mirror of
https://github.com/torvalds/linux.git
synced 2024-11-11 06:31:49 +00:00
8b39d20ece
519fabc7aa
("psi: remove 500ms min window size limitation for triggers") breaks unprivileged psi polling on cgroups. Historically, we had a privilege check for polling in the open() of a pressure file in /proc, but were erroneously missing it for the open() of cgroup pressure files. When unprivileged polling was introduced ind82caa2735
("sched/psi: Allow unprivileged polling of N*2s period"), it needed to filter privileges depending on the exact polling parameters, and as such moved the CAP_SYS_RESOURCE check from the proc open() callback to psi_trigger_create(). Both the proc files as well as cgroup files go through this during write(). This implicitly added the missing check for privileges required for HT polling for cgroups. When519fabc7aa
("psi: remove 500ms min window size limitation for triggers") followed right after to remove further restrictions on the RT polling window, it incorrectly assumed the cgroup privilege check was still missing and added it to the cgroup open(), mirroring what we used to do for proc files in the past. As a result, unprivileged poll requests that would be supported now get rejected when opening the cgroup pressure file for writing. Remove the cgroup open() check. psi_trigger_create() handles it. Fixes:519fabc7aa
("psi: remove 500ms min window size limitation for triggers") Reported-by: Luca Boccassi <bluca@debian.org> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Luca Boccassi <bluca@debian.org> Acked-by: Suren Baghdasaryan <surenb@google.com> Cc: stable@vger.kernel.org # 6.5+ Link: https://lore.kernel.org/r/20231026164114.2488682-1-hannes@cmpxchg.org
7094 lines
184 KiB
C
7094 lines
184 KiB
C
/*
|
|
* Generic process-grouping system.
|
|
*
|
|
* Based originally on the cpuset system, extracted by Paul Menage
|
|
* Copyright (C) 2006 Google, Inc
|
|
*
|
|
* Notifications support
|
|
* Copyright (C) 2009 Nokia Corporation
|
|
* Author: Kirill A. Shutemov
|
|
*
|
|
* Copyright notices from the original cpuset code:
|
|
* --------------------------------------------------
|
|
* Copyright (C) 2003 BULL SA.
|
|
* Copyright (C) 2004-2006 Silicon Graphics, Inc.
|
|
*
|
|
* Portions derived from Patrick Mochel's sysfs code.
|
|
* sysfs is Copyright (c) 2001-3 Patrick Mochel
|
|
*
|
|
* 2003-10-10 Written by Simon Derr.
|
|
* 2003-10-22 Updates by Stephen Hemminger.
|
|
* 2004 May-July Rework by Paul Jackson.
|
|
* ---------------------------------------------------
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file COPYING in the main directory of the Linux
|
|
* distribution for more details.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include "cgroup-internal.h"
|
|
|
|
#include <linux/bpf-cgroup.h>
|
|
#include <linux/cred.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/magic.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/percpu-rwsem.h>
|
|
#include <linux/string.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/proc_ns.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fs_parser.h>
|
|
#include <linux/sched/cputime.h>
|
|
#include <linux/sched/deadline.h>
|
|
#include <linux/psi.h>
|
|
#include <net/sock.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/cgroup.h>
|
|
|
|
#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
|
|
MAX_CFTYPE_NAME + 2)
|
|
/* let's not notify more than 100 times per second */
|
|
#define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
|
|
|
|
/*
|
|
* To avoid confusing the compiler (and generating warnings) with code
|
|
* that attempts to access what would be a 0-element array (i.e. sized
|
|
* to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
|
|
* constant expression can be added.
|
|
*/
|
|
#define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0)
|
|
|
|
/*
|
|
* cgroup_mutex is the master lock. Any modification to cgroup or its
|
|
* hierarchy must be performed while holding it.
|
|
*
|
|
* css_set_lock protects task->cgroups pointer, the list of css_set
|
|
* objects, and the chain of tasks off each css_set.
|
|
*
|
|
* These locks are exported if CONFIG_PROVE_RCU so that accessors in
|
|
* cgroup.h can use them for lockdep annotations.
|
|
*/
|
|
DEFINE_MUTEX(cgroup_mutex);
|
|
DEFINE_SPINLOCK(css_set_lock);
|
|
|
|
#ifdef CONFIG_PROVE_RCU
|
|
EXPORT_SYMBOL_GPL(cgroup_mutex);
|
|
EXPORT_SYMBOL_GPL(css_set_lock);
|
|
#endif
|
|
|
|
DEFINE_SPINLOCK(trace_cgroup_path_lock);
|
|
char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
|
|
static bool cgroup_debug __read_mostly;
|
|
|
|
/*
|
|
* Protects cgroup_idr and css_idr so that IDs can be released without
|
|
* grabbing cgroup_mutex.
|
|
*/
|
|
static DEFINE_SPINLOCK(cgroup_idr_lock);
|
|
|
|
/*
|
|
* Protects cgroup_file->kn for !self csses. It synchronizes notifications
|
|
* against file removal/re-creation across css hiding.
|
|
*/
|
|
static DEFINE_SPINLOCK(cgroup_file_kn_lock);
|
|
|
|
DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
|
|
|
|
#define cgroup_assert_mutex_or_rcu_locked() \
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
|
|
!lockdep_is_held(&cgroup_mutex), \
|
|
"cgroup_mutex or RCU read lock required");
|
|
|
|
/*
|
|
* cgroup destruction makes heavy use of work items and there can be a lot
|
|
* of concurrent destructions. Use a separate workqueue so that cgroup
|
|
* destruction work items don't end up filling up max_active of system_wq
|
|
* which may lead to deadlock.
|
|
*/
|
|
static struct workqueue_struct *cgroup_destroy_wq;
|
|
|
|
/* generate an array of cgroup subsystem pointers */
|
|
#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
|
|
struct cgroup_subsys *cgroup_subsys[] = {
|
|
#include <linux/cgroup_subsys.h>
|
|
};
|
|
#undef SUBSYS
|
|
|
|
/* array of cgroup subsystem names */
|
|
#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
|
|
static const char *cgroup_subsys_name[] = {
|
|
#include <linux/cgroup_subsys.h>
|
|
};
|
|
#undef SUBSYS
|
|
|
|
/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
|
|
#define SUBSYS(_x) \
|
|
DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
|
|
DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
|
|
EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
|
|
EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
|
|
#include <linux/cgroup_subsys.h>
|
|
#undef SUBSYS
|
|
|
|
#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
|
|
static struct static_key_true *cgroup_subsys_enabled_key[] = {
|
|
#include <linux/cgroup_subsys.h>
|
|
};
|
|
#undef SUBSYS
|
|
|
|
#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
|
|
static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
|
|
#include <linux/cgroup_subsys.h>
|
|
};
|
|
#undef SUBSYS
|
|
|
|
static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
|
|
|
|
/* the default hierarchy */
|
|
struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
|
|
EXPORT_SYMBOL_GPL(cgrp_dfl_root);
|
|
|
|
/*
|
|
* The default hierarchy always exists but is hidden until mounted for the
|
|
* first time. This is for backward compatibility.
|
|
*/
|
|
static bool cgrp_dfl_visible;
|
|
|
|
/* some controllers are not supported in the default hierarchy */
|
|
static u16 cgrp_dfl_inhibit_ss_mask;
|
|
|
|
/* some controllers are implicitly enabled on the default hierarchy */
|
|
static u16 cgrp_dfl_implicit_ss_mask;
|
|
|
|
/* some controllers can be threaded on the default hierarchy */
|
|
static u16 cgrp_dfl_threaded_ss_mask;
|
|
|
|
/* The list of hierarchy roots */
|
|
LIST_HEAD(cgroup_roots);
|
|
static int cgroup_root_count;
|
|
|
|
/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
|
|
static DEFINE_IDR(cgroup_hierarchy_idr);
|
|
|
|
/*
|
|
* Assign a monotonically increasing serial number to csses. It guarantees
|
|
* cgroups with bigger numbers are newer than those with smaller numbers.
|
|
* Also, as csses are always appended to the parent's ->children list, it
|
|
* guarantees that sibling csses are always sorted in the ascending serial
|
|
* number order on the list. Protected by cgroup_mutex.
|
|
*/
|
|
static u64 css_serial_nr_next = 1;
|
|
|
|
/*
|
|
* These bitmasks identify subsystems with specific features to avoid
|
|
* having to do iterative checks repeatedly.
|
|
*/
|
|
static u16 have_fork_callback __read_mostly;
|
|
static u16 have_exit_callback __read_mostly;
|
|
static u16 have_release_callback __read_mostly;
|
|
static u16 have_canfork_callback __read_mostly;
|
|
|
|
static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
|
|
|
|
/* cgroup namespace for init task */
|
|
struct cgroup_namespace init_cgroup_ns = {
|
|
.ns.count = REFCOUNT_INIT(2),
|
|
.user_ns = &init_user_ns,
|
|
.ns.ops = &cgroupns_operations,
|
|
.ns.inum = PROC_CGROUP_INIT_INO,
|
|
.root_cset = &init_css_set,
|
|
};
|
|
|
|
static struct file_system_type cgroup2_fs_type;
|
|
static struct cftype cgroup_base_files[];
|
|
static struct cftype cgroup_psi_files[];
|
|
|
|
/* cgroup optional features */
|
|
enum cgroup_opt_features {
|
|
#ifdef CONFIG_PSI
|
|
OPT_FEATURE_PRESSURE,
|
|
#endif
|
|
OPT_FEATURE_COUNT
|
|
};
|
|
|
|
static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
|
|
#ifdef CONFIG_PSI
|
|
"pressure",
|
|
#endif
|
|
};
|
|
|
|
static u16 cgroup_feature_disable_mask __read_mostly;
|
|
|
|
static int cgroup_apply_control(struct cgroup *cgrp);
|
|
static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
|
|
static void css_task_iter_skip(struct css_task_iter *it,
|
|
struct task_struct *task);
|
|
static int cgroup_destroy_locked(struct cgroup *cgrp);
|
|
static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
|
|
struct cgroup_subsys *ss);
|
|
static void css_release(struct percpu_ref *ref);
|
|
static void kill_css(struct cgroup_subsys_state *css);
|
|
static int cgroup_addrm_files(struct cgroup_subsys_state *css,
|
|
struct cgroup *cgrp, struct cftype cfts[],
|
|
bool is_add);
|
|
|
|
#ifdef CONFIG_DEBUG_CGROUP_REF
|
|
#define CGROUP_REF_FN_ATTRS noinline
|
|
#define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn);
|
|
#include <linux/cgroup_refcnt.h>
|
|
#endif
|
|
|
|
/**
|
|
* cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
|
|
* @ssid: subsys ID of interest
|
|
*
|
|
* cgroup_subsys_enabled() can only be used with literal subsys names which
|
|
* is fine for individual subsystems but unsuitable for cgroup core. This
|
|
* is slower static_key_enabled() based test indexed by @ssid.
|
|
*/
|
|
bool cgroup_ssid_enabled(int ssid)
|
|
{
|
|
if (!CGROUP_HAS_SUBSYS_CONFIG)
|
|
return false;
|
|
|
|
return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
|
|
}
|
|
|
|
/**
|
|
* cgroup_on_dfl - test whether a cgroup is on the default hierarchy
|
|
* @cgrp: the cgroup of interest
|
|
*
|
|
* The default hierarchy is the v2 interface of cgroup and this function
|
|
* can be used to test whether a cgroup is on the default hierarchy for
|
|
* cases where a subsystem should behave differently depending on the
|
|
* interface version.
|
|
*
|
|
* List of changed behaviors:
|
|
*
|
|
* - Mount options "noprefix", "xattr", "clone_children", "release_agent"
|
|
* and "name" are disallowed.
|
|
*
|
|
* - When mounting an existing superblock, mount options should match.
|
|
*
|
|
* - rename(2) is disallowed.
|
|
*
|
|
* - "tasks" is removed. Everything should be at process granularity. Use
|
|
* "cgroup.procs" instead.
|
|
*
|
|
* - "cgroup.procs" is not sorted. pids will be unique unless they got
|
|
* recycled in-between reads.
|
|
*
|
|
* - "release_agent" and "notify_on_release" are removed. Replacement
|
|
* notification mechanism will be implemented.
|
|
*
|
|
* - "cgroup.clone_children" is removed.
|
|
*
|
|
* - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
|
|
* and its descendants contain no task; otherwise, 1. The file also
|
|
* generates kernfs notification which can be monitored through poll and
|
|
* [di]notify when the value of the file changes.
|
|
*
|
|
* - cpuset: tasks will be kept in empty cpusets when hotplug happens and
|
|
* take masks of ancestors with non-empty cpus/mems, instead of being
|
|
* moved to an ancestor.
|
|
*
|
|
* - cpuset: a task can be moved into an empty cpuset, and again it takes
|
|
* masks of ancestors.
|
|
*
|
|
* - blkcg: blk-throttle becomes properly hierarchical.
