linux/drivers/irqchip/irq-gic.c
Linus Torvalds 0d51ce9ca1 Power management and ACPI updates for v4.4-rc1
- ACPICA update to upstream revision 20150930 (Bob Moore, Lv Zheng).
 
    The most significant change is to allow the AML debugger to be
    built into the kernel.  On top of that there is an update related
    to the NFIT table (the ACPI persistent memory interface)
    and a few fixes and cleanups.
 
  - ACPI CPPC2 (Collaborative Processor Performance Control v2)
    support along with a cpufreq frontend (Ashwin Chaugule).
 
    This can only be enabled on ARM64 at this point.
 
  - New ACPI infrastructure for the early probing of IRQ chips and
    clock sources (Marc Zyngier).
 
  - Support for a new hierarchical properties extension of the ACPI
    _DSD (Device Specific Data) device configuration object allowing
    the kernel to handle hierarchical properties (provided by the
    platform firmware this way) automatically and make them available
    to device drivers via the generic device properties interface
    (Rafael Wysocki).
 
  - Generic device properties API extension to obtain an index of
    certain string value in an array of strings, along the lines of
    of_property_match_string(), but working for all of the supported
    firmware node types, and support for the "dma-names" device
    property based on it (Mika Westerberg).
 
  - ACPI core fix to parse the MADT (Multiple APIC Description Table)
    entries in the order expected by platform firmware (and mandated
    by the specification) to avoid confusion on systems with more than
    255 logical CPUs (Lukasz Anaczkowski).
 
  - Consolidation of the ACPI-based handling of PCI host bridges
    on x86 and ia64 (Jiang Liu).
 
  - ACPI core fixes to ensure that the correct IRQ number is used to
    represent the SCI (System Control Interrupt) in the cases when
    it has been re-mapped (Chen Yu).
 
  - New ACPI backlight quirk for Lenovo IdeaPad S405 (Hans de Goede).
 
  - ACPI EC driver fixes (Lv Zheng).
 
  - Assorted ACPI fixes and cleanups (Dan Carpenter, Insu Yun, Jiri
    Kosina, Rami Rosen, Rasmus Villemoes).
 
  - New mechanism in the PM core allowing drivers to check if the
    platform firmware is going to be involved in the upcoming system
    suspend or if it has been involved in the suspend the system is
    resuming from at the moment (Rafael Wysocki).
 
    This should allow drivers to optimize their suspend/resume
    handling in some cases and the changes include a couple of users
    of it (the i8042 input driver, PCI PM).
 
  - PCI PM fix to prevent runtime-suspended devices with PME enabled
    from being resumed during system suspend even if they aren't
    configured to wake up the system from sleep (Rafael Wysocki).
 
  - New mechanism to report the number of a wakeup IRQ that woke up
    the system from sleep last time (Alexandra Yates).
 
  - Removal of unused interfaces from the generic power domains
    framework and fixes related to latency measurements in that
    code (Ulf Hansson, Daniel Lezcano).
 
  - cpufreq core sysfs interface rework to make it handle CPUs that
    share performance scaling settings (represented by a common
    cpufreq policy object) more symmetrically (Viresh Kumar).
 
    This should help to simplify the CPU offline/online handling among
    other things.
 
  - cpufreq core fixes and cleanups (Viresh Kumar).
 
  - intel_pstate fixes related to the Turbo Activation Ratio (TAR)
    mechanism on client platforms which causes the turbo P-states
    range to vary depending on platform firmware settings (Srinivas
    Pandruvada).
 
  - intel_pstate sysfs interface fix (Prarit Bhargava).
 
  - Assorted cpufreq driver (imx, tegra20, powernv, integrator) fixes
    and cleanups (Bai Ping, Bartlomiej Zolnierkiewicz, Shilpasri G
    Bhat, Luis de Bethencourt).
 
  - cpuidle mvebu driver cleanups (Russell King).
 
  - OPP (Operating Performance Points) framework code reorganization
    to make it more maintainable (Viresh Kumar).
 
  - Intel Broxton support for the RAPL (Running Average Power Limits)
    power capping driver (Amy Wiles).
 
  - Assorted power management code fixes and cleanups (Dan Carpenter,
    Geert Uytterhoeven, Geliang Tang, Luis de Bethencourt, Rasmus
    Villemoes).
 
 /
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABCAAGBQJWOC9oAAoJEILEb/54YlRx/c8P/joflwoFsISwJccG62YTQMuc
 bMQKM4Kw0vl5La8+pkLpe5t6+mW7l81UFtYF6Dzd8LOKlD9sszD34z1lHmCeT/oR
 wn0uZpHagRyLMUfoyiEtlU/VRU6WQNNtS3EgjwUi7xgFz9Q0pjcCZ9OQ6vKov1j5
 +6j40ODif5sgo+2vl+rztJiV0SIMkYdkgNqgfN1FE9bdLA2Zkk+PxxJbtGQORuDu
 O/K+XhQT2xWquVWi/1p+VtQxs5glBS1oKm0kogV5bElCvNTRNIVABUNcjogITQwo
 QSAKgoCKIoaIl5jtDT6u5dc0y67q/dMtqOY9fOCcOz1Z7jbWQzR8D7mpFWIsJUPK
 K2LClI3t85ynpN6Jref246A6+C9nwB8JMAiAR11oBw7WbBlkd6tbRgcT5B+iz8UE
 FuCCif7pha/Fs+Jt1YRazscIqteQ2bAhhxikuIPMfw2M6M67MNfVNeKA1bAoSM34
 dH7JsilblitvV7shrwJHwXPXCOF2jEPoK8I4/q2+TR5qUxEpRJjelQxXGSaQScMZ
 iNnjeTgv8H8q+rY5Yjzsl4pxP0Fvf7IuqkptWOJbgepg4cQc9pS87wOpY3uEeQzr
 H7ruaQJFCnLO4aXbPNClsiJARhrBk+qMlsh4vBEyCJ2T0ucb+nIUcN4BTi8t85yl
 X97BfHHUiDoUrnIsNids
 =1gaH
 -----END PGP SIGNATURE-----

Merge tag 'pm+acpi-4.4-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management and ACPI updates from Rafael Wysocki:
 "Quite a new features are included this time.

