mirror of
https://github.com/torvalds/linux.git
synced 2024-11-14 08:02:07 +00:00
9f155b9802
Setting RF (resume flag) allows a debugger to resume execution after a code breakpoint without tripping the breakpoint again. It is reset by the CPU after execution of one instruction. Requested by Stephane Eranian: "I am trying to the user HW debug registers on i386 and I am running into a problem with ptrace() not allowing access to EFLAGS_RF for POKEUSER (see FLAG_MASK). [ ... ] It avoids the need to remove the breakpoint, single step, and reinstall. The equivalent functionality exists on IA-64 and is allowed by ptrace()" Cc: Stephane Eranian <eranian@hpl.hp.com> Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
734 lines
19 KiB
C
734 lines
19 KiB
C
/* ptrace.c */
|
|
/* By Ross Biro 1/23/92 */
|
|
/*
|
|
* Pentium III FXSR, SSE support
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/user.h>
|
|
#include <linux/security.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/seccomp.h>
|
|
#include <linux/signal.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/system.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/i387.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/ldt.h>
|
|
#include <asm/desc.h>
|
|
|
|
/*
|
|
* does not yet catch signals sent when the child dies.
|
|
* in exit.c or in signal.c.
|
|
*/
|
|
|
|
/*
|
|
* Determines which flags the user has access to [1 = access, 0 = no access].
|
|
* Prohibits changing ID(21), VIP(20), VIF(19), VM(17), IOPL(12-13), IF(9).
|
|
* Also masks reserved bits (31-22, 15, 5, 3, 1).
|
|
*/
|
|
#define FLAG_MASK 0x00054dd5
|
|
|
|
/* set's the trap flag. */
|
|
#define TRAP_FLAG 0x100
|
|
|
|
/*
|
|
* Offset of eflags on child stack..
|
|
*/
|
|
#define EFL_OFFSET ((EFL-2)*4-sizeof(struct pt_regs))
|
|
|
|
static inline struct pt_regs *get_child_regs(struct task_struct *task)
|
|
{
|
|
void *stack_top = (void *)task->thread.esp0;
|
|
return stack_top - sizeof(struct pt_regs);
|
|
}
|
|
|
|
/*
|
|
* this routine will get a word off of the processes privileged stack.
|
|
* the offset is how far from the base addr as stored in the TSS.
|
|
* this routine assumes that all the privileged stacks are in our
|
|
* data space.
|
|
*/
|
|
static inline int get_stack_long(struct task_struct *task, int offset)
|
|
{
|
|
unsigned char *stack;
|
|
|
|
stack = (unsigned char *)task->thread.esp0;
|
|
stack += offset;
|
|
return (*((int *)stack));
|
|
}
|
|
|
|
/*
|
|
* this routine will put a word on the processes privileged stack.
|
|
* the offset is how far from the base addr as stored in the TSS.
|
|
* this routine assumes that all the privileged stacks are in our
|
|
* data space.
|
|
*/
|
|
static inline int put_stack_long(struct task_struct *task, int offset,
|
|
unsigned long data)
|
|
{
|
|
unsigned char * stack;
|
|
|
|
stack = (unsigned char *) task->thread.esp0;
|
|
stack += offset;
|
|
*(unsigned long *) stack = data;
|
|
return 0;
|
|
}
|
|
|
|
static int putreg(struct task_struct *child,
|
|
unsigned long regno, unsigned long value)
|
|
{
|
|
switch (regno >> 2) {
|
|
case FS:
|
|
if (value && (value & 3) != 3)
|
|
return -EIO;
|
|
child->thread.fs = value;
|
|
return 0;
|
|
case GS:
|
|
if (value && (value & 3) != 3)
|
|
return -EIO;
|
|
child->thread.gs = value;
|
|
return 0;
|
|
case DS:
|
|
case ES:
|
|
if (value && (value & 3) != 3)
|
|
return -EIO;
|
|
value &= 0xffff;
|
|
break;
|
|
case SS:
|
|
case CS:
|
|
if ((value & 3) != 3)
|
|
return -EIO;
