linux/drivers/misc/habanalabs/mmu.c
Omer Shpigelman 64a7e2955d habanalabs: split the host MMU properties
Host memory may be allocated with huge pages.
A different virtual range may be used for mapping in this case.
Add Huge PCI MMU (HPMMU) properties to support it.
This patch is a prerequisite for future ASICs support and has no effect on
Goya ASIC as currently a single virtual host range is used for all page
sizes.

Signed-off-by: Omer Shpigelman <oshpigelman@habana.ai>
Reviewed-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
2020-03-24 10:54:16 +02:00

1039 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "habanalabs.h"
#include "include/hw_ip/mmu/mmu_general.h"
#include <linux/genalloc.h>
#include <linux/slab.h>
static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr);
static struct pgt_info *get_pgt_info(struct hl_ctx *ctx, u64 hop_addr)
{
struct pgt_info *pgt_info = NULL;
hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node,
(unsigned long) hop_addr)
if (hop_addr == pgt_info->shadow_addr)
break;
return pgt_info;
}
static void _free_hop(struct hl_ctx *ctx, struct pgt_info *pgt_info)
{
struct hl_device *hdev = ctx->hdev;
gen_pool_free(hdev->mmu_pgt_pool, pgt_info->phys_addr,
hdev->asic_prop.mmu_hop_table_size);
hash_del(&pgt_info->node);
kfree((u64 *) (uintptr_t) pgt_info->shadow_addr);
kfree(pgt_info);
}
static void free_hop(struct hl_ctx *ctx, u64 hop_addr)
{
struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr);
_free_hop(ctx, pgt_info);
}
static u64 alloc_hop(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct pgt_info *pgt_info;
u64 phys_addr, shadow_addr;
pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
if (!pgt_info)
return ULLONG_MAX;
phys_addr = (u64) gen_pool_alloc(hdev->mmu_pgt_pool,
prop->mmu_hop_table_size);
if (!phys_addr) {
dev_err(hdev->dev, "failed to allocate page\n");
goto pool_add_err;
}
shadow_addr = (u64) (uintptr_t) kzalloc(prop->mmu_hop_table_size,
GFP_KERNEL);
if (!shadow_addr)
goto shadow_err;
pgt_info->phys_addr = phys_addr;
pgt_info->shadow_addr = shadow_addr;
pgt_info->ctx = ctx;
pgt_info->num_of_ptes = 0;
hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr);
return shadow_addr;
shadow_err:
gen_pool_free(hdev->mmu_pgt_pool, phys_addr, prop->mmu_hop_table_size);
pool_add_err:
kfree(pgt_info);
return ULLONG_MAX;
}
static inline u64 get_phys_hop0_addr(struct hl_ctx *ctx)
{
return ctx->hdev->asic_prop.mmu_pgt_addr +
(ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size);
}
static inline u64 get_hop0_addr(struct hl_ctx *ctx)
{
return (u64) (uintptr_t) ctx->hdev->mmu_shadow_hop0 +
(ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size);
}
static inline void flush(struct hl_ctx *ctx)
{
/* flush all writes from all cores to reach PCI */
mb();
ctx->hdev->asic_funcs->read_pte(ctx->hdev, get_phys_hop0_addr(ctx));
}
/* transform the value to physical address when writing to H/W */
static inline void write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
{
/*
* The value to write is actually the address of the next shadow hop +
* flags at the 12 LSBs.
* Hence in order to get the value to write to the physical PTE, we
* clear the 12 LSBs and translate the shadow hop to its associated
* physical hop, and add back the original 12 LSBs.