  First off, the Collaborative Processor Performance Control interface
  (version 2) defined by ACPI will now be supported on ARM64 along with
  a cpufreq frontend for CPU performance scaling.

  Second, ACPI gets a new infrastructure for the early probing of IRQ
  chips and clock sources (along the lines of the existing similar
  mechanism for DT).

  Next, the ACPI core and the generic device properties API will now
  support a recently introduced hierarchical properties extension of the
  _DSD (Device Specific Data) ACPI device configuration object.  If the
  ACPI platform firmware uses that extension to organize device
  properties in a hierarchical way, the kernel will automatically handle
  it and make those properties available to device drivers via the
  generic device properties API.

  It also will be possible to build the ACPICA's AML interpreter
  debugger into the kernel now and use that to diagnose AML-related
  problems more efficiently.  In the future, this should make it
  possible to single-step AML execution and do similar things.
  Interesting stuff, although somewhat experimental at this point.

  Finally, the PM core gets a new mechanism that can be used by device
  drivers to distinguish between suspend-to-RAM (based on platform
  firmware support) and suspend-to-idle (or other variants of system
  suspend the platform firmware is not involved in) and possibly
  optimize their device suspend/resume handling accordingly.

  In addition to that, some existing features are re-organized quite
  substantially.

  First, the ACPI-based handling of PCI host bridges on x86 and ia64 is
  unified and the common code goes into the ACPI core (so as to reduce
  code duplication and eliminate non-essential differences between the
  two architectures in that area).

  Second, the Operating Performance Points (OPP) framework is
  reorganized to make the code easier to find and follow.

  Next, the cpufreq core's sysfs interface is reorganized to get rid of
  the "primary CPU" concept for configurations in which the same
  performance scaling settings are shared between multiple CPUs.

  Finally, some interfaces that aren't necessary any more are dropped
  from the generic power domains framework.

  On top of the above we have some minor extensions, cleanups and bug
  fixes in multiple places, as usual.

  Specifics:

   - ACPICA update to upstream revision 20150930 (Bob Moore, Lv Zheng).

     The most significant change is to allow the AML debugger to be
     built into the kernel.  On top of that there is an update related
     to the NFIT table (the ACPI persistent memory interface) and a few
     fixes and cleanups.

   - ACPI CPPC2 (Collaborative Processor Performance Control v2) support
     along with a cpufreq frontend (Ashwin Chaugule).

     This can only be enabled on ARM64 at this point.

   - New ACPI infrastructure for the early probing of IRQ chips and
     clock sources (Marc Zyngier).

   - Support for a new hierarchical properties extension of the ACPI
     _DSD (Device Specific Data) device configuration object allowing
     the kernel to handle hierarchical properties (provided by the
     platform firmware this way) automatically and make them available
     to device drivers via the generic device properties interface
     (Rafael Wysocki).

   - Generic device properties API extension to obtain an index of
     certain string value in an array of strings, along the lines of
     of_property_match_string(), but working for all of the supported
     firmware node types, and support for the "dma-names" device
     property based on it (Mika Westerberg).

   - ACPI core fix to parse the MADT (Multiple APIC Description Table)
     entries in the order expected by platform firmware (and mandated by
     the specification) to avoid confusion on systems with more than 255
     logical CPUs (Lukasz Anaczkowski).

   - Consolidation of the ACPI-based handling of PCI host bridges on x86
     and ia64 (Jiang Liu).

   - ACPI core fixes to ensure that the correct IRQ number is used to
     represent the SCI (System Control Interrupt) in the cases when it
     has been re-mapped (Chen Yu).

   - New ACPI backlight quirk for Lenovo IdeaPad S405 (Hans de Goede).

   - ACPI EC driver fixes (Lv Zheng).

   - Assorted ACPI fixes and cleanups (Dan Carpenter, Insu Yun, Jiri
     Kosina, Rami Rosen, Rasmus Villemoes).

   - New mechanism in the PM core allowing drivers to check if the
     platform firmware is going to be involved in the upcoming system
     suspend or if it has been involved in the suspend the system is
     resuming from at the moment (Rafael Wysocki).

     This should allow drivers to optimize their suspend/resume handling
     in some cases and the changes include a couple of users of it (the
     i8042 input driver, PCI PM).

   - PCI PM fix to prevent runtime-suspended devices with PME enabled
     from being resumed during system suspend even if they aren't
     configured to wake up the system from sleep (Rafael Wysocki).

   - New mechanism to report the number of a wakeup IRQ that woke up the
     system from sleep last time (Alexandra Yates).

   - Removal of unused interfaces from the generic power domains
     framework and fixes related to latency measurements in that code
     (Ulf Hansson, Daniel Lezcano).

   - cpufreq core sysfs interface rework to make it handle CPUs that
     share performance scaling settings (represented by a common cpufreq
     policy object) more symmetrically (Viresh Kumar).

     This should help to simplify the CPU offline/online handling among
     other things.

   - cpufreq core fixes and cleanups (Viresh Kumar).

   - intel_pstate fixes related to the Turbo Activation Ratio (TAR)
     mechanism on client platforms which causes the turbo P-states range
     to vary depending on platform firmware settings (Srinivas
     Pandruvada).

   - intel_pstate sysfs interface fix (Prarit Bhargava).

   - Assorted cpufreq driver (imx, tegra20, powernv, integrator) fixes
     and cleanups (Bai Ping, Bartlomiej Zolnierkiewicz, Shilpasri G
     Bhat, Luis de Bethencourt).

   - cpuidle mvebu driver cleanups (Russell King).

   - OPP (Operating Performance Points) framework code reorganization to
     make it more maintainable (Viresh Kumar).

   - Intel Broxton support for the RAPL (Running Average Power Limits)
     power capping driver (Amy Wiles).