|
|
*/
|
|
bool cgroup_on_dfl(const struct cgroup *cgrp)
|
|
{
|
|
return cgrp->root == &cgrp_dfl_root;
|
|
}
|
|
|
|
/* IDR wrappers which synchronize using cgroup_idr_lock */
|
|
static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
|
|
gfp_t gfp_mask)
|
|
{
|
|
int ret;
|
|
|
|
idr_preload(gfp_mask);
|
|
spin_lock_bh(&cgroup_idr_lock);
|
|
ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
|
|
spin_unlock_bh(&cgroup_idr_lock);
|
|
idr_preload_end();
|
|
return ret;
|
|
}
|
|
|
|
static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
|
|
{
|
|
void *ret;
|
|
|
|
spin_lock_bh(&cgroup_idr_lock);
|
|
ret = idr_replace(idr, ptr, id);
|
|
spin_unlock_bh(&cgroup_idr_lock);
|
|
return ret;
|
|
}
|
|
|
|
static void cgroup_idr_remove(struct idr *idr, int id)
|
|
{
|
|
spin_lock_bh(&cgroup_idr_lock);
|
|
idr_remove(idr, id);
|
|
spin_unlock_bh(&cgroup_idr_lock);
|
|
}
|
|
|
|
static bool cgroup_has_tasks(struct cgroup *cgrp)
|
|
{
|
|
return cgrp->nr_populated_csets;
|
|
}
|
|
|
|
static bool cgroup_is_threaded(struct cgroup *cgrp)
|
|
{
|
|
return cgrp->dom_cgrp != cgrp;
|
|
}
|
|
|
|
/* can @cgrp host both domain and threaded children? */
|
|
static bool cgroup_is_mixable(struct cgroup *cgrp)
|
|
{
|
|
/*
|
|
* Root isn't under domain level resource control exempting it from
|
|
* the no-internal-process constraint, so it can serve as a thread
|
|
* root and a parent of resource domains at the same time.
|
|
*/
|
|
return !cgroup_parent(cgrp);
|
|
}
|
|
|
|
/* can @cgrp become a thread root? Should always be true for a thread root */
|
|
static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
|
|
{
|
|
/* mixables don't care */
|
|
if (cgroup_is_mixable(cgrp))
|
|
return true;
|
|
|
|
/* domain roots can't be nested under threaded */
|
|
if (cgroup_is_threaded(cgrp))
|
|
return false;
|
|
|
|
/* can only have either domain or threaded children */
|
|
if (cgrp->nr_populated_domain_children)
|
|
return false;
|
|
|
|
/* and no domain controllers can be enabled */
|
|
if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* is @cgrp root of a threaded subtree? */
|
|
static bool cgroup_is_thread_root(struct cgroup *cgrp)
|
|
{
|
|
/* thread root should be a domain */
|
|
if (cgroup_is_threaded(cgrp))
|
|
return false;
|
|
|
|
/* a domain w/ threaded children is a thread root */
|
|
if (cgrp->nr_threaded_children)
|
|
return true;
|
|
|
|
/*
|
|
* A domain which has tasks and explicit threaded controllers
|
|
* enabled is a thread root.
|
|
*/
|
|
if (cgroup_has_tasks(cgrp) &&
|
|
(cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* a domain which isn't connected to the root w/o brekage can't be used */
|
|
static bool cgroup_is_valid_domain(struct cgroup *cgrp)
|
|
{
|
|
/* the cgroup itself can be a thread root */
|
|
if (cgroup_is_threaded(cgrp))
|
|
return false;
|
|
|
|
/* but the ancestors can't be unless mixable */
|
|
while ((cgrp = cgroup_parent(cgrp))) {
|
|
if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
|
|
return false;
|
|
if (cgroup_is_threaded(cgrp))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* subsystems visibly enabled on a cgroup */
|
|
static u16 cgroup_control(struct cgroup *cgrp)
|
|
{
|
|
struct cgroup *parent = cgroup_parent(cgrp);
|
|
u16 root_ss_mask = cgrp->root->subsys_mask;
|
|
|
|
if (parent) {
|
|
u16 ss_mask = parent->subtree_control;
|
|
|
|
/* threaded cgroups can only have threaded controllers */
|
|
if (cgroup_is_threaded(cgrp))
|
|
ss_mask &= cgrp_dfl_threaded_ss_mask;
|
|
return ss_mask;
|
|
}
|
|
|
|
if (cgroup_on_dfl(cgrp))
|
|
root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
|
|
cgrp_dfl_implicit_ss_mask);
|
|
return root_ss_mask;
|
|
}
|
|
|
|
/* subsystems enabled on a cgroup */
|
|
static u16 cgroup_ss_mask(struct cgroup *cgrp)
|
|
{
|
|
struct cgroup *parent = cgroup_parent(cgrp);
|
|
|
|
if (parent) {
|
|
u16 ss_mask = parent->subtree_ss_mask;
|
|
|
|
/* threaded cgroups can only have threaded controllers */
|
|
if (cgroup_is_threaded(cgrp))
|
|
ss_mask &= cgrp_dfl_threaded_ss_mask;
|
|
return ss_mask;
|
|
}
|
|
|
|
return cgrp->root->subsys_mask;
|
|
}
|
|
|
|
/**
|
|
* cgroup_css - obtain a cgroup's css for the specified subsystem
|
|
* @cgrp: the cgroup of interest
|
|
* @ss: the subsystem of interest (%NULL returns @cgrp->self)
|
|
*
|
|
* Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
|
|
* function must be called either under cgroup_mutex or rcu_read_lock() and
|
|
* the caller is responsible for pinning the returned css if it wants to
|
|
* keep accessing it outside the said locks. This function may return
|
|
* %NULL if @cgrp doesn't have @subsys_id enabled.
|
|
*/
|
|
static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
|
|
struct cgroup_subsys *ss)
|
|
{
|
|
if (CGROUP_HAS_SUBSYS_CONFIG && ss)
|
|
return rcu_dereference_check(cgrp->subsys[ss->id],
|
|
lockdep_is_held(&cgroup_mutex));
|
|
else
|
|
return &cgrp->self;
|
|
}
|
|
|
|
/**
|
|
* cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
|
|
* @cgrp: the cgroup of interest
|
|
* @ss: the subsystem of interest (%NULL returns @cgrp->self)
|
|
*
|
|
* Similar to cgroup_css() but returns the effective css, which is defined
|
|
* as the matching css of the nearest ancestor including self which has @ss
|
|
* enabled. If @ss is associated with the hierarchy @cgrp is on, this
|
|
* function is guaranteed to return non-NULL css.
|
|
*/
|
|
static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
|
|
struct cgroup_subsys *ss)
|
|
{
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
if (!ss)
|
|
return &cgrp->self;
|
|
|
|
/*
|
|
* This function is used while updating css associations and thus
|
|
* can't test the csses directly. Test ss_mask.
|
|
*/
|
|
while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
|
|
cgrp = cgroup_parent(cgrp);
|
|
if (!cgrp)
|
|
return NULL;
|
|
}
|
|
|
|
return cgroup_css(cgrp, ss);
|
|
}
|
|
|
|
/**
|
|
* cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
|
|
* @cgrp: the cgroup of interest
|
|
* @ss: the subsystem of interest
|
|
*
|
|
* Find and get the effective css of @cgrp for @ss. The effective css is
|
|
* defined as the matching css of the nearest ancestor including self which
|
|
* has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
|
|
* the root css is returned, so this function always returns a valid css.
|
|
*
|
|
* The returned css is not guaranteed to be online, and therefore it is the
|
|
* callers responsibility to try get a reference for it.
|
|
*/
|
|
struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
|
|
struct cgroup_subsys *ss)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
|
|
if (!CGROUP_HAS_SUBSYS_CONFIG)
|
|
return NULL;
|
|
|
|
do {
|
|
css = cgroup_css(cgrp, ss);
|
|
|
|
if (css)
|
|
return css;
|
|
cgrp = cgroup_parent(cgrp);
|
|
} while (cgrp);
|
|
|
|
return init_css_set.subsys[ss->id];
|
|
}
|
|
|
|
/**
|
|
* cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
|
|
* @cgrp: the cgroup of interest
|
|
* @ss: the subsystem of interest
|
|
*
|
|
* Find and get the effective css of @cgrp for @ss. The effective css is
|
|
* defined as the matching css of the nearest ancestor including self which
|
|
* has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
|
|
* the root css is returned, so this function always returns a valid css.
|
|
* The returned css must be put using css_put().
|
|
*/
|
|
struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
|
|
struct cgroup_subsys *ss)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
|
|
if (!CGROUP_HAS_SUBSYS_CONFIG)
|
|
return NULL;
|
|
|
|
rcu_read_lock();
|
|
|
|
do {
|
|
css = cgroup_css(cgrp, ss);
|
|
|
|
if (css && css_tryget_online(css))
|
|
goto out_unlock;
|
|
cgrp = cgroup_parent(cgrp);
|
|
} while (cgrp);
|
|
|
|
css = init_css_set.subsys[ss->id];
|
|
css_get(css);
|
|
out_unlock:
|
|
rcu_read_unlock();
|
|
return css;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cgroup_get_e_css);
|
|
|
|
static void cgroup_get_live(struct cgroup *cgrp)
|
|
{
|
|
WARN_ON_ONCE(cgroup_is_dead(cgrp));
|
|
cgroup_get(cgrp);
|
|
}
|
|
|
|
/**
|
|
* __cgroup_task_count - count the number of tasks in a cgroup. The caller
|
|
* is responsible for taking the css_set_lock.
|
|
* @cgrp: the cgroup in question
|
|
*/
|
|
int __cgroup_task_count(const struct cgroup *cgrp)
|
|
{
|
|
int count = 0;
|
|
struct cgrp_cset_link *link;
|
|
|
|
lockdep_assert_held(&css_set_lock);
|
|
|
|
list_for_each_entry(link, &cgrp->cset_links, cset_link)
|
|
count += link->cset->nr_tasks;
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* cgroup_task_count - count the number of tasks in a cgroup.
|
|
* @cgrp: the cgroup in question
|
|
*/
|
|
int cgroup_task_count(const struct cgroup *cgrp)
|
|
{
|
|
int count;
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
count = __cgroup_task_count(cgrp);
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
return count;
|
|
}
|
|
|
|
struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
|
|
{
|
|
struct cgroup *cgrp = of->kn->parent->priv;
|
|
struct cftype *cft = of_cft(of);
|
|
|
|
/*
|
|
* This is open and unprotected implementation of cgroup_css().
|
|
* seq_css() is only called from a kernfs file operation which has
|
|
* an active reference on the file. Because all the subsystem
|
|
* files are drained before a css is disassociated with a cgroup,
|
|
* the matching css from the cgroup's subsys table is guaranteed to
|
|
* be and stay valid until the enclosing operation is complete.
|
|
*/
|
|
if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
|
|
return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
|
|
else
|
|
return &cgrp->self;
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_css);
|
|
|
|
/**
|
|
* for_each_css - iterate all css's of a cgroup
|
|
* @css: the iteration cursor
|
|
* @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
|
|
* @cgrp: the target cgroup to iterate css's of
|
|
*
|
|
* Should be called under cgroup_mutex.
|
|
*/
|
|
#define for_each_css(css, ssid, cgrp) \
|
|
for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
|
|
if (!((css) = rcu_dereference_check( \
|
|
(cgrp)->subsys[(ssid)], \
|
|
lockdep_is_held(&cgroup_mutex)))) { } \
|
|
else
|
|
|
|
/**
|
|
* do_each_subsys_mask - filter for_each_subsys with a bitmask
|
|
* @ss: the iteration cursor
|
|
* @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
|
|
* @ss_mask: the bitmask
|
|
*
|
|
* The block will only run for cases where the ssid-th bit (1 << ssid) of
|
|
* @ss_mask is set.
|
|
*/
|
|
#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
|
|
unsigned long __ss_mask = (ss_mask); \
|
|
if (!CGROUP_HAS_SUBSYS_CONFIG) { \
|
|
(ssid) = 0; \
|
|
break; \
|
|
} \
|
|
for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
|
|
(ss) = cgroup_subsys[ssid]; \
|
|
{
|
|
|
|
#define while_each_subsys_mask() \
|
|
} \
|
|
} \
|
|
} while (false)
|
|
|
|
/* iterate over child cgrps, lock should be held throughout iteration */
|
|
#define cgroup_for_each_live_child(child, cgrp) \
|
|
list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
|
|
if (({ lockdep_assert_held(&cgroup_mutex); \
|
|
cgroup_is_dead(child); })) \
|
|
; \
|
|
else
|
|
|
|
/* walk live descendants in pre order */
|
|
#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
|
|
css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
|
|
if (({ lockdep_assert_held(&cgroup_mutex); \
|
|
(dsct) = (d_css)->cgroup; \
|
|
cgroup_is_dead(dsct); })) \
|
|
; \
|
|
else
|
|
|
|
/* walk live descendants in postorder */
|
|
#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
|
|
css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
|
|
if (({ lockdep_assert_held(&cgroup_mutex); \
|
|
(dsct) = (d_css)->cgroup; \
|
|
cgroup_is_dead(dsct); })) \
|
|
; \
|
|
else
|
|
|
|
/*
|
|
* The default css_set - used by init and its children prior to any
|
|
* hierarchies being mounted. It contains a pointer to the root state
|
|
* for each subsystem. Also used to anchor the list of css_sets. Not
|
|
* reference-counted, to improve performance when child cgroups
|
|
* haven't been created.
|
|
*/
|
|
struct css_set init_css_set = {
|
|
.refcount = REFCOUNT_INIT(1),
|
|
.dom_cset = &init_css_set,
|
|
.tasks = LIST_HEAD_INIT(init_css_set.tasks),
|
|
.mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
|
|
.dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
|
|
.task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
|
|
.threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
|
|
.cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
|
|
.mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
|
|
.mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
|
|
.mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
|
|
|
|
/*
|
|
* The following field is re-initialized when this cset gets linked
|
|
* in cgroup_init(). However, let's initialize the field
|
|
* statically too so that the default cgroup can be accessed safely
|
|
* early during boot.
|
|
*/
|
|
.dfl_cgrp = &cgrp_dfl_root.cgrp,
|
|
};
|
|
|
|
static int css_set_count = 1; /* 1 for init_css_set */
|
|
|
|
static bool css_set_threaded(struct css_set *cset)
|
|
{
|
|
return cset->dom_cset != cset;
|
|
}
|
|
|
|
/**
|
|
* css_set_populated - does a css_set contain any tasks?