*/
u64 phys_val = get_phys_addr(ctx, val & HOP_PHYS_ADDR_MASK) |
(val & FLAGS_MASK);
ctx->hdev->asic_funcs->write_pte(ctx->hdev,
get_phys_addr(ctx, shadow_pte_addr),
phys_val);
*(u64 *) (uintptr_t) shadow_pte_addr = val;
}
/* do not transform the value to physical address when writing to H/W */
static inline void write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr,
u64 val)
{
ctx->hdev->asic_funcs->write_pte(ctx->hdev,
get_phys_addr(ctx, shadow_pte_addr),
val);
*(u64 *) (uintptr_t) shadow_pte_addr = val;
}
/* clear the last and present bits */
static inline void clear_pte(struct hl_ctx *ctx, u64 pte_addr)
{
/* no need to transform the value to physical address */
write_final_pte(ctx, pte_addr, 0);
}
static inline void get_pte(struct hl_ctx *ctx, u64 hop_addr)
{
get_pgt_info(ctx, hop_addr)->num_of_ptes++;
}
/*
* put_pte - decrement the num of ptes and free the hop if possible
*
* @ctx: pointer to the context structure
* @hop_addr: addr of the hop
*
* This function returns the number of ptes left on this hop. If the number is
* 0, it means the pte was freed.
*/
static inline int put_pte(struct hl_ctx *ctx, u64 hop_addr)
{
struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr);
int num_of_ptes_left;
pgt_info->num_of_ptes--;
/*
* Need to save the number of ptes left because free_hop might free
* the pgt_info
*/
num_of_ptes_left = pgt_info->num_of_ptes;
if (!num_of_ptes_left)
_free_hop(ctx, pgt_info);
return num_of_ptes_left;
}
static inline u64 get_hopN_pte_addr(struct hl_ctx *ctx, u64 hop_addr,
u64 virt_addr, u64 mask, u64 shift)
{
return hop_addr + ctx->hdev->asic_prop.mmu_pte_size *
((virt_addr & mask) >> shift);
}
static inline u64 get_hop0_pte_addr(struct hl_ctx *ctx,
struct hl_mmu_properties *mmu_prop,
u64 hop_addr, u64 vaddr)
{
return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop0_mask,
mmu_prop->hop0_shift);
}
static inline u64 get_hop1_pte_addr(struct hl_ctx *ctx,
struct hl_mmu_properties *mmu_prop,
u64 hop_addr, u64 vaddr)
{
return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop1_mask,
mmu_prop->hop1_shift);
}
static inline u64 get_hop2_pte_addr(struct hl_ctx *ctx,
struct hl_mmu_properties *mmu_prop,
u64 hop_addr, u64 vaddr)
{
return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop2_mask,
mmu_prop->hop2_shift);
}
static inline u64 get_hop3_pte_addr(struct hl_ctx *ctx,
struct hl_mmu_properties *mmu_prop,
u64 hop_addr, u64 vaddr)
{
return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop3_mask,
mmu_prop->hop3_shift);
}
static inline u64 get_hop4_pte_addr(struct hl_ctx *ctx,
struct hl_mmu_properties *mmu_prop,
u64 hop_addr, u64 vaddr)
{
return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop4_mask,
mmu_prop->hop4_shift);
}
static inline u64 get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
{
if (curr_pte & PAGE_PRESENT_MASK)
return curr_pte & HOP_PHYS_ADDR_MASK;
else
return ULLONG_MAX;
}
static inline u64 get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte,
bool *is_new_hop)
{
u64 hop_addr = get_next_hop_addr(ctx, curr_pte);
if (hop_addr == ULLONG_MAX) {
hop_addr = alloc_hop(ctx);
*is_new_hop = (hop_addr != ULLONG_MAX);
}
return hop_addr;
}
/* translates shadow address inside hop to a physical address */
static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr)
{
u64 page_mask = (ctx->hdev->asic_prop.mmu_hop_table_size - 1);
u64 shadow_hop_addr = shadow_addr & ~page_mask;
u64 pte_offset = shadow_addr & page_mask;
u64 phys_hop_addr;
if (shadow_hop_addr != get_hop0_addr(ctx))
phys_hop_addr = get_pgt_info(ctx, shadow_hop_addr)->phys_addr;
else
phys_hop_addr = get_phys_hop0_addr(ctx);
return phys_hop_addr + pte_offset;
}