|
|
value &= 0xffff;
|
|
break;
|
|
case EFL:
|
|
value &= FLAG_MASK;
|
|
value |= get_stack_long(child, EFL_OFFSET) & ~FLAG_MASK;
|
|
break;
|
|
}
|
|
if (regno > GS*4)
|
|
regno -= 2*4;
|
|
put_stack_long(child, regno - sizeof(struct pt_regs), value);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long getreg(struct task_struct *child,
|
|
unsigned long regno)
|
|
{
|
|
unsigned long retval = ~0UL;
|
|
|
|
switch (regno >> 2) {
|
|
case FS:
|
|
retval = child->thread.fs;
|
|
break;
|
|
case GS:
|
|
retval = child->thread.gs;
|
|
break;
|
|
case DS:
|
|
case ES:
|
|
case SS:
|
|
case CS:
|
|
retval = 0xffff;
|
|
/* fall through */
|
|
default:
|
|
if (regno > GS*4)
|
|
regno -= 2*4;
|
|
regno = regno - sizeof(struct pt_regs);
|
|
retval &= get_stack_long(child, regno);
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
#define LDT_SEGMENT 4
|
|
|
|
static unsigned long convert_eip_to_linear(struct task_struct *child, struct pt_regs *regs)
|
|
{
|
|
unsigned long addr, seg;
|
|
|
|
addr = regs->eip;
|
|
seg = regs->xcs & 0xffff;
|
|
if (regs->eflags & VM_MASK) {
|
|
addr = (addr & 0xffff) + (seg << 4);
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
* We'll assume that the code segments in the GDT
|
|
* are all zero-based. That is largely true: the
|
|
* TLS segments are used for data, and the PNPBIOS
|
|
* and APM bios ones we just ignore here.
|
|
*/
|
|
if (seg & LDT_SEGMENT) {
|
|
u32 *desc;
|
|
unsigned long base;
|
|
|
|
down(&child->mm->context.sem);
|
|
desc = child->mm->context.ldt + (seg & ~7);
|
|
base = (desc[0] >> 16) | ((desc[1] & 0xff) << 16) | (desc[1] & 0xff000000);
|
|
|
|
/* 16-bit code segment? */
|
|
if (!((desc[1] >> 22) & 1))
|
|
addr &= 0xffff;
|
|
addr += base;
|
|
up(&child->mm->context.sem);
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
static inline int is_at_popf(struct task_struct *child, struct pt_regs *regs)
|
|
{
|
|
int i, copied;
|
|
unsigned char opcode[16];
|
|
unsigned long addr = convert_eip_to_linear(child, regs);
|
|
|
|
copied = access_process_vm(child, addr, opcode, sizeof(opcode), 0);
|
|
for (i = 0; i < copied; i++) {
|
|
switch (opcode[i]) {
|
|
/* popf */
|
|
case 0x9d:
|
|
return 1;
|
|
/* opcode and address size prefixes */
|
|
case 0x66: case 0x67:
|
|
continue;
|
|
/* irrelevant prefixes (segment overrides and repeats) */
|
|
case 0x26: case 0x2e:
|
|
case 0x36: case 0x3e:
|
|
case 0x64: case 0x65:
|
|
case 0xf0: case 0xf2: case 0xf3:
|
|
continue;
|
|
|
|
/*
|
|
* pushf: NOTE! We should probably not let
|
|
* the user see the TF bit being set. But
|
|
* it's more pain than it's worth to avoid
|
|
* it, and a debugger could emulate this
|
|
* all in user space if it _really_ cares.
|
|
*/
|
|
case 0x9c:
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void set_singlestep(struct task_struct *child)
|
|
{
|
|
struct pt_regs *regs = get_child_regs(child);
|
|
|
|
/*
|
|
* Always set TIF_SINGLESTEP - this guarantees that
|
|
* we single-step system calls etc.. This will also
|
|
* cause us to set TF when returning to user mode.
|
|
*/
|
|
set_tsk_thread_flag(child, TIF_SINGLESTEP);
|
|
|
|
/*
|
|
* If TF was already set, don't do anything else
|
|
*/
|
|
if (regs->eflags & TRAP_FLAG)
|
|
return;
|
|
|
|
/* Set TF on the kernel stack.. */
|
|
regs->eflags |= TRAP_FLAG;
|
|
|
|
/*
|
|
* ..but if TF is changed by the instruction we will trace,
|
|
* don't mark it as being "us" that set it, so that we
|
|
* won't clear it by hand later.