|
|
* @cset: target css_set
|
|
*
|
|
* css_set_populated() should be the same as !!cset->nr_tasks at steady
|
|
* state. However, css_set_populated() can be called while a task is being
|
|
* added to or removed from the linked list before the nr_tasks is
|
|
* properly updated. Hence, we can't just look at ->nr_tasks here.
|
|
*/
|
|
static bool css_set_populated(struct css_set *cset)
|
|
{
|
|
lockdep_assert_held(&css_set_lock);
|
|
|
|
return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
|
|
}
|
|
|
|
/**
|
|
* cgroup_update_populated - update the populated count of a cgroup
|
|
* @cgrp: the target cgroup
|
|
* @populated: inc or dec populated count
|
|
*
|
|
* One of the css_sets associated with @cgrp is either getting its first
|
|
* task or losing the last. Update @cgrp->nr_populated_* accordingly. The
|
|
* count is propagated towards root so that a given cgroup's
|
|
* nr_populated_children is zero iff none of its descendants contain any
|
|
* tasks.
|
|
*
|
|
* @cgrp's interface file "cgroup.populated" is zero if both
|
|
* @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
|
|
* 1 otherwise. When the sum changes from or to zero, userland is notified
|
|
* that the content of the interface file has changed. This can be used to
|
|
* detect when @cgrp and its descendants become populated or empty.
|
|
*/
|
|
static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
|
|
{
|
|
struct cgroup *child = NULL;
|
|
int adj = populated ? 1 : -1;
|
|
|
|
lockdep_assert_held(&css_set_lock);
|
|
|
|
do {
|
|
bool was_populated = cgroup_is_populated(cgrp);
|
|
|
|
if (!child) {
|
|
cgrp->nr_populated_csets += adj;
|
|
} else {
|
|
if (cgroup_is_threaded(child))
|
|
cgrp->nr_populated_threaded_children += adj;
|
|
else
|
|
cgrp->nr_populated_domain_children += adj;
|
|
}
|
|
|
|
if (was_populated == cgroup_is_populated(cgrp))
|
|
break;
|
|
|
|
cgroup1_check_for_release(cgrp);
|
|
TRACE_CGROUP_PATH(notify_populated, cgrp,
|
|
cgroup_is_populated(cgrp));
|
|
cgroup_file_notify(&cgrp->events_file);
|
|
|
|
child = cgrp;
|
|
cgrp = cgroup_parent(cgrp);
|
|
} while (cgrp);
|
|
}
|
|
|
|
/**
|
|
* css_set_update_populated - update populated state of a css_set
|
|
* @cset: target css_set
|
|
* @populated: whether @cset is populated or depopulated
|
|
*
|
|
* @cset is either getting the first task or losing the last. Update the
|
|
* populated counters of all associated cgroups accordingly.
|
|
*/
|
|
static void css_set_update_populated(struct css_set *cset, bool populated)
|
|
{
|
|
struct cgrp_cset_link *link;
|
|
|
|
lockdep_assert_held(&css_set_lock);
|
|
|
|
list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
|
|
cgroup_update_populated(link->cgrp, populated);
|
|
}
|
|
|
|
/*
|
|
* @task is leaving, advance task iterators which are pointing to it so
|
|
* that they can resume at the next position. Advancing an iterator might
|
|
* remove it from the list, use safe walk. See css_task_iter_skip() for
|
|
* details.
|
|
*/
|
|
static void css_set_skip_task_iters(struct css_set *cset,
|
|
struct task_struct *task)
|
|
{
|
|
struct css_task_iter *it, *pos;
|
|
|
|
list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
|
|
css_task_iter_skip(it, task);
|
|
}
|
|
|
|
/**
|
|
* css_set_move_task - move a task from one css_set to another
|
|
* @task: task being moved
|
|
* @from_cset: css_set @task currently belongs to (may be NULL)
|
|
* @to_cset: new css_set @task is being moved to (may be NULL)
|
|
* @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
|
|
*
|
|
* Move @task from @from_cset to @to_cset. If @task didn't belong to any
|
|
* css_set, @from_cset can be NULL. If @task is being disassociated
|
|
* instead of moved, @to_cset can be NULL.
|
|
*
|
|
* This function automatically handles populated counter updates and
|
|
* css_task_iter adjustments but the caller is responsible for managing
|
|
* @from_cset and @to_cset's reference counts.
|
|
*/
|
|
static void css_set_move_task(struct task_struct *task,
|
|
struct css_set *from_cset, struct css_set *to_cset,
|
|
bool use_mg_tasks)
|
|
{
|
|
lockdep_assert_held(&css_set_lock);
|
|
|
|
if (to_cset && !css_set_populated(to_cset))
|
|
css_set_update_populated(to_cset, true);
|
|
|
|
if (from_cset) {
|
|
WARN_ON_ONCE(list_empty(&task->cg_list));
|
|
|
|
css_set_skip_task_iters(from_cset, task);
|
|
list_del_init(&task->cg_list);
|
|
if (!css_set_populated(from_cset))
|
|
css_set_update_populated(from_cset, false);
|
|
} else {
|
|
WARN_ON_ONCE(!list_empty(&task->cg_list));
|
|
}
|
|
|
|
if (to_cset) {
|
|
/*
|
|
* We are synchronized through cgroup_threadgroup_rwsem
|
|
* against PF_EXITING setting such that we can't race
|
|
* against cgroup_exit()/cgroup_free() dropping the css_set.
|
|
*/
|
|
WARN_ON_ONCE(task->flags & PF_EXITING);
|
|
|
|
cgroup_move_task(task, to_cset);
|
|
list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
|
|
&to_cset->tasks);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* hash table for cgroup groups. This improves the performance to find
|
|
* an existing css_set. This hash doesn't (currently) take into
|
|
* account cgroups in empty hierarchies.
|
|
*/
|
|
#define CSS_SET_HASH_BITS 7
|
|
static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
|
|
|
|
static unsigned long css_set_hash(struct cgroup_subsys_state **css)
|
|
{
|
|
unsigned long key = 0UL;
|
|
struct cgroup_subsys *ss;
|
|
int i;
|
|
|
|
for_each_subsys(ss, i)
|
|
key += (unsigned long)css[i];
|
|
key = (key >> 16) ^ key;
|
|
|
|
return key;
|
|
}
|
|
|
|
void put_css_set_locked(struct css_set *cset)
|
|
{
|
|
struct cgrp_cset_link *link, *tmp_link;
|
|
struct cgroup_subsys *ss;
|
|
int ssid;
|
|
|
|
lockdep_assert_held(&css_set_lock);
|
|
|
|
if (!refcount_dec_and_test(&cset->refcount))
|
|
return;
|
|
|
|
WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
|
|
|
|
/* This css_set is dead. Unlink it and release cgroup and css refs */
|
|
for_each_subsys(ss, ssid) {
|
|
list_del(&cset->e_cset_node[ssid]);
|
|
css_put(cset->subsys[ssid]);
|
|
}
|
|
hash_del(&cset->hlist);
|
|
css_set_count--;
|
|
|
|
list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
|
|
list_del(&link->cset_link);
|
|
list_del(&link->cgrp_link);
|
|
if (cgroup_parent(link->cgrp))
|
|
cgroup_put(link->cgrp);
|
|
kfree(link);
|
|
}
|
|
|
|
if (css_set_threaded(cset)) {
|
|
list_del(&cset->threaded_csets_node);
|
|
put_css_set_locked(cset->dom_cset);
|
|
}
|
|
|
|
kfree_rcu(cset, rcu_head);
|
|
}
|
|
|
|
/**
|
|
* compare_css_sets - helper function for find_existing_css_set().
|
|
* @cset: candidate css_set being tested
|
|
* @old_cset: existing css_set for a task
|
|
* @new_cgrp: cgroup that's being entered by the task
|
|
* @template: desired set of css pointers in css_set (pre-calculated)
|
|
*
|
|
* Returns true if "cset" matches "old_cset" except for the hierarchy
|
|
* which "new_cgrp" belongs to, for which it should match "new_cgrp".
|
|
*/
|
|
static bool compare_css_sets(struct css_set *cset,
|
|
struct css_set *old_cset,
|
|
struct cgroup *new_cgrp,
|
|
struct cgroup_subsys_state *template[])
|
|
{
|
|
struct cgroup *new_dfl_cgrp;
|
|
struct list_head *l1, *l2;
|
|
|
|
/*
|
|
* On the default hierarchy, there can be csets which are
|
|
* associated with the same set of cgroups but different csses.
|
|
* Let's first ensure that csses match.
|
|
*/
|
|
if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
|
|
return false;
|
|
|
|
|
|
/* @cset's domain should match the default cgroup's */
|
|
if (cgroup_on_dfl(new_cgrp))
|
|
new_dfl_cgrp = new_cgrp;
|
|
else
|
|
new_dfl_cgrp = old_cset->dfl_cgrp;
|
|
|
|
if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
|
|
return false;
|
|
|
|
/*
|
|
* Compare cgroup pointers in order to distinguish between
|
|
* different cgroups in hierarchies. As different cgroups may
|
|
* share the same effective css, this comparison is always
|
|
* necessary.
|
|
*/
|
|
l1 = &cset->cgrp_links;
|
|
l2 = &old_cset->cgrp_links;
|
|
while (1) {
|
|
struct cgrp_cset_link *link1, *link2;
|
|
struct cgroup *cgrp1, *cgrp2;
|
|
|
|
l1 = l1->next;
|
|
l2 = l2->next;
|
|
/* See if we reached the end - both lists are equal length. */
|
|
if (l1 == &cset->cgrp_links) {
|
|
BUG_ON(l2 != &old_cset->cgrp_links);
|
|
break;
|
|
} else {
|
|
BUG_ON(l2 == &old_cset->cgrp_links);
|
|
}
|
|
/* Locate the cgroups associated with these links. */
|
|
link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
|
|
link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
|
|
cgrp1 = link1->cgrp;
|
|
cgrp2 = link2->cgrp;
|
|
/* Hierarchies should be linked in the same order. */
|
|
BUG_ON(cgrp1->root != cgrp2->root);
|
|
|
|
/*
|
|
* If this hierarchy is the hierarchy of the cgroup
|
|
* that's changing, then we need to check that this
|
|
* css_set points to the new cgroup; if it's any other
|
|
* hierarchy, then this css_set should point to the
|
|
* same cgroup as the old css_set.
|
|
*/
|
|
if (cgrp1->root == new_cgrp->root) {
|
|
if (cgrp1 != new_cgrp)
|
|
return false;
|
|
} else {
|
|
if (cgrp1 != cgrp2)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* find_existing_css_set - init css array and find the matching css_set
|
|
* @old_cset: the css_set that we're using before the cgroup transition
|
|
* @cgrp: the cgroup that we're moving into
|
|
* @template: out param for the new set of csses, should be clear on entry
|
|
*/
|
|
static struct css_set *find_existing_css_set(struct css_set *old_cset,
|
|
struct cgroup *cgrp,
|
|
struct cgroup_subsys_state **template)
|
|
{
|
|
struct cgroup_root *root = cgrp->root;
|
|
struct cgroup_subsys *ss;
|
|
struct css_set *cset;
|
|
unsigned long key;
|
|
int i;
|
|
|
|
/*
|
|
* Build the set of subsystem state objects that we want to see in the
|
|
* new css_set. While subsystems can change globally, the entries here
|
|
* won't change, so no need for locking.
|
|
*/
|
|
for_each_subsys(ss, i) {
|
|
if (root->subsys_mask & (1UL << i)) {
|
|
/*
|
|
* @ss is in this hierarchy, so we want the
|
|
* effective css from @cgrp.
|
|
*/
|
|
template[i] = cgroup_e_css_by_mask(cgrp, ss);
|
|
} else {
|
|
/*
|
|
* @ss is not in this hierarchy, so we don't want
|
|
* to change the css.
|
|
*/
|
|
template[i] = old_cset->subsys[i];
|
|
}
|
|
}
|
|
|
|
key = css_set_hash(template);
|
|
hash_for_each_possible(css_set_table, cset, hlist, key) {
|
|
if (!compare_css_sets(cset, old_cset, cgrp, template))
|
|
continue;
|
|
|
|
/* This css_set matches what we need */
|
|
return cset;
|
|
}
|
|
|
|
/* No existing cgroup group matched */
|
|
return NULL;
|
|
}
|
|
|
|
static void free_cgrp_cset_links(struct list_head *links_to_free)
|
|
{
|
|
struct cgrp_cset_link *link, *tmp_link;
|
|
|
|
list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
|
|
list_del(&link->cset_link);
|
|
kfree(link);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* allocate_cgrp_cset_links - allocate cgrp_cset_links
|
|
* @count: the number of links to allocate
|
|
* @tmp_links: list_head the allocated links are put on
|
|
*
|
|
* Allocate @count cgrp_cset_link structures and chain them on @tmp_links
|
|
* through ->cset_link. Returns 0 on success or -errno.
|
|
*/
|
|
static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
|
|
{
|
|
struct cgrp_cset_link *link;
|
|
int i;
|
|
|
|
INIT_LIST_HEAD(tmp_links);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
link = kzalloc(sizeof(*link), GFP_KERNEL);
|
|
if (!link) {
|
|
free_cgrp_cset_links(tmp_links);
|
|
return -ENOMEM;
|
|
}
|
|
list_add(&link->cset_link, tmp_links);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* link_css_set - a helper function to link a css_set to a cgroup
|
|
* @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
|
|
* @cset: the css_set to be linked
|
|
* @cgrp: the destination cgroup
|
|
*/
|
|
static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
|
|
struct cgroup *cgrp)
|
|
{
|
|
struct cgrp_cset_link *link;
|
|
|
|
BUG_ON(list_empty(tmp_links));
|
|
|
|
if (cgroup_on_dfl(cgrp))
|
|
cset->dfl_cgrp = cgrp;
|
|
|
|
link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
|
|
link->cset = cset;
|
|
link->cgrp = cgrp;
|
|
|
|
/*
|
|
* Always add links to the tail of the lists so that the lists are
|
|
* in chronological order.