   - Assorted power management code fixes and cleanups (Dan Carpenter,
     Geert Uytterhoeven, Geliang Tang, Luis de Bethencourt, Rasmus
     Villemoes)"

* tag 'pm+acpi-4.4-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (108 commits)
  cpufreq: postfix policy directory with the first CPU in related_cpus
  cpufreq: create cpu/cpufreq/policyX directories
  cpufreq: remove cpufreq_sysfs_{create|remove}_file()
  cpufreq: create cpu/cpufreq at boot time
  cpufreq: Use cpumask_copy instead of cpumask_or to copy a mask
  cpufreq: ondemand: Drop unnecessary locks from update_sampling_rate()
  PM / Domains: Merge measurements for PM QoS device latencies
  PM / Domains: Don't measure ->start|stop() latency in system PM callbacks
  PM / clk: Fix broken build due to non-matching code and header #ifdefs
  ACPI / Documentation: add copy_dsdt to ACPI format options
  ACPI / sysfs: correctly check failing memory allocation
  ACPI / video: Add a quirk to force native backlight on Lenovo IdeaPad S405
  ACPI / CPPC: Fix potential memory leak
  ACPI / CPPC: signedness bug in register_pcc_channel()
  ACPI / PAD: power_saving_thread() is not freezable
  ACPI / PM: Fix incorrect wakeup IRQ setting during suspend-to-idle
  ACPI: Using correct irq when waiting for events
  ACPI: Use correct IRQ when uninstalling ACPI interrupt handler
  cpuidle: mvebu: disable the bind/unbind attributes and use builtin_platform_driver
  cpuidle: mvebu: clean up multiple platform drivers
  ...
2015-11-04 18:10:13 -08:00