static bool is_dram_va(struct hl_device *hdev, u64 virt_addr)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
prop->dmmu.start_addr,
prop->dmmu.end_addr);
}
static int dram_default_mapping_init(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
hop2_pte_addr, hop3_pte_addr, pte_val;
int rc, i, j, hop3_allocated = 0;
if ((!hdev->dram_supports_virtual_memory) ||
(!hdev->dram_default_page_mapping) ||
(ctx->asid == HL_KERNEL_ASID_ID))
return 0;
num_of_hop3 = prop->dram_size_for_default_page_mapping;
do_div(num_of_hop3, prop->dram_page_size);
do_div(num_of_hop3, PTE_ENTRIES_IN_HOP);
/* add hop1 and hop2 */
total_hops = num_of_hop3 + 2;
ctx->dram_default_hops = kzalloc(HL_PTE_SIZE * total_hops, GFP_KERNEL);
if (!ctx->dram_default_hops)
return -ENOMEM;
hop0_addr = get_hop0_addr(ctx);
hop1_addr = alloc_hop(ctx);
if (hop1_addr == ULLONG_MAX) {
dev_err(hdev->dev, "failed to alloc hop 1\n");
rc = -ENOMEM;
goto hop1_err;
}
ctx->dram_default_hops[total_hops - 1] = hop1_addr;
hop2_addr = alloc_hop(ctx);
if (hop2_addr == ULLONG_MAX) {
dev_err(hdev->dev, "failed to alloc hop 2\n");
rc = -ENOMEM;
goto hop2_err;
}
ctx->dram_default_hops[total_hops - 2] = hop2_addr;
for (i = 0 ; i < num_of_hop3 ; i++) {
ctx->dram_default_hops[i] = alloc_hop(ctx);
if (ctx->dram_default_hops[i] == ULLONG_MAX) {
dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i);
rc = -ENOMEM;
goto hop3_err;
}
hop3_allocated++;
}
/* need only pte 0 in hops 0 and 1 */
pte_val = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
write_pte(ctx, hop0_addr, pte_val);
pte_val = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
write_pte(ctx, hop1_addr, pte_val);
get_pte(ctx, hop1_addr);
hop2_pte_addr = hop2_addr;
for (i = 0 ; i < num_of_hop3 ; i++) {
pte_val = (ctx->dram_default_hops[i] & HOP_PHYS_ADDR_MASK) |
PAGE_PRESENT_MASK;
write_pte(ctx, hop2_pte_addr, pte_val);
get_pte(ctx, hop2_addr);
hop2_pte_addr += HL_PTE_SIZE;
}
pte_val = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) |
LAST_MASK | PAGE_PRESENT_MASK;
for (i = 0 ; i < num_of_hop3 ; i++) {
hop3_pte_addr = ctx->dram_default_hops[i];
for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) {
write_final_pte(ctx, hop3_pte_addr, pte_val);
get_pte(ctx, ctx->dram_default_hops[i]);
hop3_pte_addr += HL_PTE_SIZE;
}
}
flush(ctx);
return 0;
hop3_err:
for (i = 0 ; i < hop3_allocated ; i++)
free_hop(ctx, ctx->dram_default_hops[i]);
free_hop(ctx, hop2_addr);
hop2_err:
free_hop(ctx, hop1_addr);
hop1_err:
kfree(ctx->dram_default_hops);
return rc;
}
static void dram_default_mapping_fini(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
hop2_pte_addr, hop3_pte_addr;
int i, j;
if ((!hdev->dram_supports_virtual_memory) ||
(!hdev->dram_default_page_mapping) ||
(ctx->asid == HL_KERNEL_ASID_ID))
return;
num_of_hop3 = prop->dram_size_for_default_page_mapping;
do_div(num_of_hop3, prop->dram_page_size);
do_div(num_of_hop3, PTE_ENTRIES_IN_HOP);
hop0_addr = get_hop0_addr(ctx);
/* add hop1 and hop2 */
total_hops = num_of_hop3 + 2;
hop1_addr = ctx->dram_default_hops[total_hops - 1];
hop2_addr = ctx->dram_default_hops[total_hops - 2];
for (i = 0 ; i < num_of_hop3 ; i++) {
hop3_pte_addr = ctx->dram_default_hops[i];
for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) {
clear_pte(ctx, hop3_pte_addr);
put_pte(ctx, ctx->dram_default_hops[i]);
hop3_pte_addr += HL_PTE_SIZE;
}
}
hop2_pte_addr = hop2_addr;
hop2_pte_addr = hop2_addr;
for (i = 0 ; i < num_of_hop3 ; i++) {
clear_pte(ctx, hop2_pte_addr);
put_pte(ctx, hop2_addr);
hop2_pte_addr += HL_PTE_SIZE;
}
clear_pte(ctx, hop1_addr);
put_pte(ctx, hop1_addr);
clear_pte(ctx, hop0_addr);
kfree(ctx->dram_default_hops);
flush(ctx);
}
/**
* hl_mmu_init() - initialize the MMU module.