|
|
*/
|
|
list_move_tail(&link->cset_link, &cgrp->cset_links);
|
|
list_add_tail(&link->cgrp_link, &cset->cgrp_links);
|
|
|
|
if (cgroup_parent(cgrp))
|
|
cgroup_get_live(cgrp);
|
|
}
|
|
|
|
/**
|
|
* find_css_set - return a new css_set with one cgroup updated
|
|
* @old_cset: the baseline css_set
|
|
* @cgrp: the cgroup to be updated
|
|
*
|
|
* Return a new css_set that's equivalent to @old_cset, but with @cgrp
|
|
* substituted into the appropriate hierarchy.
|
|
*/
|
|
static struct css_set *find_css_set(struct css_set *old_cset,
|
|
struct cgroup *cgrp)
|
|
{
|
|
struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
|
|
struct css_set *cset;
|
|
struct list_head tmp_links;
|
|
struct cgrp_cset_link *link;
|
|
struct cgroup_subsys *ss;
|
|
unsigned long key;
|
|
int ssid;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
/* First see if we already have a cgroup group that matches
|
|
* the desired set */
|
|
spin_lock_irq(&css_set_lock);
|
|
cset = find_existing_css_set(old_cset, cgrp, template);
|
|
if (cset)
|
|
get_css_set(cset);
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
if (cset)
|
|
return cset;
|
|
|
|
cset = kzalloc(sizeof(*cset), GFP_KERNEL);
|
|
if (!cset)
|
|
return NULL;
|
|
|
|
/* Allocate all the cgrp_cset_link objects that we'll need */
|
|
if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
|
|
kfree(cset);
|
|
return NULL;
|
|
}
|
|
|
|
refcount_set(&cset->refcount, 1);
|
|
cset->dom_cset = cset;
|
|
INIT_LIST_HEAD(&cset->tasks);
|
|
INIT_LIST_HEAD(&cset->mg_tasks);
|
|
INIT_LIST_HEAD(&cset->dying_tasks);
|
|
INIT_LIST_HEAD(&cset->task_iters);
|
|
INIT_LIST_HEAD(&cset->threaded_csets);
|
|
INIT_HLIST_NODE(&cset->hlist);
|
|
INIT_LIST_HEAD(&cset->cgrp_links);
|
|
INIT_LIST_HEAD(&cset->mg_src_preload_node);
|
|
INIT_LIST_HEAD(&cset->mg_dst_preload_node);
|
|
INIT_LIST_HEAD(&cset->mg_node);
|
|
|
|
/* Copy the set of subsystem state objects generated in
|
|
* find_existing_css_set() */
|
|
memcpy(cset->subsys, template, sizeof(cset->subsys));
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
/* Add reference counts and links from the new css_set. */
|
|
list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
|
|
struct cgroup *c = link->cgrp;
|
|
|
|
if (c->root == cgrp->root)
|
|
c = cgrp;
|
|
link_css_set(&tmp_links, cset, c);
|
|
}
|
|
|
|
BUG_ON(!list_empty(&tmp_links));
|
|
|
|
css_set_count++;
|
|
|
|
/* Add @cset to the hash table */
|
|
key = css_set_hash(cset->subsys);
|
|
hash_add(css_set_table, &cset->hlist, key);
|
|
|
|
for_each_subsys(ss, ssid) {
|
|
struct cgroup_subsys_state *css = cset->subsys[ssid];
|
|
|
|
list_add_tail(&cset->e_cset_node[ssid],
|
|
&css->cgroup->e_csets[ssid]);
|
|
css_get(css);
|
|
}
|
|
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
/*
|
|
* If @cset should be threaded, look up the matching dom_cset and
|
|
* link them up. We first fully initialize @cset then look for the
|
|
* dom_cset. It's simpler this way and safe as @cset is guaranteed
|
|
* to stay empty until we return.
|
|
*/
|
|
if (cgroup_is_threaded(cset->dfl_cgrp)) {
|
|
struct css_set *dcset;
|
|
|
|
dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
|
|
if (!dcset) {
|
|
put_css_set(cset);
|
|
return NULL;
|
|
}
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
cset->dom_cset = dcset;
|
|
list_add_tail(&cset->threaded_csets_node,
|
|
&dcset->threaded_csets);
|
|
spin_unlock_irq(&css_set_lock);
|
|
}
|
|
|
|
return cset;
|
|
}
|
|
|
|
struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
|
|
{
|
|
struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
|
|
|
|
return root_cgrp->root;
|
|
}
|
|
|
|
void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
|
|
{
|
|
bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
|
|
|
|
/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
|
|
if (favor && !favoring) {
|
|
rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
|
|
root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
|
|
} else if (!favor && favoring) {
|
|
rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
|
|
root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
|
|
}
|
|
}
|
|
|
|
static int cgroup_init_root_id(struct cgroup_root *root)
|
|
{
|
|
int id;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
|
|
if (id < 0)
|
|
return id;
|
|
|
|
root->hierarchy_id = id;
|
|
return 0;
|
|
}
|
|
|
|
static void cgroup_exit_root_id(struct cgroup_root *root)
|
|
{
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
|
|
}
|
|
|
|
void cgroup_free_root(struct cgroup_root *root)
|
|
{
|
|
kfree(root);
|
|
}
|
|
|
|
static void cgroup_destroy_root(struct cgroup_root *root)
|
|
{
|
|
struct cgroup *cgrp = &root->cgrp;
|
|
struct cgrp_cset_link *link, *tmp_link;
|
|
|
|
trace_cgroup_destroy_root(root);
|
|
|
|
cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
|
|
|
|
BUG_ON(atomic_read(&root->nr_cgrps));
|
|
BUG_ON(!list_empty(&cgrp->self.children));
|
|
|
|
/* Rebind all subsystems back to the default hierarchy */
|
|
WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
|
|
|
|
/*
|
|
* Release all the links from cset_links to this hierarchy's
|
|
* root cgroup
|
|
*/
|
|
spin_lock_irq(&css_set_lock);
|
|
|
|
list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
|
|
list_del(&link->cset_link);
|
|
list_del(&link->cgrp_link);
|
|
kfree(link);
|
|
}
|
|
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
if (!list_empty(&root->root_list)) {
|
|
list_del(&root->root_list);
|
|
cgroup_root_count--;
|
|
}
|
|
|
|
if (!have_favordynmods)
|
|
cgroup_favor_dynmods(root, false);
|
|
|
|
cgroup_exit_root_id(root);
|
|
|
|
cgroup_unlock();
|
|
|
|
cgroup_rstat_exit(cgrp);
|
|
kernfs_destroy_root(root->kf_root);
|
|
cgroup_free_root(root);
|
|
}
|
|
|
|
/*
|
|
* Returned cgroup is without refcount but it's valid as long as cset pins it.
|
|
*/
|
|
static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
|
|
struct cgroup_root *root)
|
|
{
|
|
struct cgroup *res_cgroup = NULL;
|
|
|
|
if (cset == &init_css_set) {
|
|
res_cgroup = &root->cgrp;
|
|
} else if (root == &cgrp_dfl_root) {
|
|
res_cgroup = cset->dfl_cgrp;
|
|
} else {
|
|
struct cgrp_cset_link *link;
|
|
lockdep_assert_held(&css_set_lock);
|
|
|
|
list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
|
|
struct cgroup *c = link->cgrp;
|
|
|
|
if (c->root == root) {
|
|
res_cgroup = c;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
BUG_ON(!res_cgroup);
|
|
return res_cgroup;
|
|
}
|
|
|
|
/*
|
|
* look up cgroup associated with current task's cgroup namespace on the
|
|
* specified hierarchy
|
|
*/
|
|
static struct cgroup *
|
|
current_cgns_cgroup_from_root(struct cgroup_root *root)
|
|
{
|
|
struct cgroup *res = NULL;
|
|
struct css_set *cset;
|
|
|
|
lockdep_assert_held(&css_set_lock);
|
|
|
|
rcu_read_lock();
|
|
|
|
cset = current->nsproxy->cgroup_ns->root_cset;
|
|
res = __cset_cgroup_from_root(cset, root);
|
|
|
|
rcu_read_unlock();
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Look up cgroup associated with current task's cgroup namespace on the default
|
|
* hierarchy.
|
|
*
|
|
* Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
|
|
* - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
|
|
* pointers.
|
|
* - css_set_lock is not needed because we just read cset->dfl_cgrp.
|
|
* - As a bonus returned cgrp is pinned with the current because it cannot
|
|
* switch cgroup_ns asynchronously.
|
|
*/
|
|
static struct cgroup *current_cgns_cgroup_dfl(void)
|
|
{
|
|
struct css_set *cset;
|
|
|
|
if (current->nsproxy) {
|
|
cset = current->nsproxy->cgroup_ns->root_cset;
|
|
return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
|
|
} else {
|
|
/*
|
|
* NOTE: This function may be called from bpf_cgroup_from_id()
|
|
* on a task which has already passed exit_task_namespaces() and
|
|
* nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
|
|
* cgroups visible for lookups.
|
|
*/
|
|
return &cgrp_dfl_root.cgrp;
|
|
}
|
|
}
|
|
|
|
/* look up cgroup associated with given css_set on the specified hierarchy */
|
|
static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
|
|
struct cgroup_root *root)
|
|
{
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
lockdep_assert_held(&css_set_lock);
|
|
|
|
return __cset_cgroup_from_root(cset, root);
|
|
}
|
|
|
|
/*
|
|
* Return the cgroup for "task" from the given hierarchy. Must be
|
|
* called with cgroup_mutex and css_set_lock held.
|
|
*/
|
|
struct cgroup *task_cgroup_from_root(struct task_struct *task,
|
|
struct cgroup_root *root)
|
|
{
|
|
/*
|
|
* No need to lock the task - since we hold css_set_lock the
|
|
* task can't change groups.
|
|
*/
|
|
return cset_cgroup_from_root(task_css_set(task), root);
|
|
}
|
|
|
|
/*
|
|
* A task must hold cgroup_mutex to modify cgroups.
|
|
*
|
|
* Any task can increment and decrement the count field without lock.
|
|
* So in general, code holding cgroup_mutex can't rely on the count
|
|
* field not changing. However, if the count goes to zero, then only
|
|
* cgroup_attach_task() can increment it again. Because a count of zero
|
|
* means that no tasks are currently attached, therefore there is no
|
|
* way a task attached to that cgroup can fork (the other way to
|
|
* increment the count). So code holding cgroup_mutex can safely
|
|
* assume that if the count is zero, it will stay zero. Similarly, if
|
|
* a task holds cgroup_mutex on a cgroup with zero count, it
|
|
* knows that the cgroup won't be removed, as cgroup_rmdir()
|
|
* needs that mutex.
|
|
*
|
|
* A cgroup can only be deleted if both its 'count' of using tasks
|
|
* is zero, and its list of 'children' cgroups is empty. Since all
|
|
* tasks in the system use _some_ cgroup, and since there is always at
|
|
* least one task in the system (init, pid == 1), therefore, root cgroup
|
|
* always has either children cgroups and/or using tasks. So we don't
|
|
* need a special hack to ensure that root cgroup cannot be deleted.
|
|
*
|
|
* P.S. One more locking exception. RCU is used to guard the
|
|
* update of a tasks cgroup pointer by cgroup_attach_task()
|
|
*/
|
|
|
|
static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
|
|
|
|
static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
|
|
char *buf)
|
|
{
|
|
struct cgroup_subsys *ss = cft->ss;
|
|
|
|
if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
|
|
!(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
|
|
const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
|
|
|
|
snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
|
|
dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
|
|
cft->name);
|
|
} else {
|
|
strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
/**
|
|
* cgroup_file_mode - deduce file mode of a control file
|
|
* @cft: the control file in question
|
|
*
|
|
* S_IRUGO for read, S_IWUSR for write.
|
|
*/
|
|
static umode_t cgroup_file_mode(const struct cftype *cft)
|
|
{
|
|
umode_t mode = 0;
|
|
|
|
if (cft->read_u64 || cft->read_s64 || cft->seq_show)
|
|
mode |= S_IRUGO;
|
|
|
|
if (cft->write_u64 || cft->write_s64 || cft->write) {
|
|
if (cft->flags & CFTYPE_WORLD_WRITABLE)
|
|
mode |= S_IWUGO;
|
|
else
|
|
mode |= S_IWUSR;
|
|
}
|
|
|
|
return mode;
|
|
}
|
|
|
|
/**
|
|
* cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
|
|
* @subtree_control: the new subtree_control mask to consider
|
|
* @this_ss_mask: available subsystems
|
|
*
|
|
* On the default hierarchy, a subsystem may request other subsystems to be
|
|
* enabled together through its ->depends_on mask. In such cases, more
|
|
* subsystems than specified in "cgroup.subtree_control" may be enabled.
|
|
*
|
|
* This function calculates which subsystems need to be enabled if
|
|
* @subtree_control is to be applied while restricted to @this_ss_mask.