|
|
*/
|
|
if (is_at_popf(child, regs))
|
|
return;
|
|
|
|
child->ptrace |= PT_DTRACE;
|
|
}
|
|
|
|
static void clear_singlestep(struct task_struct *child)
|
|
{
|
|
/* Always clear TIF_SINGLESTEP... */
|
|
clear_tsk_thread_flag(child, TIF_SINGLESTEP);
|
|
|
|
/* But touch TF only if it was set by us.. */
|
|
if (child->ptrace & PT_DTRACE) {
|
|
struct pt_regs *regs = get_child_regs(child);
|
|
regs->eflags &= ~TRAP_FLAG;
|
|
child->ptrace &= ~PT_DTRACE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called by kernel/ptrace.c when detaching..
|
|
*
|
|
* Make sure the single step bit is not set.
|
|
*/
|
|
void ptrace_disable(struct task_struct *child)
|
|
{
|
|
clear_singlestep(child);
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
|
|
}
|
|
|
|
/*
|
|
* Perform get_thread_area on behalf of the traced child.
|
|
*/
|
|
static int
|
|
ptrace_get_thread_area(struct task_struct *child,
|
|
int idx, struct user_desc __user *user_desc)
|
|
{
|
|
struct user_desc info;
|
|
struct desc_struct *desc;
|
|
|
|
/*
|
|
* Get the current Thread-Local Storage area:
|
|
*/
|
|
|
|
#define GET_BASE(desc) ( \
|
|
(((desc)->a >> 16) & 0x0000ffff) | \
|
|
(((desc)->b << 16) & 0x00ff0000) | \
|
|
( (desc)->b & 0xff000000) )
|
|
|
|
#define GET_LIMIT(desc) ( \
|
|
((desc)->a & 0x0ffff) | \
|
|
((desc)->b & 0xf0000) )
|
|
|
|
#define GET_32BIT(desc) (((desc)->b >> 22) & 1)
|
|
#define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
|
|
#define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
|
|
#define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
|
|
#define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
|
|
#define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
|
|
|
|
if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
|
|
return -EINVAL;
|
|
|
|
desc = child->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
|
|
|
|
info.entry_number = idx;
|
|
info.base_addr = GET_BASE(desc);
|
|
info.limit = GET_LIMIT(desc);
|
|
info.seg_32bit = GET_32BIT(desc);
|
|
info.contents = GET_CONTENTS(desc);
|
|
info.read_exec_only = !GET_WRITABLE(desc);
|
|
info.limit_in_pages = GET_LIMIT_PAGES(desc);
|
|
info.seg_not_present = !GET_PRESENT(desc);
|
|
info.useable = GET_USEABLE(desc);
|
|
|
|
if (copy_to_user(user_desc, &info, sizeof(info)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Perform set_thread_area on behalf of the traced child.
|
|
*/
|
|
static int
|
|
ptrace_set_thread_area(struct task_struct *child,
|
|
int idx, struct user_desc __user *user_desc)
|
|
{
|
|
struct user_desc info;
|
|
struct desc_struct *desc;
|
|
|
|
if (copy_from_user(&info, user_desc, sizeof(info)))
|
|
return -EFAULT;
|
|
|
|
if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
|
|
return -EINVAL;
|
|
|
|
desc = child->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
|
|
if (LDT_empty(&info)) {
|
|
desc->a = 0;
|
|
desc->b = 0;
|
|
} else {
|
|
desc->a = LDT_entry_a(&info);
|
|
desc->b = LDT_entry_b(&info);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
long arch_ptrace(struct task_struct *child, long request, long addr, long data)
|
|
{
|
|
struct user * dummy = NULL;
|
|
int i, ret;
|
|
unsigned long __user *datap = (unsigned long __user *)data;
|
|
|
|
switch (request) {
|
|
/* when I and D space are separate, these will need to be fixed. */
|
|
case PTRACE_PEEKTEXT: /* read word at location addr. */
|
|
case PTRACE_PEEKDATA: {
|
|
unsigned long tmp;
|
|
int copied;
|
|
|
|
copied = access_process_vm(child, addr, &tmp, sizeof(tmp), 0);
|
|
ret = -EIO;
|
|
if (copied != sizeof(tmp))
|
|
break;
|
|
ret = put_user(tmp, datap);
|
|
break;
|
|
}
|
|
|
|
/* read the word at location addr in the USER area. */
|
|
case PTRACE_PEEKUSR: {
|
|
unsigned long tmp;
|
|
|
|
ret = -EIO;