* @hdev: habanalabs device structure.
*
* This function does the following:
* - Create a pool of pages for pgt_infos.
* - Create a shadow table for pgt
*
* Return: 0 for success, non-zero for failure.
*/
int hl_mmu_init(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
int rc;
if (!hdev->mmu_enable)
return 0;
hdev->mmu_pgt_pool =
gen_pool_create(__ffs(prop->mmu_hop_table_size), -1);
if (!hdev->mmu_pgt_pool) {
dev_err(hdev->dev, "Failed to create page gen pool\n");
return -ENOMEM;
}
rc = gen_pool_add(hdev->mmu_pgt_pool, prop->mmu_pgt_addr +
prop->mmu_hop0_tables_total_size,
prop->mmu_pgt_size - prop->mmu_hop0_tables_total_size,
-1);
if (rc) {
dev_err(hdev->dev, "Failed to add memory to page gen pool\n");
goto err_pool_add;
}
hdev->mmu_shadow_hop0 = kvmalloc_array(prop->max_asid,
prop->mmu_hop_table_size,
GFP_KERNEL | __GFP_ZERO);
if (!hdev->mmu_shadow_hop0) {
rc = -ENOMEM;
goto err_pool_add;
}
/* MMU H/W init will be done in device hw_init() */
return 0;
err_pool_add:
gen_pool_destroy(hdev->mmu_pgt_pool);
return rc;
}
/**
* hl_mmu_fini() - release the MMU module.
* @hdev: habanalabs device structure.
*
* This function does the following:
* - Disable MMU in H/W.
* - Free the pgt_infos pool.
*
* All contexts should be freed before calling this function.
*/
void hl_mmu_fini(struct hl_device *hdev)
{
if (!hdev->mmu_enable)
return;
/* MMU H/W fini was already done in device hw_fini() */
kvfree(hdev->mmu_shadow_hop0);
gen_pool_destroy(hdev->mmu_pgt_pool);
}
/**
* hl_mmu_ctx_init() - initialize a context for using the MMU module.
* @ctx: pointer to the context structure to initialize.
*
* Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
* page tables hops related to this context.
* Return: 0 on success, non-zero otherwise.
*/
int hl_mmu_ctx_init(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
if (!hdev->mmu_enable)
return 0;
mutex_init(&ctx->mmu_lock);
hash_init(ctx->mmu_phys_hash);
hash_init(ctx->mmu_shadow_hash);
return dram_default_mapping_init(ctx);
}
/*
* hl_mmu_ctx_fini - disable a ctx from using the mmu module
*
* @ctx: pointer to the context structure
*
* This function does the following:
* - Free any pgts which were not freed yet
* - Free the mutex
* - Free DRAM default page mapping hops
*/
void hl_mmu_ctx_fini(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
struct pgt_info *pgt_info;
struct hlist_node *tmp;
int i;
if (!hdev->mmu_enable)
return;
dram_default_mapping_fini(ctx);
if (!hash_empty(ctx->mmu_shadow_hash))
dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n",
ctx->asid);
hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) {
dev_err_ratelimited(hdev->dev,
"pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n",
pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes);
_free_hop(ctx, pgt_info);
}
mutex_destroy(&ctx->mmu_lock);
}
static int _hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct hl_mmu_properties *mmu_prop;
u64 hop0_addr = 0, hop0_pte_addr = 0,
hop1_addr = 0, hop1_pte_addr = 0,
hop2_addr = 0, hop2_pte_addr = 0,
hop3_addr = 0, hop3_pte_addr = 0,
hop4_addr = 0, hop4_pte_addr = 0,
curr_pte;
bool is_huge, clear_hop3 = true;
/* shifts and masks are the same in PMMU and HPMMU, use one of them */
mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
hop0_addr = get_hop0_addr(ctx);
hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr);
curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr;
hop1_addr = get_next_hop_addr(ctx, curr_pte);
if (hop1_addr == ULLONG_MAX)