|
|
*/
|
|
static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
|
|
{
|
|
u16 cur_ss_mask = subtree_control;
|
|
struct cgroup_subsys *ss;
|
|
int ssid;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
|
|
|
|
while (true) {
|
|
u16 new_ss_mask = cur_ss_mask;
|
|
|
|
do_each_subsys_mask(ss, ssid, cur_ss_mask) {
|
|
new_ss_mask |= ss->depends_on;
|
|
} while_each_subsys_mask();
|
|
|
|
/*
|
|
* Mask out subsystems which aren't available. This can
|
|
* happen only if some depended-upon subsystems were bound
|
|
* to non-default hierarchies.
|
|
*/
|
|
new_ss_mask &= this_ss_mask;
|
|
|
|
if (new_ss_mask == cur_ss_mask)
|
|
break;
|
|
cur_ss_mask = new_ss_mask;
|
|
}
|
|
|
|
return cur_ss_mask;
|
|
}
|
|
|
|
/**
|
|
* cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
|
|
* @kn: the kernfs_node being serviced
|
|
*
|
|
* This helper undoes cgroup_kn_lock_live() and should be invoked before
|
|
* the method finishes if locking succeeded. Note that once this function
|
|
* returns the cgroup returned by cgroup_kn_lock_live() may become
|
|
* inaccessible any time. If the caller intends to continue to access the
|
|
* cgroup, it should pin it before invoking this function.
|
|
*/
|
|
void cgroup_kn_unlock(struct kernfs_node *kn)
|
|
{
|
|
struct cgroup *cgrp;
|
|
|
|
if (kernfs_type(kn) == KERNFS_DIR)
|
|
cgrp = kn->priv;
|
|
else
|
|
cgrp = kn->parent->priv;
|
|
|
|
cgroup_unlock();
|
|
|
|
kernfs_unbreak_active_protection(kn);
|
|
cgroup_put(cgrp);
|
|
}
|
|
|
|
/**
|
|
* cgroup_kn_lock_live - locking helper for cgroup kernfs methods
|
|
* @kn: the kernfs_node being serviced
|
|
* @drain_offline: perform offline draining on the cgroup
|
|
*
|
|
* This helper is to be used by a cgroup kernfs method currently servicing
|
|
* @kn. It breaks the active protection, performs cgroup locking and
|
|
* verifies that the associated cgroup is alive. Returns the cgroup if
|
|
* alive; otherwise, %NULL. A successful return should be undone by a
|
|
* matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
|
|
* cgroup is drained of offlining csses before return.
|
|
*
|
|
* Any cgroup kernfs method implementation which requires locking the
|
|
* associated cgroup should use this helper. It avoids nesting cgroup
|
|
* locking under kernfs active protection and allows all kernfs operations
|
|
* including self-removal.
|
|
*/
|
|
struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
|
|
{
|
|
struct cgroup *cgrp;
|
|
|
|
if (kernfs_type(kn) == KERNFS_DIR)
|
|
cgrp = kn->priv;
|
|
else
|
|
cgrp = kn->parent->priv;
|
|
|
|
/*
|
|
* We're gonna grab cgroup_mutex which nests outside kernfs
|
|
* active_ref. cgroup liveliness check alone provides enough
|
|
* protection against removal. Ensure @cgrp stays accessible and
|
|
* break the active_ref protection.
|
|
*/
|
|
if (!cgroup_tryget(cgrp))
|
|
return NULL;
|
|
kernfs_break_active_protection(kn);
|
|
|
|
if (drain_offline)
|
|
cgroup_lock_and_drain_offline(cgrp);
|
|
else
|
|
cgroup_lock();
|
|
|
|
if (!cgroup_is_dead(cgrp))
|
|
return cgrp;
|
|
|
|
cgroup_kn_unlock(kn);
|
|
return NULL;
|
|
}
|
|
|
|
static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
|
|
{
|
|
char name[CGROUP_FILE_NAME_MAX];
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
if (cft->file_offset) {
|
|
struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
|
|
struct cgroup_file *cfile = (void *)css + cft->file_offset;
|
|
|
|
spin_lock_irq(&cgroup_file_kn_lock);
|
|
cfile->kn = NULL;
|
|
spin_unlock_irq(&cgroup_file_kn_lock);
|
|
|
|
del_timer_sync(&cfile->notify_timer);
|
|
}
|
|
|
|
kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
|
|
}
|
|
|
|
/**
|
|
* css_clear_dir - remove subsys files in a cgroup directory
|
|
* @css: target css
|
|
*/
|
|
static void css_clear_dir(struct cgroup_subsys_state *css)
|
|
{
|
|
struct cgroup *cgrp = css->cgroup;
|
|
struct cftype *cfts;
|
|
|
|
if (!(css->flags & CSS_VISIBLE))
|
|
return;
|
|
|
|
css->flags &= ~CSS_VISIBLE;
|
|
|
|
if (!css->ss) {
|
|
if (cgroup_on_dfl(cgrp)) {
|
|
cgroup_addrm_files(css, cgrp,
|
|
cgroup_base_files, false);
|
|
if (cgroup_psi_enabled())
|
|
cgroup_addrm_files(css, cgrp,
|
|
cgroup_psi_files, false);
|
|
} else {
|
|
cgroup_addrm_files(css, cgrp,
|
|
cgroup1_base_files, false);
|
|
}
|
|
} else {
|
|
list_for_each_entry(cfts, &css->ss->cfts, node)
|
|
cgroup_addrm_files(css, cgrp, cfts, false);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* css_populate_dir - create subsys files in a cgroup directory
|
|
* @css: target css
|
|
*
|
|
* On failure, no file is added.
|
|
*/
|
|
static int css_populate_dir(struct cgroup_subsys_state *css)
|
|
{
|
|
struct cgroup *cgrp = css->cgroup;
|
|
struct cftype *cfts, *failed_cfts;
|
|
int ret;
|
|
|
|
if (css->flags & CSS_VISIBLE)
|
|
return 0;
|
|
|
|
if (!css->ss) {
|
|
if (cgroup_on_dfl(cgrp)) {
|
|
ret = cgroup_addrm_files(css, cgrp,
|
|
cgroup_base_files, true);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (cgroup_psi_enabled()) {
|
|
ret = cgroup_addrm_files(css, cgrp,
|
|
cgroup_psi_files, true);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
} else {
|
|
ret = cgroup_addrm_files(css, cgrp,
|
|
cgroup1_base_files, true);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
} else {
|
|
list_for_each_entry(cfts, &css->ss->cfts, node) {
|
|
ret = cgroup_addrm_files(css, cgrp, cfts, true);
|
|
if (ret < 0) {
|
|
failed_cfts = cfts;
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
css->flags |= CSS_VISIBLE;
|
|
|
|
return 0;
|
|
err:
|
|
list_for_each_entry(cfts, &css->ss->cfts, node) {
|
|
if (cfts == failed_cfts)
|
|
break;
|
|
cgroup_addrm_files(css, cgrp, cfts, false);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
|
|
{
|
|
struct cgroup *dcgrp = &dst_root->cgrp;
|
|
struct cgroup_subsys *ss;
|
|
int ssid, ret;
|
|
u16 dfl_disable_ss_mask = 0;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
do_each_subsys_mask(ss, ssid, ss_mask) {
|
|
/*
|
|
* If @ss has non-root csses attached to it, can't move.
|
|
* If @ss is an implicit controller, it is exempt from this
|
|
* rule and can be stolen.
|
|
*/
|
|
if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
|
|
!ss->implicit_on_dfl)
|
|
return -EBUSY;
|
|
|
|
/* can't move between two non-dummy roots either */
|
|
if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* Collect ssid's that need to be disabled from default
|
|
* hierarchy.
|
|
*/
|
|
if (ss->root == &cgrp_dfl_root)
|
|
dfl_disable_ss_mask |= 1 << ssid;
|
|
|
|
} while_each_subsys_mask();
|
|
|
|
if (dfl_disable_ss_mask) {
|
|
struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
|
|
|
|
/*
|
|
* Controllers from default hierarchy that need to be rebound
|
|
* are all disabled together in one go.
|
|
*/
|
|
cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
|
|
WARN_ON(cgroup_apply_control(scgrp));
|
|
cgroup_finalize_control(scgrp, 0);
|
|
}
|
|
|
|
do_each_subsys_mask(ss, ssid, ss_mask) {
|
|
struct cgroup_root *src_root = ss->root;
|
|
struct cgroup *scgrp = &src_root->cgrp;
|
|
struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
|
|
struct css_set *cset, *cset_pos;
|
|
struct css_task_iter *it;
|
|
|
|
WARN_ON(!css || cgroup_css(dcgrp, ss));
|
|
|
|
if (src_root != &cgrp_dfl_root) {
|
|
/* disable from the source */
|
|
src_root->subsys_mask &= ~(1 << ssid);
|
|
WARN_ON(cgroup_apply_control(scgrp));
|
|
cgroup_finalize_control(scgrp, 0);
|
|
}
|
|
|
|
/* rebind */
|
|
RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
|
|
rcu_assign_pointer(dcgrp->subsys[ssid], css);
|
|
ss->root = dst_root;
|
|
css->cgroup = dcgrp;
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
|
|
list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
|
|
e_cset_node[ss->id]) {
|
|
list_move_tail(&cset->e_cset_node[ss->id],
|
|
&dcgrp->e_csets[ss->id]);
|
|
/*
|
|
* all css_sets of scgrp together in same order to dcgrp,
|
|
* patch in-flight iterators to preserve correct iteration.
|
|
* since the iterator is always advanced right away and
|
|
* finished when it->cset_pos meets it->cset_head, so only
|
|
* update it->cset_head is enough here.
|
|
*/
|
|
list_for_each_entry(it, &cset->task_iters, iters_node)
|
|
if (it->cset_head == &scgrp->e_csets[ss->id])
|
|
it->cset_head = &dcgrp->e_csets[ss->id];
|
|
}
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
if (ss->css_rstat_flush) {
|
|
list_del_rcu(&css->rstat_css_node);
|
|
synchronize_rcu();
|
|
list_add_rcu(&css->rstat_css_node,
|
|
&dcgrp->rstat_css_list);
|
|
}
|
|
|
|
/* default hierarchy doesn't enable controllers by default */
|
|
dst_root->subsys_mask |= 1 << ssid;
|
|
if (dst_root == &cgrp_dfl_root) {
|
|
static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
|
|
} else {
|
|
dcgrp->subtree_control |= 1 << ssid;
|
|
static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
|
|
}
|
|
|
|
ret = cgroup_apply_control(dcgrp);
|
|
if (ret)
|
|
pr_warn("partial failure to rebind %s controller (err=%d)\n",
|
|
ss->name, ret);
|
|
|
|
if (ss->bind)
|
|
ss->bind(css);
|
|
} while_each_subsys_mask();
|
|
|
|
kernfs_activate(dcgrp->kn);
|
|
return 0;
|
|
}
|
|
|
|
int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
|
|
struct kernfs_root *kf_root)
|
|
{
|
|
int len = 0;
|
|
char *buf = NULL;
|
|
struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
|
|
struct cgroup *ns_cgroup;
|
|
|
|
buf = kmalloc(PATH_MAX, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
|
|
len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
if (len >= PATH_MAX)
|
|
len = -ERANGE;
|
|
else if (len > 0) {
|
|
seq_escape(sf, buf, " \t\n\\");
|
|
len = 0;
|
|
}
|
|
kfree(buf);
|
|
return len;
|
|
}
|
|
|
|
enum cgroup2_param {
|
|
Opt_nsdelegate,
|
|
Opt_favordynmods,
|
|
Opt_memory_localevents,
|
|
Opt_memory_recursiveprot,
|
|
Opt_memory_hugetlb_accounting,
|
|
nr__cgroup2_params
|
|
};
|
|
|
|
static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
|
|
fsparam_flag("nsdelegate", Opt_nsdelegate),
|
|
fsparam_flag("favordynmods", Opt_favordynmods),
|
|
fsparam_flag("memory_localevents", Opt_memory_localevents),
|
|
fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
|
|
fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
|
|
{}
|
|
};
|
|
|
|
static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
|
|
{
|
|
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
|
|
struct fs_parse_result result;
|
|
int opt;
|
|
|
|
opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
|
|
if (opt < 0)
|
|
return opt;
|
|
|
|
switch (opt) {
|
|
case Opt_nsdelegate:
|
|
ctx->flags |= CGRP_ROOT_NS_DELEGATE;
|
|
return 0;
|
|
case Opt_favordynmods:
|
|
ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
|
|
return 0;
|
|
case Opt_memory_localevents:
|
|
ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
|
|
return 0;
|
|
case Opt_memory_recursiveprot:
|
|
ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
|
|
return 0;
|
|
case Opt_memory_hugetlb_accounting:
|
|
ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
|
|
return 0;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void apply_cgroup_root_flags(unsigned int root_flags)
|
|
{
|
|
if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
|
|
if (root_flags & CGRP_ROOT_NS_DELEGATE)
|
|
cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
|
|
else
|
|
cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
|
|
|
|
cgroup_favor_dynmods(&cgrp_dfl_root,
|
|
root_flags & CGRP_ROOT_FAVOR_DYNMODS);
|
|
|
|
if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
|
|
cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
|
|
else
|
|
cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
|
|
|
|
if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
|
|
cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
|
|
else
|
|
cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
|
|
|
|
if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
|
|
cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
|
|
else
|
|
cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
|
|
}
|
|
}
|
|
|
|
static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
|
|
{
|
|
if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
|
|
seq_puts(seq, ",nsdelegate");
|
|
if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
|
|
seq_puts(seq, ",favordynmods");
|
|
if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
|
|
seq_puts(seq, ",memory_localevents");
|
|
if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
|
|
seq_puts(seq, ",memory_recursiveprot");
|
|
if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
|
|
seq_puts(seq, ",memory_hugetlb_accounting");
|
|
return 0;
|
|
}
|
|
|
|
static int cgroup_reconfigure(struct fs_context *fc)
|
|
{
|
|
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
|
|
|
|
apply_cgroup_root_flags(ctx->flags);
|
|
return 0;
|
|
}
|
|
|
|
static void init_cgroup_housekeeping(struct cgroup *cgrp)
|
|
{
|
|
struct cgroup_subsys *ss;
|
|
int ssid;
|
|
|
|
INIT_LIST_HEAD(&cgrp->self.sibling);
|
|
INIT_LIST_HEAD(&cgrp->self.children);
|
|
INIT_LIST_HEAD(&cgrp->cset_links);
|
|
INIT_LIST_HEAD(&cgrp->pidlists);
|
|
mutex_init(&cgrp->pidlist_mutex);
|
|
cgrp->self.cgroup = cgrp;
|
|
cgrp->self.flags |= CSS_ONLINE;
|
|
cgrp->dom_cgrp = cgrp;
|
|
cgrp->max_descendants = INT_MAX;
|
|
cgrp->max_depth = INT_MAX;
|
|
INIT_LIST_HEAD(&cgrp->rstat_css_list);
|
|
prev_cputime_init(&cgrp->prev_cputime);
|
|
|
|
for_each_subsys(ss, ssid)
|
|
INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
|
|
|
|
init_waitqueue_head(&cgrp->offline_waitq);
|
|
INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
|
|
}
|
|
|
|
void init_cgroup_root(struct cgroup_fs_context *ctx)
|
|
{
|
|
struct cgroup_root *root = ctx->root;
|
|
struct cgroup *cgrp = &root->cgrp;
|
|
|
|
INIT_LIST_HEAD(&root->root_list);
|
|
atomic_set(&root->nr_cgrps, 1);
|
|
cgrp->root = root;
|
|
init_cgroup_housekeeping(cgrp);
|
|
|
|
/* DYNMODS must be modified through cgroup_favor_dynmods() */
|
|
root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
|
|
if (ctx->release_agent)
|
|
strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
|
|
if (ctx->name)
|
|
strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
|
|
if (ctx->cpuset_clone_children)
|
|
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
|
|
}
|
|
|
|
int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
|
|
{
|
|
LIST_HEAD(tmp_links);
|
|
struct cgroup *root_cgrp = &root->cgrp;
|
|
struct kernfs_syscall_ops *kf_sops;
|
|
struct css_set *cset;
|
|
int i, ret;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
|
|
0, GFP_KERNEL);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* We're accessing css_set_count without locking css_set_lock here,
|
|
* but that's OK - it can only be increased by someone holding
|
|
* cgroup_lock, and that's us. Later rebinding may disable
|
|
* controllers on the default hierarchy and thus create new csets,
|
|
* which can't be more than the existing ones. Allocate 2x.
