
if (verdict)
|
|
bpf_prog_put(verdict);
|
|
if (parse)
|
|
bpf_prog_put(parse);
|
|
write_unlock_bh(&sock->sk_callback_lock);
|
|
kfree(e);
|
|
return err;
|
|
}
|
|
|
|
int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type)
|
|
{
|
|
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
|
|
struct bpf_prog *orig;
|
|
|
|
if (unlikely(map->map_type != BPF_MAP_TYPE_SOCKMAP))
|
|
return -EINVAL;
|
|
|
|
switch (type) {
|
|
case BPF_SK_SKB_STREAM_PARSER:
|
|
orig = xchg(&stab->bpf_parse, prog);
|
|
break;
|
|
case BPF_SK_SKB_STREAM_VERDICT:
|
|
orig = xchg(&stab->bpf_verdict, prog);
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (orig)
|
|
bpf_prog_put(orig);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *sock_map_lookup(struct bpf_map *map, void *key)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static int sock_map_update_elem(struct bpf_map *map,
|
|
void *key, void *value, u64 flags)
|
|
{
|
|
struct bpf_sock_ops_kern skops;
|
|
u32 fd = *(u32 *)value;
|
|
struct socket *socket;
|
|
int err;
|
|
|
|
socket = sockfd_lookup(fd, &err);
|
|
if (!socket)
|
|
return err;
|
|
|
|
skops.sk = socket->sk;
|
|
if (!skops.sk) {
|
|
fput(socket->file);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (skops.sk->sk_type != SOCK_STREAM ||
|
|
skops.sk->sk_protocol != IPPROTO_TCP) {
|
|
fput(socket->file);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
err = sock_map_ctx_update_elem(&skops, map, key, flags);
|
|
fput(socket->file);
|
|
return err;
|
|
}
|
|
|
|
static void sock_map_release(struct bpf_map *map, struct file *map_file)
|
|
{
|
|
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
|
|
struct bpf_prog *orig;
|
|
|
|
orig = xchg(&stab->bpf_parse, NULL);
|
|
if (orig)
|
|
bpf_prog_put(orig);
|
|
orig = xchg(&stab->bpf_verdict, NULL);
|
|
if (orig)
|
|
bpf_prog_put(orig);
|
|
}
|
|
|
|
const struct bpf_map_ops sock_map_ops = {
|
|
.map_alloc = sock_map_alloc,
|
|
.map_free = sock_map_free,
|
|
.map_lookup_elem = sock_map_lookup,
|
|
.map_get_next_key = sock_map_get_next_key,
|
|
.map_update_elem = sock_map_update_elem,
|
|
.map_delete_elem = sock_map_delete_elem,
|
|
.map_release = sock_map_release,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock,
|
|
struct bpf_map *, map, void *, key, u64, flags)
|
|
{
|
|
WARN_ON_ONCE(!rcu_read_lock_held());
|
|
return sock_map_ctx_update_elem(bpf_sock, map, key, flags);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_sock_map_update_proto = {
|
|
.func = bpf_sock_map_update,
|
|
.gpl_only = false,
|
|
.pkt_access = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_PTR_TO_MAP_KEY,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|