goto not_mapped;
hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr);
curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr;
hop2_addr = get_next_hop_addr(ctx, curr_pte);
if (hop2_addr == ULLONG_MAX)
goto not_mapped;
hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr);
curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr;
hop3_addr = get_next_hop_addr(ctx, curr_pte);
if (hop3_addr == ULLONG_MAX)
goto not_mapped;
hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr);
curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr;
is_huge = curr_pte & LAST_MASK;
if (is_dram_addr && !is_huge) {
dev_err(hdev->dev,
"DRAM unmapping should use huge pages only\n");
return -EFAULT;
}
if (!is_huge) {
hop4_addr = get_next_hop_addr(ctx, curr_pte);
if (hop4_addr == ULLONG_MAX)
goto not_mapped;
hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr,
virt_addr);
curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr;
clear_hop3 = false;
}
if (hdev->dram_default_page_mapping && is_dram_addr) {
u64 default_pte = (prop->mmu_dram_default_page_addr &
HOP_PHYS_ADDR_MASK) | LAST_MASK |
PAGE_PRESENT_MASK;
if (curr_pte == default_pte) {
dev_err(hdev->dev,
"DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n",
virt_addr);
goto not_mapped;
}
if (!(curr_pte & PAGE_PRESENT_MASK)) {
dev_err(hdev->dev,
"DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n",
virt_addr);
goto not_mapped;
}
write_final_pte(ctx, hop3_pte_addr, default_pte);
put_pte(ctx, hop3_addr);
} else {
if (!(curr_pte & PAGE_PRESENT_MASK))
goto not_mapped;
if (hop4_addr)
clear_pte(ctx, hop4_pte_addr);
else
clear_pte(ctx, hop3_pte_addr);
if (hop4_addr && !put_pte(ctx, hop4_addr))
clear_hop3 = true;
if (!clear_hop3)
goto mapped;
clear_pte(ctx, hop3_pte_addr);
if (put_pte(ctx, hop3_addr))
goto mapped;
clear_pte(ctx, hop2_pte_addr);
if (put_pte(ctx, hop2_addr))
goto mapped;
clear_pte(ctx, hop1_pte_addr);
if (put_pte(ctx, hop1_addr))
goto mapped;
clear_pte(ctx, hop0_pte_addr);
}
mapped:
return 0;
not_mapped:
dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
virt_addr);
return -EINVAL;
}
/*
* hl_mmu_unmap - unmaps a virtual addr
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to map from
* @page_size: size of the page to unmap
* @flush_pte: whether to do a PCI flush
*
* This function does the following:
* - Check that the virt addr is mapped
* - Unmap the virt addr and frees pgts if possible
* - Returns 0 on success, -EINVAL if the given addr is not mapped
*
* Because this function changes the page tables in the device and because it
* changes the MMU hash, it must be protected by a lock.
* However, because it maps only a single page, the lock should be implemented
* in a higher level in order to protect the entire mapping of the memory area
*
* For optimization reasons PCI flush may be requested once after unmapping of
* large area.
*/
int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
bool flush_pte)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct hl_mmu_properties *mmu_prop;
u64 real_virt_addr;
u32 real_page_size, npages;
int i, rc = 0;
bool is_dram_addr;
if (!hdev->mmu_enable)
return 0;
is_dram_addr = is_dram_va(hdev, virt_addr);
if (is_dram_addr)
mmu_prop = &prop->dmmu;
else if ((page_size % prop->pmmu_huge.page_size) == 0)
mmu_prop = &prop->pmmu_huge;
else
mmu_prop = &prop->pmmu;
/*
* The H/W handles mapping of specific page sizes. Hence if the page
* size is bigger, we break it to sub-pages and unmap them separately.