|
|
*/
|
|
ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
|
|
if (ret)
|
|
goto cancel_ref;
|
|
|
|
ret = cgroup_init_root_id(root);
|
|
if (ret)
|
|
goto cancel_ref;
|
|
|
|
kf_sops = root == &cgrp_dfl_root ?
|
|
&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
|
|
|
|
root->kf_root = kernfs_create_root(kf_sops,
|
|
KERNFS_ROOT_CREATE_DEACTIVATED |
|
|
KERNFS_ROOT_SUPPORT_EXPORTOP |
|
|
KERNFS_ROOT_SUPPORT_USER_XATTR,
|
|
root_cgrp);
|
|
if (IS_ERR(root->kf_root)) {
|
|
ret = PTR_ERR(root->kf_root);
|
|
goto exit_root_id;
|
|
}
|
|
root_cgrp->kn = kernfs_root_to_node(root->kf_root);
|
|
WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
|
|
root_cgrp->ancestors[0] = root_cgrp;
|
|
|
|
ret = css_populate_dir(&root_cgrp->self);
|
|
if (ret)
|
|
goto destroy_root;
|
|
|
|
ret = cgroup_rstat_init(root_cgrp);
|
|
if (ret)
|
|
goto destroy_root;
|
|
|
|
ret = rebind_subsystems(root, ss_mask);
|
|
if (ret)
|
|
goto exit_stats;
|
|
|
|
ret = cgroup_bpf_inherit(root_cgrp);
|
|
WARN_ON_ONCE(ret);
|
|
|
|
trace_cgroup_setup_root(root);
|
|
|
|
/*
|
|
* There must be no failure case after here, since rebinding takes
|
|
* care of subsystems' refcounts, which are explicitly dropped in
|
|
* the failure exit path.
|
|
*/
|
|
list_add(&root->root_list, &cgroup_roots);
|
|
cgroup_root_count++;
|
|
|
|
/*
|
|
* Link the root cgroup in this hierarchy into all the css_set
|
|
* objects.
|
|
*/
|
|
spin_lock_irq(&css_set_lock);
|
|
hash_for_each(css_set_table, i, cset, hlist) {
|
|
link_css_set(&tmp_links, cset, root_cgrp);
|
|
if (css_set_populated(cset))
|
|
cgroup_update_populated(root_cgrp, true);
|
|
}
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
BUG_ON(!list_empty(&root_cgrp->self.children));
|
|
BUG_ON(atomic_read(&root->nr_cgrps) != 1);
|
|
|
|
ret = 0;
|
|
goto out;
|
|
|
|
exit_stats:
|
|
cgroup_rstat_exit(root_cgrp);
|
|
destroy_root:
|
|
kernfs_destroy_root(root->kf_root);
|
|
root->kf_root = NULL;
|
|
exit_root_id:
|
|
cgroup_exit_root_id(root);
|
|
cancel_ref:
|
|
percpu_ref_exit(&root_cgrp->self.refcnt);
|
|
out:
|
|
free_cgrp_cset_links(&tmp_links);
|
|
return ret;
|
|
}
|
|
|
|
int cgroup_do_get_tree(struct fs_context *fc)
|
|
{
|
|
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
|
|
int ret;
|
|
|
|
ctx->kfc.root = ctx->root->kf_root;
|
|
if (fc->fs_type == &cgroup2_fs_type)
|
|
ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
|
|
else
|
|
ctx->kfc.magic = CGROUP_SUPER_MAGIC;
|
|
ret = kernfs_get_tree(fc);
|
|
|
|
/*
|
|
* In non-init cgroup namespace, instead of root cgroup's dentry,
|
|
* we return the dentry corresponding to the cgroupns->root_cgrp.
|
|
*/
|
|
if (!ret && ctx->ns != &init_cgroup_ns) {
|
|
struct dentry *nsdentry;
|
|
struct super_block *sb = fc->root->d_sb;
|
|
struct cgroup *cgrp;
|
|
|
|
cgroup_lock();
|
|
spin_lock_irq(&css_set_lock);
|
|
|
|
cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
|
|
|
|
spin_unlock_irq(&css_set_lock);
|
|
cgroup_unlock();
|
|
|
|
nsdentry = kernfs_node_dentry(cgrp->kn, sb);
|
|
dput(fc->root);
|
|
if (IS_ERR(nsdentry)) {
|
|
deactivate_locked_super(sb);
|
|
ret = PTR_ERR(nsdentry);
|
|
nsdentry = NULL;
|
|
}
|
|
fc->root = nsdentry;
|
|
}
|
|
|
|
if (!ctx->kfc.new_sb_created)
|
|
cgroup_put(&ctx->root->cgrp);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Destroy a cgroup filesystem context.
|
|
*/
|
|
static void cgroup_fs_context_free(struct fs_context *fc)
|
|
{
|
|
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
|
|
|
|
kfree(ctx->name);
|
|
kfree(ctx->release_agent);
|
|
put_cgroup_ns(ctx->ns);
|
|
kernfs_free_fs_context(fc);
|
|
kfree(ctx);
|
|
}
|
|
|
|
static int cgroup_get_tree(struct fs_context *fc)
|
|
{
|
|
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
|
|
int ret;
|
|
|
|
WRITE_ONCE(cgrp_dfl_visible, true);
|
|
cgroup_get_live(&cgrp_dfl_root.cgrp);
|
|
ctx->root = &cgrp_dfl_root;
|
|
|
|
ret = cgroup_do_get_tree(fc);
|
|
if (!ret)
|
|
apply_cgroup_root_flags(ctx->flags);
|
|
return ret;
|
|
}
|
|
|
|
static const struct fs_context_operations cgroup_fs_context_ops = {
|
|
.free = cgroup_fs_context_free,
|
|
.parse_param = cgroup2_parse_param,
|
|
.get_tree = cgroup_get_tree,
|
|
.reconfigure = cgroup_reconfigure,
|
|
};
|
|
|
|
static const struct fs_context_operations cgroup1_fs_context_ops = {
|
|
.free = cgroup_fs_context_free,
|
|
.parse_param = cgroup1_parse_param,
|
|
.get_tree = cgroup1_get_tree,
|
|
.reconfigure = cgroup1_reconfigure,
|
|
};
|
|
|
|
/*
|
|
* Initialise the cgroup filesystem creation/reconfiguration context. Notably,
|
|
* we select the namespace we're going to use.
|
|
*/
|
|
static int cgroup_init_fs_context(struct fs_context *fc)
|
|
{
|
|
struct cgroup_fs_context *ctx;
|
|
|
|
ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
|
|
ctx->ns = current->nsproxy->cgroup_ns;
|
|
get_cgroup_ns(ctx->ns);
|
|
fc->fs_private = &ctx->kfc;
|
|
if (fc->fs_type == &cgroup2_fs_type)
|
|
fc->ops = &cgroup_fs_context_ops;
|
|
else
|
|
fc->ops = &cgroup1_fs_context_ops;
|
|
put_user_ns(fc->user_ns);
|
|
fc->user_ns = get_user_ns(ctx->ns->user_ns);
|
|
fc->global = true;
|
|
|
|
if (have_favordynmods)
|
|
ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cgroup_kill_sb(struct super_block *sb)
|
|
{
|
|
struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
|
|
struct cgroup_root *root = cgroup_root_from_kf(kf_root);
|
|
|
|
/*
|
|
* If @root doesn't have any children, start killing it.
|
|
* This prevents new mounts by disabling percpu_ref_tryget_live().
|
|
*
|
|
* And don't kill the default root.
|
|
*/
|
|
if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
|
|
!percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
|
|
cgroup_bpf_offline(&root->cgrp);
|
|
percpu_ref_kill(&root->cgrp.self.refcnt);
|
|
}
|
|
cgroup_put(&root->cgrp);
|
|
kernfs_kill_sb(sb);
|
|
}
|
|
|
|
struct file_system_type cgroup_fs_type = {
|
|
.name = "cgroup",
|
|
.init_fs_context = cgroup_init_fs_context,
|
|
.parameters = cgroup1_fs_parameters,
|
|
.kill_sb = cgroup_kill_sb,
|
|
.fs_flags = FS_USERNS_MOUNT,
|
|
};
|
|
|
|
static struct file_system_type cgroup2_fs_type = {
|
|
.name = "cgroup2",
|
|
.init_fs_context = cgroup_init_fs_context,
|
|
.parameters = cgroup2_fs_parameters,
|
|
.kill_sb = cgroup_kill_sb,
|
|
.fs_flags = FS_USERNS_MOUNT,
|
|
};
|
|
|
|
#ifdef CONFIG_CPUSETS
|
|
static const struct fs_context_operations cpuset_fs_context_ops = {
|
|
.get_tree = cgroup1_get_tree,
|
|
.free = cgroup_fs_context_free,
|
|
};
|
|
|
|
/*
|
|
* This is ugly, but preserves the userspace API for existing cpuset
|
|
* users. If someone tries to mount the "cpuset" filesystem, we
|
|
* silently switch it to mount "cgroup" instead
|
|
*/
|
|
static int cpuset_init_fs_context(struct fs_context *fc)
|
|
{
|
|
char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
|
|
struct cgroup_fs_context *ctx;
|
|
int err;
|
|
|
|
err = cgroup_init_fs_context(fc);
|
|
if (err) {
|
|
kfree(agent);
|
|
return err;
|
|
}
|
|
|
|
fc->ops = &cpuset_fs_context_ops;
|
|
|
|
ctx = cgroup_fc2context(fc);
|
|
ctx->subsys_mask = 1 << cpuset_cgrp_id;
|
|
ctx->flags |= CGRP_ROOT_NOPREFIX;
|
|
ctx->release_agent = agent;
|
|
|
|
get_filesystem(&cgroup_fs_type);
|
|
put_filesystem(fc->fs_type);
|
|
fc->fs_type = &cgroup_fs_type;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct file_system_type cpuset_fs_type = {
|
|
.name = "cpuset",
|
|
.init_fs_context = cpuset_init_fs_context,
|
|
.fs_flags = FS_USERNS_MOUNT,
|
|
};
|
|
#endif
|
|
|
|
int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
|
|
struct cgroup_namespace *ns)
|
|
{
|
|
struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
|
|
|
|
return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
|
|
}
|
|
|
|
int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
|
|
struct cgroup_namespace *ns)
|
|
{
|
|
int ret;
|
|
|
|
cgroup_lock();
|
|
spin_lock_irq(&css_set_lock);
|
|
|
|
ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
|
|
|
|
spin_unlock_irq(&css_set_lock);
|
|
cgroup_unlock();
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cgroup_path_ns);
|
|
|
|
/**
|
|
* cgroup_attach_lock - Lock for ->attach()
|
|
* @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
|
|
*
|
|
* cgroup migration sometimes needs to stabilize threadgroups against forks and
|
|
* exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
|
|
* implementations (e.g. cpuset), also need to disable CPU hotplug.
|
|
* Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
|
|
* lead to deadlocks.