1337 lines
34 KiB
C

/*
* Copyright (C) 2002 ARM Limited, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Interrupt architecture for the GIC:
*
* o There is one Interrupt Distributor, which receives interrupts
* from system devices and sends them to the Interrupt Controllers.
*
* o There is one CPU Interface per CPU, which sends interrupts sent
* by the Distributor, and interrupts generated locally, to the
* associated CPU. The base address of the CPU interface is usually
* aliased so that the same address points to different chips depending
* on the CPU it is accessed from.
*
* Note that IRQs 0-31 are special - they are local to each CPU.
* As such, the enable set/clear, pending set/clear and active bit
* registers are banked per-cpu for these sources.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/cpu_pm.h>
#include <linux/cpumask.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/acpi.h>
#include <linux/irqdomain.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/irqchip.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqchip/arm-gic.h>
#include <asm/cputype.h>
#include <asm/irq.h>
#include <asm/exception.h>
#include <asm/smp_plat.h>
#include <asm/virt.h>
#include "irq-gic-common.h"
#ifdef CONFIG_ARM64
#include <asm/cpufeature.h>
static void gic_check_cpu_features(void)
{
WARN_TAINT_ONCE(cpus_have_cap(ARM64_HAS_SYSREG_GIC_CPUIF),
TAINT_CPU_OUT_OF_SPEC,
"GICv3 system registers enabled, broken firmware!\n");
}
#else
#define gic_check_cpu_features() do { } while(0)
#endif
union gic_base {
void __iomem *common_base;
void __percpu * __iomem *percpu_base;
};
struct gic_chip_data {
union gic_base dist_base;
union gic_base cpu_base;
#ifdef CONFIG_CPU_PM
u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
u32 __percpu *saved_ppi_enable;
u32 __percpu *saved_ppi_conf;
#endif
struct irq_domain *domain;
unsigned int gic_irqs;
#ifdef CONFIG_GIC_NON_BANKED
void __iomem *(*get_base)(union gic_base *);
#endif
};
static DEFINE_RAW_SPINLOCK(irq_controller_lock);
/*
* The GIC mapping of CPU interfaces does not necessarily match
* the logical CPU numbering. Let's use a mapping as returned
* by the GIC itself.
*/
#define NR_GIC_CPU_IF 8
static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
static struct static_key supports_deactivate = STATIC_KEY_INIT_TRUE;
#ifndef MAX_GIC_NR
#define MAX_GIC_NR 1
#endif
static struct gic_chip_data gic_data[MAX_GIC_NR] __read_mostly;
#ifdef CONFIG_GIC_NON_BANKED
static void __iomem *gic_get_percpu_base(union gic_base *base)
{
return raw_cpu_read(*base->percpu_base);
}
static void __iomem *gic_get_common_base(union gic_base *base)
{
return base->common_base;
}
static inline void __iomem *gic_data_dist_base(struct gic_chip_data *data)
{
return data->get_base(&data->dist_base);
}
static inline void __iomem *gic_data_cpu_base(struct gic_chip_data *data)
{
return data->get_base(&data->cpu_base);
}
static inline void gic_set_base_accessor(struct gic_chip_data *data,
void __iomem *(*f)(union gic_base *))
{
data->get_base = f;
}
#else
#define gic_data_dist_base(d) ((d)->dist_base.common_base)
#define gic_data_cpu_base(d) ((d)->cpu_base.common_base)
#define gic_set_base_accessor(d, f)
#endif
static inline void __iomem *gic_dist_base(struct irq_data *d)
{
struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
return gic_data_dist_base(gic_data);
}
static inline void __iomem *gic_cpu_base(struct irq_data *d)
{
struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
return gic_data_cpu_base(gic_data);
}
static inline unsigned int gic_irq(struct irq_data *d)
{
return d->hwirq;
}
static inline bool cascading_gic_irq(struct irq_data *d)
{
void *data = irq_data_get_irq_handler_data(d);
/*
* If handler_data is set, this is a cascading interrupt, and
* it cannot possibly be forwarded.
*/
return data != NULL;
}
/*
* Routines to acknowledge, disable and enable interrupts
*/
static void gic_poke_irq(struct irq_data *d, u32 offset)
{
u32 mask = 1 << (gic_irq(d) % 32);
writel_relaxed(mask, gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4);
}
static int gic_peek_irq(struct irq_data *d, u32 offset)
{
u32 mask = 1 << (gic_irq(d) % 32);
return !!(readl_relaxed(gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4) & mask);
}
static void gic_mask_irq(struct irq_data *d)
{
gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR);
}
static void gic_eoimode1_mask_irq(struct irq_data *d)
{
gic_mask_irq(d);
/*
* When masking a forwarded interrupt, make sure it is
* deactivated as well.
*
* This ensures that an interrupt that is getting
* disabled/masked will not get "stuck", because there is
* noone to deactivate it (guest is being terminated).
*/
if (irqd_is_forwarded_to_vcpu(d))
gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR);
}
static void gic_unmask_irq(struct irq_data *d)
{
gic_poke_irq(d, GIC_DIST_ENABLE_SET);
}
static void gic_eoi_irq(struct irq_data *d)
{
writel_relaxed(gic_irq(d), gic_cpu_base(d) + GIC_CPU_EOI);
}
static void gic_eoimode1_eoi_irq(struct irq_data *d)
{
/* Do not deactivate an IRQ forwarded to a vcpu. */
if (irqd_is_forwarded_to_vcpu(d))
return;
writel_relaxed(gic_irq(d), gic_cpu_base(d) + GIC_CPU_DEACTIVATE);
}
static int gic_irq_set_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which, bool val)
{
u32 reg;
switch (which) {
case IRQCHIP_STATE_PENDING:
reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR;
break;
case IRQCHIP_STATE_ACTIVE:
reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR;
break;
case IRQCHIP_STATE_MASKED:
reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET;
break;
default:
return -EINVAL;
}
gic_poke_irq(d, reg);
return 0;
}
static int gic_irq_get_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which, bool *val)
{
switch (which) {
case IRQCHIP_STATE_PENDING:
*val = gic_peek_irq(d, GIC_DIST_PENDING_SET);
break;
case IRQCHIP_STATE_ACTIVE:
*val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET);
break;
case IRQCHIP_STATE_MASKED:
*val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET);
break;
default:
return -EINVAL;
}
return 0;
}
static int gic_set_type(struct irq_data *d, unsigned int type)
{
void __iomem *base = gic_dist_base(d);
unsigned int gicirq = gic_irq(d);
/* Interrupt configuration for SGIs can't be changed */
if (gicirq < 16)
return -EINVAL;