|
|
if ((addr & 3) || addr < 0 ||
|
|
addr > sizeof(struct user) - 3)
|
|
break;
|
|
|
|
tmp = 0; /* Default return condition */
|
|
if(addr < FRAME_SIZE*sizeof(long))
|
|
tmp = getreg(child, addr);
|
|
if(addr >= (long) &dummy->u_debugreg[0] &&
|
|
addr <= (long) &dummy->u_debugreg[7]){
|
|
addr -= (long) &dummy->u_debugreg[0];
|
|
addr = addr >> 2;
|
|
tmp = child->thread.debugreg[addr];
|
|
}
|
|
ret = put_user(tmp, datap);
|
|
break;
|
|
}
|
|
|
|
/* when I and D space are separate, this will have to be fixed. */
|
|
case PTRACE_POKETEXT: /* write the word at location addr. */
|
|
case PTRACE_POKEDATA:
|
|
ret = 0;
|
|
if (access_process_vm(child, addr, &data, sizeof(data), 1) == sizeof(data))
|
|
break;
|
|
ret = -EIO;
|
|
break;
|
|
|
|
case PTRACE_POKEUSR: /* write the word at location addr in the USER area */
|
|
ret = -EIO;
|
|
if ((addr & 3) || addr < 0 ||
|
|
addr > sizeof(struct user) - 3)
|
|
break;
|
|
|
|
if (addr < FRAME_SIZE*sizeof(long)) {
|
|
ret = putreg(child, addr, data);
|
|
break;
|
|
}
|
|
/* We need to be very careful here. We implicitly
|
|
want to modify a portion of the task_struct, and we
|
|
have to be selective about what portions we allow someone
|
|
to modify. */
|
|
|
|
ret = -EIO;
|
|
if(addr >= (long) &dummy->u_debugreg[0] &&
|
|
addr <= (long) &dummy->u_debugreg[7]){
|
|
|
|
if(addr == (long) &dummy->u_debugreg[4]) break;
|
|
if(addr == (long) &dummy->u_debugreg[5]) break;
|
|
if(addr < (long) &dummy->u_debugreg[4] &&
|
|
((unsigned long) data) >= TASK_SIZE-3) break;
|
|
|
|
/* Sanity-check data. Take one half-byte at once with
|
|
* check = (val >> (16 + 4*i)) & 0xf. It contains the
|
|
* R/Wi and LENi bits; bits 0 and 1 are R/Wi, and bits
|
|
* 2 and 3 are LENi. Given a list of invalid values,
|
|
* we do mask |= 1 << invalid_value, so that
|
|
* (mask >> check) & 1 is a correct test for invalid
|
|
* values.
|
|
*
|
|
* R/Wi contains the type of the breakpoint /
|
|
* watchpoint, LENi contains the length of the watched
|
|
* data in the watchpoint case.
|
|
*
|
|
* The invalid values are:
|
|
* - LENi == 0x10 (undefined), so mask |= 0x0f00.
|
|
* - R/Wi == 0x10 (break on I/O reads or writes), so
|
|
* mask |= 0x4444.
|
|
* - R/Wi == 0x00 && LENi != 0x00, so we have mask |=
|
|
* 0x1110.
|
|
*
|
|
* Finally, mask = 0x0f00 | 0x4444 | 0x1110 == 0x5f54.
|
|
*
|
|
* See the Intel Manual "System Programming Guide",
|
|
* 15.2.4
|
|
*
|
|
* Note that LENi == 0x10 is defined on x86_64 in long
|
|
* mode (i.e. even for 32-bit userspace software, but
|
|
* 64-bit kernel), so the x86_64 mask value is 0x5454.
|
|
* See the AMD manual no. 24593 (AMD64 System
|
|
* Programming)*/
|
|
|
|
if(addr == (long) &dummy->u_debugreg[7]) {
|
|
data &= ~DR_CONTROL_RESERVED;
|
|
for(i=0; i<4; i++)
|
|
if ((0x5f54 >> ((data >> (16 + 4*i)) & 0xf)) & 1)
|
|
goto out_tsk;
|
|
}
|
|
|
|
addr -= (long) &dummy->u_debugreg;
|
|
addr = addr >> 2;
|
|
child->thread.debugreg[addr] = data;
|
|
ret = 0;
|
|
}
|
|
break;
|
|
|
|
case PTRACE_SYSEMU: /* continue and stop at next syscall, which will not be executed */
|
|
case PTRACE_SYSCALL: /* continue and stop at next (return from) syscall */
|
|
case PTRACE_CONT: /* restart after signal. */
|
|
ret = -EIO;
|
|
if (!valid_signal(data))
|
|
break;
|
|
if (request == PTRACE_SYSEMU) {
|
|
set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
} else if (request == PTRACE_SYSCALL) {
|
|
set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
|
|
} else {
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
}
|
|
child->exit_code = data;
|
|
/* make sure the single step bit is not set. */
|
|
clear_singlestep(child);
|
|
wake_up_process(child);
|
|
ret = 0;
|
|
break;
|
|
|
|
/*
|
|
* make the child exit. Best I can do is send it a sigkill.