|
|
*
|
|
* Bringing up a CPU may involve creating and destroying tasks which requires
|
|
* read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
|
|
* cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
|
|
* write-locking threadgroup_rwsem, the locking order is reversed and we end up
|
|
* waiting for an on-going CPU hotplug operation which in turn is waiting for
|
|
* the threadgroup_rwsem to be released to create new tasks. For more details:
|
|
*
|
|
* http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
|
|
*
|
|
* Resolve the situation by always acquiring cpus_read_lock() before optionally
|
|
* write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
|
|
* CPU hotplug is disabled on entry.
|
|
*/
|
|
void cgroup_attach_lock(bool lock_threadgroup)
|
|
{
|
|
cpus_read_lock();
|
|
if (lock_threadgroup)
|
|
percpu_down_write(&cgroup_threadgroup_rwsem);
|
|
}
|
|
|
|
/**
|
|
* cgroup_attach_unlock - Undo cgroup_attach_lock()
|
|
* @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
|
|
*/
|
|
void cgroup_attach_unlock(bool lock_threadgroup)
|
|
{
|
|
if (lock_threadgroup)
|
|
percpu_up_write(&cgroup_threadgroup_rwsem);
|
|
cpus_read_unlock();
|
|
}
|
|
|
|
/**
|
|
* cgroup_migrate_add_task - add a migration target task to a migration context
|
|
* @task: target task
|
|
* @mgctx: target migration context
|
|
*
|
|
* Add @task, which is a migration target, to @mgctx->tset. This function
|
|
* becomes noop if @task doesn't need to be migrated. @task's css_set
|
|
* should have been added as a migration source and @task->cg_list will be
|
|
* moved from the css_set's tasks list to mg_tasks one.
|
|
*/
|
|
static void cgroup_migrate_add_task(struct task_struct *task,
|
|
struct cgroup_mgctx *mgctx)
|
|
{
|
|
struct css_set *cset;
|
|
|
|
lockdep_assert_held(&css_set_lock);
|
|
|
|
/* @task either already exited or can't exit until the end */
|
|
if (task->flags & PF_EXITING)
|
|
return;
|
|
|
|
/* cgroup_threadgroup_rwsem protects racing against forks */
|
|
WARN_ON_ONCE(list_empty(&task->cg_list));
|
|
|
|
cset = task_css_set(task);
|
|
if (!cset->mg_src_cgrp)
|
|
return;
|
|
|
|
mgctx->tset.nr_tasks++;
|
|
|
|
list_move_tail(&task->cg_list, &cset->mg_tasks);
|
|
if (list_empty(&cset->mg_node))
|
|
list_add_tail(&cset->mg_node,
|
|
&mgctx->tset.src_csets);
|
|
if (list_empty(&cset->mg_dst_cset->mg_node))
|
|
list_add_tail(&cset->mg_dst_cset->mg_node,
|
|
&mgctx->tset.dst_csets);
|
|
}
|
|
|
|
/**
|
|
* cgroup_taskset_first - reset taskset and return the first task
|
|
* @tset: taskset of interest
|
|
* @dst_cssp: output variable for the destination css
|
|
*
|
|
* @tset iteration is initialized and the first task is returned.
|
|
*/
|
|
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
|
|
struct cgroup_subsys_state **dst_cssp)
|
|
{
|
|
tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
|
|
tset->cur_task = NULL;
|
|
|
|
return cgroup_taskset_next(tset, dst_cssp);
|
|
}
|
|
|
|
/**
|
|
* cgroup_taskset_next - iterate to the next task in taskset
|
|
* @tset: taskset of interest
|
|
* @dst_cssp: output variable for the destination css
|
|
*
|
|
* Return the next task in @tset. Iteration must have been initialized
|
|
* with cgroup_taskset_first().
|
|
*/
|
|
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
|
|
struct cgroup_subsys_state **dst_cssp)
|
|
{
|
|
struct css_set *cset = tset->cur_cset;
|
|
struct task_struct *task = tset->cur_task;
|
|
|
|
while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
|
|
if (!task)
|
|
task = list_first_entry(&cset->mg_tasks,
|
|
struct task_struct, cg_list);
|
|
else
|
|
task = list_next_entry(task, cg_list);
|
|
|
|
if (&task->cg_list != &cset->mg_tasks) {
|
|
tset->cur_cset = cset;
|
|
tset->cur_task = task;
|
|
|
|
/*
|
|
* This function may be called both before and
|
|
* after cgroup_migrate_execute(). The two cases
|
|
* can be distinguished by looking at whether @cset
|
|
* has its ->mg_dst_cset set.
|
|
*/
|
|
if (cset->mg_dst_cset)
|
|
*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
|
|
else
|
|
*dst_cssp = cset->subsys[tset->ssid];
|
|
|
|
return task;
|
|
}
|
|
|
|
cset = list_next_entry(cset, mg_node);
|
|
task = NULL;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* cgroup_migrate_execute - migrate a taskset
|
|
* @mgctx: migration context
|
|
*
|
|
* Migrate tasks in @mgctx as setup by migration preparation functions.
|
|
* This function fails iff one of the ->can_attach callbacks fails and
|
|
* guarantees that either all or none of the tasks in @mgctx are migrated.
|
|
* @mgctx is consumed regardless of success.
|
|
*/
|
|
static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
|
|
{
|
|
struct cgroup_taskset *tset = &mgctx->tset;
|
|
struct cgroup_subsys *ss;
|
|
struct task_struct *task, *tmp_task;
|
|
struct css_set *cset, *tmp_cset;
|
|
int ssid, failed_ssid, ret;
|
|
|
|
/* check that we can legitimately attach to the cgroup */
|
|
if (tset->nr_tasks) {
|
|
do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
|
|
if (ss->can_attach) {
|
|
tset->ssid = ssid;
|
|
ret = ss->can_attach(tset);
|
|
if (ret) {
|
|
failed_ssid = ssid;
|
|
goto out_cancel_attach;
|
|
}
|
|
}
|
|
} while_each_subsys_mask();
|
|
}
|
|
|
|
/*
|
|
* Now that we're guaranteed success, proceed to move all tasks to
|
|
* the new cgroup. There are no failure cases after here, so this
|
|
* is the commit point.
|
|
*/
|
|
spin_lock_irq(&css_set_lock);
|
|
list_for_each_entry(cset, &tset->src_csets, mg_node) {
|
|
list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
|
|
struct css_set *from_cset = task_css_set(task);
|
|
struct css_set *to_cset = cset->mg_dst_cset;
|
|
|
|
get_css_set(to_cset);
|
|
to_cset->nr_tasks++;
|
|
css_set_move_task(task, from_cset, to_cset, true);
|
|
from_cset->nr_tasks--;
|
|
/*
|
|
* If the source or destination cgroup is frozen,
|
|
* the task might require to change its state.
|
|
*/
|
|
cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
|
|
to_cset->dfl_cgrp);
|
|
put_css_set_locked(from_cset);
|
|
|
|
}
|
|
}
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
/*
|
|
* Migration is committed, all target tasks are now on dst_csets.
|
|
* Nothing is sensitive to fork() after this point. Notify
|
|
* controllers that migration is complete.
|
|
*/
|
|
tset->csets = &tset->dst_csets;
|
|
|
|
if (tset->nr_tasks) {
|
|
do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
|
|
if (ss->attach) {
|
|
tset->ssid = ssid;
|
|
ss->attach(tset);
|
|
}
|
|
} while_each_subsys_mask();
|
|
}
|
|
|
|
ret = 0;
|
|
goto out_release_tset;
|
|
|
|
out_cancel_attach:
|
|
if (tset->nr_tasks) {
|
|
do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
|
|
if (ssid == failed_ssid)
|
|
break;
|
|
if (ss->cancel_attach) {
|
|
tset->ssid = ssid;
|
|
ss->cancel_attach(tset);
|
|
}
|
|
} while_each_subsys_mask();
|
|
}
|
|
out_release_tset:
|
|
spin_lock_irq(&css_set_lock);
|
|
list_splice_init(&tset->dst_csets, &tset->src_csets);
|
|
list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
|
|
list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
|
|
list_del_init(&cset->mg_node);
|
|
}
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
/*
|
|
* Re-initialize the cgroup_taskset structure in case it is reused
|
|
* again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
|
|
* iteration.
|
|
*/
|
|
tset->nr_tasks = 0;
|
|
tset->csets = &tset->src_csets;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
|
|
* @dst_cgrp: destination cgroup to test
|
|
*
|
|
* On the default hierarchy, except for the mixable, (possible) thread root
|
|
* and threaded cgroups, subtree_control must be zero for migration
|
|
* destination cgroups with tasks so that child cgroups don't compete
|
|
* against tasks.
|
|
*/
|
|
int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
|
|
{
|
|
/* v1 doesn't have any restriction */
|
|
if (!cgroup_on_dfl(dst_cgrp))
|
|
return 0;
|
|
|
|
/* verify @dst_cgrp can host resources */
|
|
if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
|
|
return -EOPNOTSUPP;
|
|
|
|
/*
|
|
* If @dst_cgrp is already or can become a thread root or is
|
|
* threaded, it doesn't matter.
|
|
*/
|
|
if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
|
|
return 0;
|
|
|
|
/* apply no-internal-process constraint */
|
|
if (dst_cgrp->subtree_control)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cgroup_migrate_finish - cleanup after attach
|
|
* @mgctx: migration context
|
|
*
|
|
* Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
|
|
* those functions for details.
|
|
*/
|
|
void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
|
|
{
|
|
struct css_set *cset, *tmp_cset;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
|
|
list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
|
|
mg_src_preload_node) {
|
|
cset->mg_src_cgrp = NULL;
|
|
cset->mg_dst_cgrp = NULL;
|
|
cset->mg_dst_cset = NULL;
|
|
list_del_init(&cset->mg_src_preload_node);
|
|
put_css_set_locked(cset);
|
|
}
|
|
|
|
list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
|
|
mg_dst_preload_node) {
|
|
cset->mg_src_cgrp = NULL;
|
|
cset->mg_dst_cgrp = NULL;
|
|
cset->mg_dst_cset = NULL;
|
|
list_del_init(&cset->mg_dst_preload_node);
|
|
put_css_set_locked(cset);
|
|
}
|
|
|
|
spin_unlock_irq(&css_set_lock);
|
|
}
|
|
|
|
/**
|
|
* cgroup_migrate_add_src - add a migration source css_set
|
|
* @src_cset: the source css_set to add
|
|
* @dst_cgrp: the destination cgroup
|
|
* @mgctx: migration context
|
|
*
|
|
* Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
|
|
* @src_cset and add it to @mgctx->src_csets, which should later be cleaned
|
|
* up by cgroup_migrate_finish().
|
|
*
|
|
* This function may be called without holding cgroup_threadgroup_rwsem
|
|
* even if the target is a process. Threads may be created and destroyed
|
|
* but as long as cgroup_mutex is not dropped, no new css_set can be put
|
|
* into play and the preloaded css_sets are guaranteed to cover all
|
|
* migrations.
|
|
*/
|
|
void cgroup_migrate_add_src(struct css_set *src_cset,
|
|
struct cgroup *dst_cgrp,
|
|
struct cgroup_mgctx *mgctx)
|
|
{
|
|
struct cgroup *src_cgrp;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
lockdep_assert_held(&css_set_lock);
|
|
|
|
/*
|
|
* If ->dead, @src_set is associated with one or more dead cgroups
|
|
* and doesn't contain any migratable tasks. Ignore it early so
|
|
* that the rest of migration path doesn't get confused by it.
|
|
*/
|
|
if (src_cset->dead)
|
|
return;
|
|
|
|
if (!list_empty(&src_cset->mg_src_preload_node))
|
|
return;
|
|
|
|
src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
|
|
|
|
WARN_ON(src_cset->mg_src_cgrp);
|
|
WARN_ON(src_cset->mg_dst_cgrp);
|
|
WARN_ON(!list_empty(&src_cset->mg_tasks));
|
|
WARN_ON(!list_empty(&src_cset->mg_node));
|
|
|
|
src_cset->mg_src_cgrp = src_cgrp;
|
|
src_cset->mg_dst_cgrp = dst_cgrp;
|
|
get_css_set(src_cset);
|
|
list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
|
|
}
|
|
|
|
/**
|
|
* cgroup_migrate_prepare_dst - prepare destination css_sets for migration
|
|
* @mgctx: migration context
|
|
*
|
|
* Tasks are about to be moved and all the source css_sets have been
|
|
* preloaded to @mgctx->preloaded_src_csets. This function looks up and
|
|
* pins all destination css_sets, links each to its source, and append them
|
|
* to @mgctx->preloaded_dst_csets.
|
|
*
|
|
* This function must be called after cgroup_migrate_add_src() has been
|
|
* called on each migration source css_set. After migration is performed
|
|
* using cgroup_migrate(), cgroup_migrate_finish() must be called on
|
|
* @mgctx.
|
|
*/
|
|
int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
|
|
{
|
|
struct css_set *src_cset, *tmp_cset;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
/* look up the dst cset for each src cset and link it to src */
|
|
list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
|
|
mg_src_preload_node) {
|
|
struct css_set *dst_cset;
|
|
struct cgroup_subsys *ss;
|
|
int ssid;
|
|
|
|
dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
|
|
if (!dst_cset)
|
|
return -ENOMEM;
|
|
|
|
WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
|
|
|
|
/*
|
|
* If src cset equals dst, it's noop. Drop the src.
|
|
* cgroup_migrate() will skip the cset too. Note that we
|
|
* can't handle src == dst as some nodes are used by both.