/* SPIs have restrictions on the supported types */
if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH &&
type != IRQ_TYPE_EDGE_RISING)
return -EINVAL;
return gic_configure_irq(gicirq, type, base, NULL);
}
static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
{
/* Only interrupts on the primary GIC can be forwarded to a vcpu. */
if (cascading_gic_irq(d))
return -EINVAL;
if (vcpu)
irqd_set_forwarded_to_vcpu(d);
else
irqd_clr_forwarded_to_vcpu(d);
return 0;
}
#ifdef CONFIG_SMP
static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
bool force)
{
void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + (gic_irq(d) & ~3);
unsigned int cpu, shift = (gic_irq(d) % 4) * 8;
u32 val, mask, bit;
unsigned long flags;
if (!force)
cpu = cpumask_any_and(mask_val, cpu_online_mask);
else
cpu = cpumask_first(mask_val);
if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
return -EINVAL;
raw_spin_lock_irqsave(&irq_controller_lock, flags);
mask = 0xff << shift;
bit = gic_cpu_map[cpu] << shift;
val = readl_relaxed(reg) & ~mask;
writel_relaxed(val | bit, reg);
raw_spin_unlock_irqrestore(&irq_controller_lock, flags);
return IRQ_SET_MASK_OK;
}
#endif
static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
{
u32 irqstat, irqnr;
struct gic_chip_data *gic = &gic_data[0];
void __iomem *cpu_base = gic_data_cpu_base(gic);
do {
irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
irqnr = irqstat & GICC_IAR_INT_ID_MASK;
if (likely(irqnr > 15 && irqnr < 1021)) {
if (static_key_true(&supports_deactivate))
writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
handle_domain_irq(gic->domain, irqnr, regs);
continue;
}
if (irqnr < 16) {
writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
if (static_key_true(&supports_deactivate))
writel_relaxed(irqstat, cpu_base + GIC_CPU_DEACTIVATE);
#ifdef CONFIG_SMP
handle_IPI(irqnr, regs);
#endif
continue;
}
break;
} while (1);
}
static void gic_handle_cascade_irq(struct irq_desc *desc)
{
struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc);
struct irq_chip *chip = irq_desc_get_chip(desc);
unsigned int cascade_irq, gic_irq;
unsigned long status;
chained_irq_enter(chip, desc);
raw_spin_lock(&irq_controller_lock);
status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
raw_spin_unlock(&irq_controller_lock);
gic_irq = (status & GICC_IAR_INT_ID_MASK);
if (gic_irq == GICC_INT_SPURIOUS)
goto out;
cascade_irq = irq_find_mapping(chip_data->domain, gic_irq);
if (unlikely(gic_irq < 32 || gic_irq > 1020))
handle_bad_irq(desc);
else
generic_handle_irq(cascade_irq);
out:
chained_irq_exit(chip, desc);
}
static struct irq_chip gic_chip = {
.name = "GIC",
.irq_mask = gic_mask_irq,
.irq_unmask = gic_unmask_irq,
.irq_eoi = gic_eoi_irq,
.irq_set_type = gic_set_type,
#ifdef CONFIG_SMP
.irq_set_affinity = gic_set_affinity,
#endif
.irq_get_irqchip_state = gic_irq_get_irqchip_state,
.irq_set_irqchip_state = gic_irq_set_irqchip_state,
.flags = IRQCHIP_SET_TYPE_MASKED |
IRQCHIP_SKIP_SET_WAKE |
IRQCHIP_MASK_ON_SUSPEND,
};
static struct irq_chip gic_eoimode1_chip = {
.name = "GICv2",
.irq_mask = gic_eoimode1_mask_irq,
.irq_unmask = gic_unmask_irq,
.irq_eoi = gic_eoimode1_eoi_irq,
.irq_set_type = gic_set_type,
#ifdef CONFIG_SMP
.irq_set_affinity = gic_set_affinity,
#endif
.irq_get_irqchip_state = gic_irq_get_irqchip_state,
.irq_set_irqchip_state = gic_irq_set_irqchip_state,
.irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity,
.flags = IRQCHIP_SET_TYPE_MASKED |
IRQCHIP_SKIP_SET_WAKE |
IRQCHIP_MASK_ON_SUSPEND,
};
void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
{
if (gic_nr >= MAX_GIC_NR)
BUG();
irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq,
&gic_data[gic_nr]);
}
static u8 gic_get_cpumask(struct gic_chip_data *gic)
{
void __iomem *base = gic_data_dist_base(gic);
u32 mask, i;
for (i = mask = 0; i < 32; i += 4) {
mask = readl_relaxed(base + GIC_DIST_TARGET + i);
mask |= mask >> 16;
mask |= mask >> 8;
if (mask)
break;
}
if (!mask && num_possible_cpus() > 1)
pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
return mask;
}
static void gic_cpu_if_up(struct gic_chip_data *gic)
{
void __iomem *cpu_base = gic_data_cpu_base(gic);
u32 bypass = 0;
u32 mode = 0;
if (static_key_true(&supports_deactivate))
mode = GIC_CPU_CTRL_EOImodeNS;
/*
* Preserve bypass disable bits to be written back later
*/
bypass = readl(cpu_base + GIC_CPU_CTRL);
bypass &= GICC_DIS_BYPASS_MASK;
writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
}
static void __init gic_dist_init(struct gic_chip_data *gic)
{
unsigned int i;
u32 cpumask;
unsigned int gic_irqs = gic->gic_irqs;
void __iomem *base = gic_data_dist_base(gic);
writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
/*
* Set all global interrupts to this CPU only.
*/
cpumask = gic_get_cpumask(gic);
cpumask |= cpumask << 8;
cpumask |= cpumask << 16;
for (i = 32; i < gic_irqs; i += 4)
writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
gic_dist_config(base, gic_irqs, NULL);
writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
}
static void gic_cpu_init(struct gic_chip_data *gic)
{
void __iomem *dist_base = gic_data_dist_base(gic);
void __iomem *base = gic_data_cpu_base(gic);
unsigned int cpu_mask, cpu = smp_processor_id();
int i;
/*
* Setting up the CPU map is only relevant for the primary GIC
* because any nested/secondary GICs do not directly interface
* with the CPU(s).
*/
if (gic == &gic_data[0]) {
/*
* Get what the GIC says our CPU mask is.
*/
BUG_ON(cpu >= NR_GIC_CPU_IF);
cpu_mask = gic_get_cpumask(gic);
gic_cpu_map[cpu] = cpu_mask;
/*
* Clear our mask from the other map entries in case they're
* still undefined.
*/
for (i = 0; i < NR_GIC_CPU_IF; i++)
if (i != cpu)
gic_cpu_map[i] &= ~cpu_mask;
}
gic_cpu_config(dist_base, NULL);
writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
gic_cpu_if_up(gic);
}
int gic_cpu_if_down(unsigned int gic_nr)
{
void __iomem *cpu_base;
u32 val = 0;
if (gic_nr >= MAX_GIC_NR)
return -EINVAL;
cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
val = readl(cpu_base + GIC_CPU_CTRL);
val &= ~GICC_ENABLE;
writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
return 0;
}
#ifdef CONFIG_CPU_PM
/*
* Saves the GIC distributor registers during suspend or idle. Must be called
* with interrupts disabled but before powering down the GIC. After calling