*/
if ((page_size % mmu_prop->page_size) == 0) {
real_page_size = mmu_prop->page_size;
} else {
dev_err(hdev->dev,
"page size of %u is not %uKB aligned, can't unmap\n",
page_size, mmu_prop->page_size >> 10);
return -EFAULT;
}
npages = page_size / real_page_size;
real_virt_addr = virt_addr;
for (i = 0 ; i < npages ; i++) {
rc = _hl_mmu_unmap(ctx, real_virt_addr, is_dram_addr);
if (rc)
break;
real_virt_addr += real_page_size;
}
if (flush_pte)
flush(ctx);
return rc;
}
static int _hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
u32 page_size, bool is_dram_addr)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct hl_mmu_properties *mmu_prop;
u64 hop0_addr = 0, hop0_pte_addr = 0,
hop1_addr = 0, hop1_pte_addr = 0,
hop2_addr = 0, hop2_pte_addr = 0,
hop3_addr = 0, hop3_pte_addr = 0,
hop4_addr = 0, hop4_pte_addr = 0,
curr_pte = 0;
bool hop1_new = false, hop2_new = false, hop3_new = false,
hop4_new = false, is_huge;
int rc = -ENOMEM;
/*
* This mapping function can map a page or a huge page. For huge page
* there are only 3 hops rather than 4. Currently the DRAM allocation
* uses huge pages only but user memory could have been allocated with
* one of the two page sizes. Since this is a common code for all the
* three cases, we need this hugs page check.
*/
if (is_dram_addr) {
mmu_prop = &prop->dmmu;
is_huge = true;
} else if (page_size == prop->pmmu_huge.page_size) {
mmu_prop = &prop->pmmu_huge;
is_huge = true;
} else {
mmu_prop = &prop->pmmu;
is_huge = false;
}
hop0_addr = get_hop0_addr(ctx);
hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr);
curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr;
hop1_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop1_new);
if (hop1_addr == ULLONG_MAX)
goto err;
hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr);
curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr;
hop2_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop2_new);
if (hop2_addr == ULLONG_MAX)
goto err;
hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr);
curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr;
hop3_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop3_new);
if (hop3_addr == ULLONG_MAX)
goto err;
hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr);
curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr;
if (!is_huge) {
hop4_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop4_new);
if (hop4_addr == ULLONG_MAX)
goto err;
hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr,
virt_addr);
curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr;
}
if (hdev->dram_default_page_mapping && is_dram_addr) {
u64 default_pte = (prop->mmu_dram_default_page_addr &
HOP_PHYS_ADDR_MASK) | LAST_MASK |
PAGE_PRESENT_MASK;
if (curr_pte != default_pte) {
dev_err(hdev->dev,
"DRAM: mapping already exists for virt_addr 0x%llx\n",
virt_addr);
rc = -EINVAL;
goto err;
}
if (hop1_new || hop2_new || hop3_new || hop4_new) {
dev_err(hdev->dev,
"DRAM mapping should not allocate more hops\n");
rc = -EFAULT;
goto err;
}
} else if (curr_pte & PAGE_PRESENT_MASK) {
dev_err(hdev->dev,
"mapping already exists for virt_addr 0x%llx\n",
virt_addr);
dev_dbg(hdev->dev, "hop0 pte: 0x%llx (0x%llx)\n",
*(u64 *) (uintptr_t) hop0_pte_addr, hop0_pte_addr);
dev_dbg(hdev->dev, "hop1 pte: 0x%llx (0x%llx)\n",
*(u64 *) (uintptr_t) hop1_pte_addr, hop1_pte_addr);
dev_dbg(hdev->dev, "hop2 pte: 0x%llx (0x%llx)\n",
*(u64 *) (uintptr_t) hop2_pte_addr, hop2_pte_addr);
dev_dbg(hdev->dev, "hop3 pte: 0x%llx (0x%llx)\n",
*(u64 *) (uintptr_t) hop3_pte_addr, hop3_pte_addr);
if (!is_huge)
dev_dbg(hdev->dev, "hop4 pte: 0x%llx (0x%llx)\n",
*(u64 *) (uintptr_t) hop4_pte_addr,
hop4_pte_addr);
rc = -EINVAL;
goto err;
}
curr_pte = (phys_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK
| PAGE_PRESENT_MASK;