|
|
* perhaps it should be put in the status that it wants to
|
|
* exit.
|
|
*/
|
|
case PTRACE_KILL:
|
|
ret = 0;
|
|
if (child->exit_state == EXIT_ZOMBIE) /* already dead */
|
|
break;
|
|
child->exit_code = SIGKILL;
|
|
/* make sure the single step bit is not set. */
|
|
clear_singlestep(child);
|
|
wake_up_process(child);
|
|
break;
|
|
|
|
case PTRACE_SYSEMU_SINGLESTEP: /* Same as SYSEMU, but singlestep if not syscall */
|
|
case PTRACE_SINGLESTEP: /* set the trap flag. */
|
|
ret = -EIO;
|
|
if (!valid_signal(data))
|
|
break;
|
|
|
|
if (request == PTRACE_SYSEMU_SINGLESTEP)
|
|
set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
|
|
else
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
|
|
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
set_singlestep(child);
|
|
child->exit_code = data;
|
|
/* give it a chance to run. */
|
|
wake_up_process(child);
|
|
ret = 0;
|
|
break;
|
|
|
|
case PTRACE_DETACH:
|
|
/* detach a process that was attached. */
|
|
ret = ptrace_detach(child, data);
|
|
break;
|
|
|
|
case PTRACE_GETREGS: { /* Get all gp regs from the child. */
|
|
if (!access_ok(VERIFY_WRITE, datap, FRAME_SIZE*sizeof(long))) {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
for ( i = 0; i < FRAME_SIZE*sizeof(long); i += sizeof(long) ) {
|
|
__put_user(getreg(child, i), datap);
|
|
datap++;
|
|
}
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
case PTRACE_SETREGS: { /* Set all gp regs in the child. */
|
|
unsigned long tmp;
|
|
if (!access_ok(VERIFY_READ, datap, FRAME_SIZE*sizeof(long))) {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
for ( i = 0; i < FRAME_SIZE*sizeof(long); i += sizeof(long) ) {
|
|
__get_user(tmp, datap);
|
|
putreg(child, i, tmp);
|
|
datap++;
|
|
}
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
case PTRACE_GETFPREGS: { /* Get the child FPU state. */
|
|
if (!access_ok(VERIFY_WRITE, datap,
|
|
sizeof(struct user_i387_struct))) {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
ret = 0;
|
|
if (!tsk_used_math(child))
|
|
init_fpu(child);
|
|
get_fpregs((struct user_i387_struct __user *)data, child);
|
|
break;
|
|
}
|
|
|
|
case PTRACE_SETFPREGS: { /* Set the child FPU state. */
|
|
if (!access_ok(VERIFY_READ, datap,
|
|
sizeof(struct user_i387_struct))) {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
set_stopped_child_used_math(child);
|
|
set_fpregs(child, (struct user_i387_struct __user *)data);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
case PTRACE_GETFPXREGS: { /* Get the child extended FPU state. */
|
|
if (!access_ok(VERIFY_WRITE, datap,
|
|
sizeof(struct user_fxsr_struct))) {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
if (!tsk_used_math(child))
|
|
init_fpu(child);
|
|
ret = get_fpxregs((struct user_fxsr_struct __user *)data, child);
|
|
break;
|
|
}
|
|
|
|
case PTRACE_SETFPXREGS: { /* Set the child extended FPU state. */
|
|
if (!access_ok(VERIFY_READ, datap,
|
|
sizeof(struct user_fxsr_struct))) {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
set_stopped_child_used_math(child);
|
|
ret = set_fpxregs(child, (struct user_fxsr_struct __user *)data);
|
|
break;
|
|
}
|
|
|
|
case PTRACE_GET_THREAD_AREA:
|
|
ret = ptrace_get_thread_area(child, addr,
|
|
(struct user_desc __user *) data);
|
|
break;
|
|
|
|
case PTRACE_SET_THREAD_AREA:
|
|
ret = ptrace_set_thread_area(child, addr,