* this function, no interrupts will be delivered by the GIC, and another
* platform-specific wakeup source must be enabled.
*/
static void gic_dist_save(unsigned int gic_nr)
{
unsigned int gic_irqs;
void __iomem *dist_base;
int i;
if (gic_nr >= MAX_GIC_NR)
BUG();
gic_irqs = gic_data[gic_nr].gic_irqs;
dist_base = gic_data_dist_base(&gic_data[gic_nr]);
if (!dist_base)
return;
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
gic_data[gic_nr].saved_spi_conf[i] =
readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
gic_data[gic_nr].saved_spi_target[i] =
readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
gic_data[gic_nr].saved_spi_enable[i] =
readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
}
/*
* Restores the GIC distributor registers during resume or when coming out of
* idle. Must be called before enabling interrupts. If a level interrupt
* that occured while the GIC was suspended is still present, it will be
* handled normally, but any edge interrupts that occured will not be seen by
* the GIC and need to be handled by the platform-specific wakeup source.
*/
static void gic_dist_restore(unsigned int gic_nr)
{
unsigned int gic_irqs;
unsigned int i;
void __iomem *dist_base;
if (gic_nr >= MAX_GIC_NR)
BUG();
gic_irqs = gic_data[gic_nr].gic_irqs;
dist_base = gic_data_dist_base(&gic_data[gic_nr]);
if (!dist_base)
return;
writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
writel_relaxed(gic_data[gic_nr].saved_spi_conf[i],
dist_base + GIC_DIST_CONFIG + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
writel_relaxed(GICD_INT_DEF_PRI_X4,
dist_base + GIC_DIST_PRI + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
writel_relaxed(gic_data[gic_nr].saved_spi_target[i],
dist_base + GIC_DIST_TARGET + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
writel_relaxed(gic_data[gic_nr].saved_spi_enable[i],
dist_base + GIC_DIST_ENABLE_SET + i * 4);
writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
}
static void gic_cpu_save(unsigned int gic_nr)
{
int i;
u32 *ptr;
void __iomem *dist_base;
void __iomem *cpu_base;
if (gic_nr >= MAX_GIC_NR)
BUG();
dist_base = gic_data_dist_base(&gic_data[gic_nr]);
cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
if (!dist_base || !cpu_base)
return;
ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_enable);
for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_conf);
for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
}
static void gic_cpu_restore(unsigned int gic_nr)
{
int i;
u32 *ptr;
void __iomem *dist_base;
void __iomem *cpu_base;
if (gic_nr >= MAX_GIC_NR)
BUG();
dist_base = gic_data_dist_base(&gic_data[gic_nr]);
cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
if (!dist_base || !cpu_base)
return;
ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_enable);
for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_conf);
for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
writel_relaxed(GICD_INT_DEF_PRI_X4,
dist_base + GIC_DIST_PRI + i * 4);
writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
gic_cpu_if_up(&gic_data[gic_nr]);
}
static int gic_notifier(struct notifier_block *self, unsigned long cmd, void *v)
{
int i;
for (i = 0; i < MAX_GIC_NR; i++) {
#ifdef CONFIG_GIC_NON_BANKED
/* Skip over unused GICs */
if (!gic_data[i].get_base)
continue;
#endif
switch (cmd) {
case CPU_PM_ENTER:
gic_cpu_save(i);
break;
case CPU_PM_ENTER_FAILED:
case CPU_PM_EXIT:
gic_cpu_restore(i);
break;
case CPU_CLUSTER_PM_ENTER:
gic_dist_save(i);
break;
case CPU_CLUSTER_PM_ENTER_FAILED:
case CPU_CLUSTER_PM_EXIT:
gic_dist_restore(i);
break;
}
}
return NOTIFY_OK;
}
static struct notifier_block gic_notifier_block = {
.notifier_call = gic_notifier,
};
static void __init gic_pm_init(struct gic_chip_data *gic)
{
gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
sizeof(u32));
BUG_ON(!gic->saved_ppi_enable);
gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
sizeof(u32));
BUG_ON(!gic->saved_ppi_conf);
if (gic == &gic_data[0])
cpu_pm_register_notifier(&gic_notifier_block);
}
#else
static void __init gic_pm_init(struct gic_chip_data *gic)
{
}
#endif
#ifdef CONFIG_SMP
static void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
{
int cpu;
unsigned long flags, map = 0;
raw_spin_lock_irqsave(&irq_controller_lock, flags);
/* Convert our logical CPU mask into a physical one. */
for_each_cpu(cpu, mask)
map |= gic_cpu_map[cpu];
/*
* Ensure that stores to Normal memory are visible to the
* other CPUs before they observe us issuing the IPI.
*/
dmb(ishst);
/* this always happens on GIC0 */
writel_relaxed(map << 16 | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
raw_spin_unlock_irqrestore(&irq_controller_lock, flags);
}
#endif
#ifdef CONFIG_BL_SWITCHER
/*
* gic_send_sgi - send a SGI directly to given CPU interface number
*
* cpu_id: the ID for the destination CPU interface
* irq: the IPI number to send a SGI for
*/
void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
{
BUG_ON(cpu_id >= NR_GIC_CPU_IF);
cpu_id = 1 << cpu_id;
/* this always happens on GIC0 */
writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
}
/*
* gic_get_cpu_id - get the CPU interface ID for the specified CPU
*
* @cpu: the logical CPU number to get the GIC ID for.
*
* Return the CPU interface ID for the given logical CPU number,
* or -1 if the CPU number is too large or the interface ID is
* unknown (more than one bit set).
*/
int gic_get_cpu_id(unsigned int cpu)
{
unsigned int cpu_bit;
if (cpu >= NR_GIC_CPU_IF)
return -1;
cpu_bit = gic_cpu_map[cpu];
if (cpu_bit & (cpu_bit - 1))
return -1;
return __ffs(cpu_bit);
}
/*
* gic_migrate_target - migrate IRQs to another CPU interface
*
* @new_cpu_id: the CPU target ID to migrate IRQs to
*
* Migrate all peripheral interrupts with a target matching the current CPU
* to the interface corresponding to @new_cpu_id. The CPU interface mapping
* is also updated. Targets to other CPU interfaces are unchanged.
* This must be called with IRQs locally disabled.
*/
void gic_migrate_target(unsigned int new_cpu_id)
{
unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
void __iomem *dist_base;
int i, ror_val, cpu = smp_processor_id();
u32 val, cur_target_mask, active_mask;
if (gic_nr >= MAX_GIC_NR)
BUG();
dist_base = gic_data_dist_base(&gic_data[gic_nr]);
if (!dist_base)
return;
gic_irqs = gic_data[gic_nr].gic_irqs;