if (is_huge)
write_final_pte(ctx, hop3_pte_addr, curr_pte);
else
write_final_pte(ctx, hop4_pte_addr, curr_pte);
if (hop1_new) {
curr_pte =
(hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
write_pte(ctx, hop0_pte_addr, curr_pte);
}
if (hop2_new) {
curr_pte =
(hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
write_pte(ctx, hop1_pte_addr, curr_pte);
get_pte(ctx, hop1_addr);
}
if (hop3_new) {
curr_pte =
(hop3_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
write_pte(ctx, hop2_pte_addr, curr_pte);
get_pte(ctx, hop2_addr);
}
if (!is_huge) {
if (hop4_new) {
curr_pte = (hop4_addr & HOP_PHYS_ADDR_MASK) |
PAGE_PRESENT_MASK;
write_pte(ctx, hop3_pte_addr, curr_pte);
get_pte(ctx, hop3_addr);
}
get_pte(ctx, hop4_addr);
} else {
get_pte(ctx, hop3_addr);
}
return 0;
err:
if (hop4_new)
free_hop(ctx, hop4_addr);
if (hop3_new)
free_hop(ctx, hop3_addr);
if (hop2_new)
free_hop(ctx, hop2_addr);
if (hop1_new)
free_hop(ctx, hop1_addr);
return rc;
}
/*
* hl_mmu_map - maps a virtual addr to physical addr
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to map from
* @phys_addr: phys addr to map to
* @page_size: physical page size
* @flush_pte: whether to do a PCI flush
*
* This function does the following:
* - Check that the virt addr is not mapped
* - Allocate pgts as necessary in order to map the virt addr to the phys
* - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
*
* Because this function changes the page tables in the device and because it
* changes the MMU hash, it must be protected by a lock.
* However, because it maps only a single page, the lock should be implemented
* in a higher level in order to protect the entire mapping of the memory area
*
* For optimization reasons PCI flush may be requested once after mapping of
* large area.
*/
int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
bool flush_pte)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct hl_mmu_properties *mmu_prop;
u64 real_virt_addr, real_phys_addr;
u32 real_page_size, npages;
int i, rc, mapped_cnt = 0;
bool is_dram_addr;
if (!hdev->mmu_enable)
return 0;
is_dram_addr = is_dram_va(hdev, virt_addr);
if (is_dram_addr)
mmu_prop = &prop->dmmu;
else if ((page_size % prop->pmmu_huge.page_size) == 0)
mmu_prop = &prop->pmmu_huge;
else
mmu_prop = &prop->pmmu;
/*
* The H/W handles mapping of specific page sizes. Hence if the page
* size is bigger, we break it to sub-pages and map them separately.
*/
if ((page_size % mmu_prop->page_size) == 0) {
real_page_size = mmu_prop->page_size;
} else {
dev_err(hdev->dev,
"page size of %u is not %uKB aligned, can't unmap\n",
page_size, mmu_prop->page_size >> 10);
return -EFAULT;
}
WARN_ONCE((phys_addr & (real_page_size - 1)),
"Mapping 0x%llx with page size of 0x%x is erroneous! Address must be divisible by page size",
phys_addr, real_page_size);
npages = page_size / real_page_size;
real_virt_addr = virt_addr;
real_phys_addr = phys_addr;
for (i = 0 ; i < npages ; i++) {
rc = _hl_mmu_map(ctx, real_virt_addr, real_phys_addr,
real_page_size, is_dram_addr);
if (rc)
goto err;
real_virt_addr += real_page_size;
real_phys_addr += real_page_size;
mapped_cnt++;
}
if (flush_pte)
flush(ctx);
return 0;
err:
real_virt_addr = virt_addr;
for (i = 0 ; i < mapped_cnt ; i++) {
if (_hl_mmu_unmap(ctx, real_virt_addr, is_dram_addr))
dev_warn_ratelimited(hdev->dev,
"failed to unmap va: 0x%llx\n", real_virt_addr);
real_virt_addr += real_page_size;
}
flush(ctx);
return rc;
}
/*
* hl_mmu_swap_out - marks all mapping of the given ctx as swapped out
*
* @ctx: pointer to the context structure
*
*/
void hl_mmu_swap_out(struct hl_ctx *ctx)
{
}
/*
* hl_mmu_swap_in - marks all mapping of the given ctx as swapped in
*
* @ctx: pointer to the context structure
*
*/
void hl_mmu_swap_in(struct hl_ctx *ctx)
{
}