|
|
(struct user_desc __user *) data);
|
|
break;
|
|
|
|
default:
|
|
ret = ptrace_request(child, request, addr, data);
|
|
break;
|
|
}
|
|
out_tsk:
|
|
return ret;
|
|
}
|
|
|
|
void send_sigtrap(struct task_struct *tsk, struct pt_regs *regs, int error_code)
|
|
{
|
|
struct siginfo info;
|
|
|
|
tsk->thread.trap_no = 1;
|
|
tsk->thread.error_code = error_code;
|
|
|
|
memset(&info, 0, sizeof(info));
|
|
info.si_signo = SIGTRAP;
|
|
info.si_code = TRAP_BRKPT;
|
|
|
|
/* User-mode eip? */
|
|
info.si_addr = user_mode_vm(regs) ? (void __user *) regs->eip : NULL;
|
|
|
|
/* Send us the fakey SIGTRAP */
|
|
force_sig_info(SIGTRAP, &info, tsk);
|
|
}
|
|
|
|
/* notification of system call entry/exit
|
|
* - triggered by current->work.syscall_trace
|
|
*/
|
|
__attribute__((regparm(3)))
|
|
int do_syscall_trace(struct pt_regs *regs, int entryexit)
|
|
{
|
|
int is_sysemu = test_thread_flag(TIF_SYSCALL_EMU);
|
|
/*
|
|
* With TIF_SYSCALL_EMU set we want to ignore TIF_SINGLESTEP for syscall
|
|
* interception
|
|
*/
|
|
int is_singlestep = !is_sysemu && test_thread_flag(TIF_SINGLESTEP);
|
|
int ret = 0;
|
|
|
|
/* do the secure computing check first */
|
|
if (!entryexit)
|
|
secure_computing(regs->orig_eax);
|
|
|
|
if (unlikely(current->audit_context)) {
|
|
if (entryexit)
|
|
audit_syscall_exit(current, AUDITSC_RESULT(regs->eax),
|
|
regs->eax);
|
|
/* Debug traps, when using PTRACE_SINGLESTEP, must be sent only
|
|
* on the syscall exit path. Normally, when TIF_SYSCALL_AUDIT is
|
|
* not used, entry.S will call us only on syscall exit, not
|
|
* entry; so when TIF_SYSCALL_AUDIT is used we must avoid
|
|
* calling send_sigtrap() on syscall entry.
|
|
*
|
|
* Note that when PTRACE_SYSEMU_SINGLESTEP is used,
|
|
* is_singlestep is false, despite his name, so we will still do
|
|
* the correct thing.
|
|
*/
|
|
else if (is_singlestep)
|
|
goto out;
|
|
}
|
|
|
|
if (!(current->ptrace & PT_PTRACED))
|
|
goto out;
|
|
|
|
/* If a process stops on the 1st tracepoint with SYSCALL_TRACE
|
|
* and then is resumed with SYSEMU_SINGLESTEP, it will come in
|
|
* here. We have to check this and return */
|
|
if (is_sysemu && entryexit)
|
|
return 0;
|
|
|
|
/* Fake a debug trap */
|
|
if (is_singlestep)
|
|
send_sigtrap(current, regs, 0);
|
|
|
|
if (!test_thread_flag(TIF_SYSCALL_TRACE) && !is_sysemu)
|
|
goto out;
|
|
|
|
/* the 0x80 provides a way for the tracing parent to distinguish
|
|
between a syscall stop and SIGTRAP delivery */
|
|
/* Note that the debugger could change the result of test_thread_flag!*/
|
|
ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80:0));
|
|
|
|
/*
|
|
* this isn't the same as continuing with a signal, but it will do
|
|
* for normal use. strace only continues with a signal if the
|
|
* stopping signal is not SIGTRAP. -brl
|
|
*/
|
|
if (current->exit_code) {
|
|
send_sig(current->exit_code, current, 1);
|
|
current->exit_code = 0;
|
|
}
|
|
ret = is_sysemu;
|
|
out:
|
|
if (unlikely(current->audit_context) && !entryexit)
|
|
audit_syscall_entry(current, AUDIT_ARCH_I386, regs->orig_eax,
|
|
regs->ebx, regs->ecx, regs->edx, regs->esi);
|
|
if (ret == 0)
|
|
return 0;
|
|
|
|
regs->orig_eax = -1; /* force skip of syscall restarting */
|
|
if (unlikely(current->audit_context))
|
|
audit_syscall_exit(current, AUDITSC_RESULT(regs->eax),
|
|
regs->eax);
|
|
return 1;
|
|
}
|