cur_cpu_id = __ffs(gic_cpu_map[cpu]);
cur_target_mask = 0x01010101 << cur_cpu_id;
ror_val = (cur_cpu_id - new_cpu_id) & 31;
raw_spin_lock(&irq_controller_lock);
/* Update the target interface for this logical CPU */
gic_cpu_map[cpu] = 1 << new_cpu_id;
/*
* Find all the peripheral interrupts targetting the current
* CPU interface and migrate them to the new CPU interface.
* We skip DIST_TARGET 0 to 7 as they are read-only.
*/
for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
active_mask = val & cur_target_mask;
if (active_mask) {
val &= ~active_mask;
val |= ror32(active_mask, ror_val);
writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
}
}
raw_spin_unlock(&irq_controller_lock);
/*
* Now let's migrate and clear any potential SGIs that might be
* pending for us (cur_cpu_id). Since GIC_DIST_SGI_PENDING_SET
* is a banked register, we can only forward the SGI using
* GIC_DIST_SOFTINT. The original SGI source is lost but Linux
* doesn't use that information anyway.
*
* For the same reason we do not adjust SGI source information
* for previously sent SGIs by us to other CPUs either.
*/
for (i = 0; i < 16; i += 4) {
int j;
val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
if (!val)
continue;
writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
for (j = i; j < i + 4; j++) {
if (val & 0xff)
writel_relaxed((1 << (new_cpu_id + 16)) | j,
dist_base + GIC_DIST_SOFTINT);
val >>= 8;
}
}
}
/*
* gic_get_sgir_physaddr - get the physical address for the SGI register
*
* REturn the physical address of the SGI register to be used
* by some early assembly code when the kernel is not yet available.
*/
static unsigned long gic_dist_physaddr;
unsigned long gic_get_sgir_physaddr(void)
{
if (!gic_dist_physaddr)
return 0;
return gic_dist_physaddr + GIC_DIST_SOFTINT;
}
void __init gic_init_physaddr(struct device_node *node)
{
struct resource res;
if (of_address_to_resource(node, 0, &res) == 0) {
gic_dist_physaddr = res.start;
pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
}
}
#else
#define gic_init_physaddr(node) do { } while (0)
#endif
static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hw)
{
struct irq_chip *chip = &gic_chip;
if (static_key_true(&supports_deactivate)) {
if (d->host_data == (void *)&gic_data[0])
chip = &gic_eoimode1_chip;
}
if (hw < 32) {
irq_set_percpu_devid(irq);
irq_domain_set_info(d, irq, hw, chip, d->host_data,
handle_percpu_devid_irq, NULL, NULL);
irq_set_status_flags(irq, IRQ_NOAUTOEN);
} else {
irq_domain_set_info(d, irq, hw, chip, d->host_data,
handle_fasteoi_irq, NULL, NULL);
irq_set_probe(irq);
}
return 0;
}
static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq)
{
}
static int gic_irq_domain_translate(struct irq_domain *d,
struct irq_fwspec *fwspec,
unsigned long *hwirq,
unsigned int *type)
{
if (is_of_node(fwspec->fwnode)) {
if (fwspec->param_count < 3)
return -EINVAL;
/* Get the interrupt number and add 16 to skip over SGIs */
*hwirq = fwspec->param[1] + 16;
/*
* For SPIs, we need to add 16 more to get the GIC irq
* ID number
*/
if (!fwspec->param[0])
*hwirq += 16;
*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
return 0;
}
if (fwspec->fwnode->type == FWNODE_IRQCHIP) {
if(fwspec->param_count != 2)
return -EINVAL;
*hwirq = fwspec->param[0];
*type = fwspec->param[1];
return 0;
}
return -EINVAL;
}
#ifdef CONFIG_SMP
static int gic_secondary_init(struct notifier_block *nfb, unsigned long action,
void *hcpu)
{
if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
gic_cpu_init(&gic_data[0]);
return NOTIFY_OK;
}
/*
* Notifier for enabling the GIC CPU interface. Set an arbitrarily high
* priority because the GIC needs to be up before the ARM generic timers.
*/
static struct notifier_block gic_cpu_notifier = {
.notifier_call = gic_secondary_init,
.priority = 100,
};
#endif
static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
int i, ret;
irq_hw_number_t hwirq;
unsigned int type = IRQ_TYPE_NONE;
struct irq_fwspec *fwspec = arg;
ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
if (ret)
return ret;
for (i = 0; i < nr_irqs; i++)
gic_irq_domain_map(domain, virq + i, hwirq + i);
return 0;
}
static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
.translate = gic_irq_domain_translate,
.alloc = gic_irq_domain_alloc,
.free = irq_domain_free_irqs_top,
};
static const struct irq_domain_ops gic_irq_domain_ops = {
.map = gic_irq_domain_map,
.unmap = gic_irq_domain_unmap,
};
static void __init __gic_init_bases(unsigned int gic_nr, int irq_start,
void __iomem *dist_base, void __iomem *cpu_base,
u32 percpu_offset, struct fwnode_handle *handle)
{
irq_hw_number_t hwirq_base;
struct gic_chip_data *gic;
int gic_irqs, irq_base, i;
BUG_ON(gic_nr >= MAX_GIC_NR);
gic_check_cpu_features();
gic = &gic_data[gic_nr];
#ifdef CONFIG_GIC_NON_BANKED
if (percpu_offset) { /* Frankein-GIC without banked registers... */
unsigned int cpu;
gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
if (WARN_ON(!gic->dist_base.percpu_base ||
!gic->cpu_base.percpu_base)) {
free_percpu(gic->dist_base.percpu_base);
free_percpu(gic->cpu_base.percpu_base);
return;
}
for_each_possible_cpu(cpu) {
u32 mpidr = cpu_logical_map(cpu);
u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
unsigned long offset = percpu_offset * core_id;
*per_cpu_ptr(gic->dist_base.percpu_base, cpu) = dist_base + offset;
*per_cpu_ptr(gic->cpu_base.percpu_base, cpu) = cpu_base + offset;
}
gic_set_base_accessor(gic, gic_get_percpu_base);
} else
#endif
{ /* Normal, sane GIC... */
WARN(percpu_offset,
"GIC_NON_BANKED not enabled, ignoring %08x offset!",
percpu_offset);
gic->dist_base.common_base = dist_base;
gic->cpu_base.common_base = cpu_base;
gic_set_base_accessor(gic, gic_get_common_base);
}
/*
* Find out how many interrupts are supported.
* The GIC only supports up to 1020 interrupt sources.
*/
gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
gic_irqs = (gic_irqs + 1) * 32;
if (gic_irqs > 1020)
gic_irqs = 1020;
gic->gic_irqs = gic_irqs;
if (handle) { /* DT/ACPI */
gic->domain = irq_domain_create_linear(handle, gic_irqs,
&gic_irq_domain_hierarchy_ops,
gic);
} else { /* Legacy support */
/*
* For primary GICs, skip over SGIs.
* For secondary GICs, skip over PPIs, too.
*/
if (gic_nr == 0 && (irq_start & 31) > 0) {
hwirq_base = 16;
if (irq_start != -1)
irq_start = (irq_start & ~31) + 16;
} else {
hwirq_base = 32;
}
gic_irqs -= hwirq_base; /* calculate # of irqs to allocate */
irq_base = irq_alloc_descs(irq_start, 16, gic_irqs,
numa_node_id());
if (IS_ERR_VALUE(irq_base)) {
WARN(1, "Cannot allocate irq_descs @ IRQ%d, assuming pre-allocated\n",
irq_start);
irq_base = irq_start;
}
gic->domain = irq_domain_add_legacy(NULL, gic_irqs, irq_base,
hwirq_base, &gic_irq_domain_ops, gic);
}
if (WARN_ON(!gic->domain))
return;
if (gic_nr == 0) {
/*
* Initialize the CPU interface map to all CPUs.
* It will be refined as each CPU probes its ID.
* This is only necessary for the primary GIC.
*/
for (i = 0; i < NR_GIC_CPU_IF; i++)
gic_cpu_map[i] = 0xff;
#ifdef CONFIG_SMP
set_smp_cross_call(gic_raise_softirq);
register_cpu_notifier(&gic_cpu_notifier);
#endif
set_handle_irq(gic_handle_irq);
if (static_key_true(&supports_deactivate))
pr_info("GIC: Using split EOI/Deactivate mode\n");
}
gic_dist_init(gic);
gic_cpu_init(gic);
gic_pm_init(gic);
}
void __init gic_init(unsigned int gic_nr, int irq_start,
void __iomem *dist_base, void __iomem *cpu_base)
{
/*
* Non-DT/ACPI systems won't run a hypervisor, so let's not
* bother with these...
*/
static_key_slow_dec(&supports_deactivate);
__gic_init_bases(gic_nr, irq_start, dist_base, cpu_base, 0, NULL);
}
#ifdef CONFIG_OF
static int gic_cnt __initdata;
static bool gic_check_eoimode(struct device_node *node, void __iomem **base)
{
struct resource cpuif_res;
of_address_to_resource(node, 1, &cpuif_res);
if (!is_hyp_mode_available())
return false;
if (resource_size(&cpuif_res) < SZ_8K)
return false;
if (resource_size(&cpuif_res) == SZ_128K) {
u32 val_low, val_high;
/*
* Verify that we have the first 4kB of a GIC400
* aliased over the first 64kB by checking the
* GICC_IIDR register on both ends.
*/
val_low = readl_relaxed(*base + GIC_CPU_IDENT);
val_high = readl_relaxed(*base + GIC_CPU_IDENT + 0xf000);
if ((val_low & 0xffff0fff) != 0x0202043B ||
val_low != val_high)
return false;
/*
* Move the base up by 60kB, so that we have a 8kB
* contiguous region, which allows us to use GICC_DIR
* at its normal offset. Please pass me that bucket.
*/
*base += 0xf000;
cpuif_res.start += 0xf000;
pr_warn("GIC: Adjusting CPU interface base to %pa",
&cpuif_res.start);
}
return true;
}
static int __init
gic_of_init(struct device_node *node, struct device_node *parent)
{
void __iomem *cpu_base;
void __iomem *dist_base;
u32 percpu_offset;
int irq;
if (WARN_ON(!node))
return -ENODEV;
dist_base = of_iomap(node, 0);
WARN(!dist_base, "unable to map gic dist registers\n");
cpu_base = of_iomap(node, 1);
WARN(!cpu_base, "unable to map gic cpu registers\n");
/*
* Disable split EOI/Deactivate if either HYP is not available
* or the CPU interface is too small.
*/
if (gic_cnt == 0 && !gic_check_eoimode(node, &cpu_base))
static_key_slow_dec(&supports_deactivate);
if (of_property_read_u32(node, "cpu-offset", &percpu_offset))
percpu_offset = 0;
__gic_init_bases(gic_cnt, -1, dist_base, cpu_base, percpu_offset,
&node->fwnode);
if (!gic_cnt)
gic_init_physaddr(node);
if (parent) {
irq = irq_of_parse_and_map(node, 0);
gic_cascade_irq(gic_cnt, irq);
}
if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
gicv2m_of_init(node, gic_data[gic_cnt].domain);
gic_cnt++;
return 0;
}
IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init);
#endif
#ifdef CONFIG_ACPI
static phys_addr_t cpu_phy_base __initdata;
static int __init
gic_acpi_parse_madt_cpu(struct acpi_subtable_header *header,
const unsigned long end)
{
struct acpi_madt_generic_interrupt *processor;
phys_addr_t gic_cpu_base;
static int cpu_base_assigned;
processor = (struct acpi_madt_generic_interrupt *)header;
if (BAD_MADT_GICC_ENTRY(processor, end))
return -EINVAL;
/*
* There is no support for non-banked GICv1/2 register in ACPI spec.
* All CPU interface addresses have to be the same.
*/
gic_cpu_base = processor->base_address;
if (cpu_base_assigned && gic_cpu_base != cpu_phy_base)
return -EINVAL;
cpu_phy_base = gic_cpu_base;
cpu_base_assigned = 1;
return 0;
}
/* The things you have to do to just *count* something... */
static int __init acpi_dummy_func(struct acpi_subtable_header *header,
const unsigned long end)
{
return 0;
}
static bool __init acpi_gic_redist_is_present(void)
{
return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
acpi_dummy_func, 0) > 0;
}
static bool __init gic_validate_dist(struct acpi_subtable_header *header,
struct acpi_probe_entry *ape)
{
struct acpi_madt_generic_distributor *dist;
dist = (struct acpi_madt_generic_distributor *)header;
return (dist->version == ape->driver_data &&
(dist->version != ACPI_MADT_GIC_VERSION_NONE ||
!acpi_gic_redist_is_present()));
}
#define ACPI_GICV2_DIST_MEM_SIZE (SZ_4K)
#define ACPI_GIC_CPU_IF_MEM_SIZE (SZ_8K)
static int __init gic_v2_acpi_init(struct acpi_subtable_header *header,
const unsigned long end)
{
struct acpi_madt_generic_distributor *dist;
void __iomem *cpu_base, *dist_base;
struct fwnode_handle *domain_handle;
int count;
/* Collect CPU base addresses */
count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
gic_acpi_parse_madt_cpu, 0);
if (count <= 0) {
pr_err("No valid GICC entries exist\n");
return -EINVAL;
}
cpu_base = ioremap(cpu_phy_base, ACPI_GIC_CPU_IF_MEM_SIZE);
if (!cpu_base) {
pr_err("Unable to map GICC registers\n");
return -ENOMEM;
}
dist = (struct acpi_madt_generic_distributor *)header;
dist_base = ioremap(dist->base_address, ACPI_GICV2_DIST_MEM_SIZE);
if (!dist_base) {
pr_err("Unable to map GICD registers\n");
iounmap(cpu_base);
return -ENOMEM;
}
/*
* Disable split EOI/Deactivate if HYP is not available. ACPI
* guarantees that we'll always have a GICv2, so the CPU
* interface will always be the right size.
*/
if (!is_hyp_mode_available())
static_key_slow_dec(&supports_deactivate);
/*
* Initialize GIC instance zero (no multi-GIC support).
*/
domain_handle = irq_domain_alloc_fwnode(dist_base);
if (!domain_handle) {
pr_err("Unable to allocate domain handle\n");
iounmap(cpu_base);
iounmap(dist_base);
return -ENOMEM;
}
__gic_init_bases(0, -1, dist_base, cpu_base, 0, domain_handle);
acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
return 0;
}
IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
gic_validate_dist, ACPI_MADT_GIC_VERSION_V2,
gic_v2_acpi_init);
IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE,
gic_v2_acpi_init);
#endif