|
|
*/
|
|
if (src_cset == dst_cset) {
|
|
src_cset->mg_src_cgrp = NULL;
|
|
src_cset->mg_dst_cgrp = NULL;
|
|
list_del_init(&src_cset->mg_src_preload_node);
|
|
put_css_set(src_cset);
|
|
put_css_set(dst_cset);
|
|
continue;
|
|
}
|
|
|
|
src_cset->mg_dst_cset = dst_cset;
|
|
|
|
if (list_empty(&dst_cset->mg_dst_preload_node))
|
|
list_add_tail(&dst_cset->mg_dst_preload_node,
|
|
&mgctx->preloaded_dst_csets);
|
|
else
|
|
put_css_set(dst_cset);
|
|
|
|
for_each_subsys(ss, ssid)
|
|
if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
|
|
mgctx->ss_mask |= 1 << ssid;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cgroup_migrate - migrate a process or task to a cgroup
|
|
* @leader: the leader of the process or the task to migrate
|
|
* @threadgroup: whether @leader points to the whole process or a single task
|
|
* @mgctx: migration context
|
|
*
|
|
* Migrate a process or task denoted by @leader. If migrating a process,
|
|
* the caller must be holding cgroup_threadgroup_rwsem. The caller is also
|
|
* responsible for invoking cgroup_migrate_add_src() and
|
|
* cgroup_migrate_prepare_dst() on the targets before invoking this
|
|
* function and following up with cgroup_migrate_finish().
|
|
*
|
|
* As long as a controller's ->can_attach() doesn't fail, this function is
|
|
* guaranteed to succeed. This means that, excluding ->can_attach()
|
|
* failure, when migrating multiple targets, the success or failure can be
|
|
* decided for all targets by invoking group_migrate_prepare_dst() before
|
|
* actually starting migrating.
|
|
*/
|
|
int cgroup_migrate(struct task_struct *leader, bool threadgroup,
|
|
struct cgroup_mgctx *mgctx)
|
|
{
|
|
struct task_struct *task;
|
|
|
|
/*
|
|
* The following thread iteration should be inside an RCU critical
|
|
* section to prevent tasks from being freed while taking the snapshot.
|
|
* spin_lock_irq() implies RCU critical section here.
|
|
*/
|
|
spin_lock_irq(&css_set_lock);
|
|
task = leader;
|
|
do {
|
|
cgroup_migrate_add_task(task, mgctx);
|
|
if (!threadgroup)
|
|
break;
|
|
} while_each_thread(leader, task);
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
return cgroup_migrate_execute(mgctx);
|
|
}
|
|
|
|
/**
|
|
* cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
|
|
* @dst_cgrp: the cgroup to attach to
|
|
* @leader: the task or the leader of the threadgroup to be attached
|
|
* @threadgroup: attach the whole threadgroup?
|
|
*
|
|
* Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
|
|
*/
|
|
int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
|
|
bool threadgroup)
|
|
{
|
|
DEFINE_CGROUP_MGCTX(mgctx);
|
|
struct task_struct *task;
|
|
int ret = 0;
|
|
|
|
/* look up all src csets */
|
|
spin_lock_irq(&css_set_lock);
|
|
rcu_read_lock();
|
|
task = leader;
|
|
do {
|
|
cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
|
|
if (!threadgroup)
|
|
break;
|
|
} while_each_thread(leader, task);
|
|
rcu_read_unlock();
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
/* prepare dst csets and commit */
|
|
ret = cgroup_migrate_prepare_dst(&mgctx);
|
|
if (!ret)
|
|
ret = cgroup_migrate(leader, threadgroup, &mgctx);
|
|
|
|
cgroup_migrate_finish(&mgctx);
|
|
|
|
if (!ret)
|
|
TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
|
|
bool *threadgroup_locked)
|
|
{
|
|
struct task_struct *tsk;
|
|
pid_t pid;
|
|
|
|
if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/*
|
|
* If we migrate a single thread, we don't care about threadgroup
|
|
* stability. If the thread is `current`, it won't exit(2) under our
|
|
* hands or change PID through exec(2). We exclude
|
|
* cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
|
|
* callers by cgroup_mutex.
|
|
* Therefore, we can skip the global lock.
|
|
*/
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
*threadgroup_locked = pid || threadgroup;
|
|
cgroup_attach_lock(*threadgroup_locked);
|
|
|
|
rcu_read_lock();
|
|
if (pid) {
|
|
tsk = find_task_by_vpid(pid);
|
|
if (!tsk) {
|
|
tsk = ERR_PTR(-ESRCH);
|
|
goto out_unlock_threadgroup;
|
|
}
|
|
} else {
|
|
tsk = current;
|
|
}
|
|
|
|
if (threadgroup)
|
|
tsk = tsk->group_leader;
|
|
|
|
/*
|
|
* kthreads may acquire PF_NO_SETAFFINITY during initialization.
|
|
* If userland migrates such a kthread to a non-root cgroup, it can
|
|
* become trapped in a cpuset, or RT kthread may be born in a
|
|
* cgroup with no rt_runtime allocated. Just say no.
|
|
*/
|
|
if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
|
|
tsk = ERR_PTR(-EINVAL);
|
|
goto out_unlock_threadgroup;
|
|
}
|
|
|
|
get_task_struct(tsk);
|
|
goto out_unlock_rcu;
|
|
|
|
out_unlock_threadgroup:
|
|
cgroup_attach_unlock(*threadgroup_locked);
|
|
*threadgroup_locked = false;
|
|
out_unlock_rcu:
|
|
rcu_read_unlock();
|
|
return tsk;
|
|
}
|
|
|
|
void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
|
|
{
|
|
struct cgroup_subsys *ss;
|
|
int ssid;
|
|
|
|
/* release reference from cgroup_procs_write_start() */
|
|
put_task_struct(task);
|
|
|
|
cgroup_attach_unlock(threadgroup_locked);
|
|
|
|
for_each_subsys(ss, ssid)
|
|
if (ss->post_attach)
|
|
ss->post_attach();
|
|
}
|
|
|
|
static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
|
|
{
|
|
struct cgroup_subsys *ss;
|
|
bool printed = false;
|
|
int ssid;
|
|
|
|
do_each_subsys_mask(ss, ssid, ss_mask) {
|
|
if (printed)
|
|
seq_putc(seq, ' ');
|
|
seq_puts(seq, ss->name);
|
|
printed = true;
|
|
} while_each_subsys_mask();
|
|
if (printed)
|
|
seq_putc(seq, '\n');
|
|
}
|
|
|
|
/* show controllers which are enabled from the parent */
|
|
static int cgroup_controllers_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct cgroup *cgrp = seq_css(seq)->cgroup;
|
|
|
|
cgroup_print_ss_mask(seq, cgroup_control(cgrp));
|
|
return 0;
|
|
}
|
|
|
|
/* show controllers which are enabled for a given cgroup's children */
|
|
static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct cgroup *cgrp = seq_css(seq)->cgroup;
|
|
|
|
cgroup_print_ss_mask(seq, cgrp->subtree_control);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
|
|
* @cgrp: root of the subtree to update csses for
|
|
*
|
|
* @cgrp's control masks have changed and its subtree's css associations
|
|
* need to be updated accordingly. This function looks up all css_sets
|
|
* which are attached to the subtree, creates the matching updated css_sets
|
|
* and migrates the tasks to the new ones.
|
|
*/
|
|
static int cgroup_update_dfl_csses(struct cgroup *cgrp)
|
|
{
|
|
DEFINE_CGROUP_MGCTX(mgctx);
|
|
struct cgroup_subsys_state *d_css;
|
|
struct cgroup *dsct;
|
|
struct css_set *src_cset;
|
|
bool has_tasks;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
/* look up all csses currently attached to @cgrp's subtree */
|
|
spin_lock_irq(&css_set_lock);
|
|
cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
|
|
struct cgrp_cset_link *link;
|
|
|
|
/*
|
|
* As cgroup_update_dfl_csses() is only called by
|
|
* cgroup_apply_control(). The csses associated with the
|
|
* given cgrp will not be affected by changes made to
|
|
* its subtree_control file. We can skip them.
|
|
*/
|
|
if (dsct == cgrp)
|
|
continue;
|
|
|
|
list_for_each_entry(link, &dsct->cset_links, cset_link)
|
|
cgroup_migrate_add_src(link->cset, dsct, &mgctx);
|
|
}
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
/*
|
|
* We need to write-lock threadgroup_rwsem while migrating tasks.
|
|
* However, if there are no source csets for @cgrp, changing its
|
|
* controllers isn't gonna produce any task migrations and the
|
|
* write-locking can be skipped safely.
|
|
*/
|
|
has_tasks = !list_empty(&mgctx.preloaded_src_csets);
|
|
cgroup_attach_lock(has_tasks);
|
|
|
|
/* NULL dst indicates self on default hierarchy */
|
|
ret = cgroup_migrate_prepare_dst(&mgctx);
|
|
if (ret)
|
|
goto out_finish;
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
|
|
mg_src_preload_node) {
|
|
struct task_struct *task, *ntask;
|
|
|
|
/* all tasks in src_csets need to be migrated */
|
|
list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
|
|
cgroup_migrate_add_task(task, &mgctx);
|
|
}
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
ret = cgroup_migrate_execute(&mgctx);
|
|
out_finish:
|
|
cgroup_migrate_finish(&mgctx);
|
|
cgroup_attach_unlock(has_tasks);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
|
|
* @cgrp: root of the target subtree
|
|
*
|
|
* Because css offlining is asynchronous, userland may try to re-enable a
|
|
* controller while the previous css is still around. This function grabs
|
|
* cgroup_mutex and drains the previous css instances of @cgrp's subtree.
|
|
*/
|
|
void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
|
|
__acquires(&cgroup_mutex)
|
|
{
|
|
struct cgroup *dsct;
|
|
struct cgroup_subsys_state *d_css;
|
|
struct cgroup_subsys *ss;
|
|
int ssid;
|
|
|
|
restart:
|
|
cgroup_lock();
|
|
|
|
cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
|
|
for_each_subsys(ss, ssid) {
|
|
struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
|
|
DEFINE_WAIT(wait);
|
|
|
|
if (!css || !percpu_ref_is_dying(&css->refcnt))
|
|
continue;
|
|
|
|
cgroup_get_live(dsct);
|
|
prepare_to_wait(&dsct->offline_waitq, &wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
|
|
cgroup_unlock();
|
|
schedule();
|
|
finish_wait(&dsct->offline_waitq, &wait);
|
|
|
|
cgroup_put(dsct);
|
|
goto restart;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cgroup_save_control - save control masks and dom_cgrp of a subtree
|
|
* @cgrp: root of the target subtree
|
|
*
|
|
* Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
|
|
* respective old_ prefixed fields for @cgrp's subtree including @cgrp
|
|
* itself.
|
|
*/
|
|
static void cgroup_save_control(struct cgroup *cgrp)
|
|
{
|
|
struct cgroup *dsct;
|
|
struct cgroup_subsys_state *d_css;
|
|
|
|
cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
|
|
dsct->old_subtree_control = dsct->subtree_control;
|
|
dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
|
|
dsct->old_dom_cgrp = dsct->dom_cgrp;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cgroup_propagate_control - refresh control masks of a subtree
|
|
* @cgrp: root of the target subtree
|
|
*
|
|
* For @cgrp and its subtree, ensure ->subtree_ss_mask matches
|
|
* ->subtree_control and propagate controller availability through the
|
|
* subtree so that descendants don't have unavailable controllers enabled.
|
|
*/
|
|
static void cgroup_propagate_control(struct cgroup *cgrp)
|
|
{
|
|
struct cgroup *dsct;
|
|
struct cgroup_subsys_state *d_css;
|
|
|
|
cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
|
|
dsct->subtree_control &= cgroup_control(dsct);
|
|
dsct->subtree_ss_mask =
|
|
cgroup_calc_subtree_ss_mask(dsct->subtree_control,
|
|
cgroup_ss_mask(dsct));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cgroup_restore_control - restore control masks and dom_cgrp of a subtree
|
|
* @cgrp: root of the target subtree
|
|
*
|
|
* Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
|
|
* respective old_ prefixed fields for @cgrp's subtree including @cgrp
|
|
* itself.
|
|
*/
|
|
static void cgroup_restore_control(struct cgroup *cgrp)
|
|
{
|
|
struct cgroup *dsct;
|
|
struct cgroup_subsys_state *d_css;
|
|
|
|
cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
|
|
dsct->subtree_control = dsct->old_subtree_control;
|
|
dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
|
|
dsct->dom_cgrp = dsct->old_dom_cgrp;
|
|
}
|
|
}
|
|
|
|
static bool css_visible(struct cgroup_subsys_state *css)
|
|
{
|
|
struct cgroup_subsys *ss = css->ss;
|
|
struct cgroup *cgrp = css->cgroup;
|
|
|
|
if (cgroup_control(cgrp) & (1 << ss->id))
|
|
return true;
|
|
if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
|
|
return false;
|
|
return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
|
|
}
|
|
|
|
/**
|
|
* cgroup_apply_control_enable - enable or show csses according to control
|
|
* @cgrp: root of the target subtree
|
|
*
|
|
* Walk @cgrp's subtree and create new csses or make the existing ones
|
|
* visible. A css is created invisible if it's being implicitly enabled
|
|
* through dependency. An invisible css is made visible when the userland
|
|
* explicitly enables it.
|
|
*
|
|
* Returns 0 on success, -errno on failure. On failure, csses which have
|
|
* been processed already aren't cleaned up. The caller is responsible for
|
|
* cleaning up with cgroup_apply_control_disable().
|
|
*/
|
|
static int cgroup_apply_control_enable(struct cgroup *cgrp)
|
|
{
|
|
struct cgroup *dsct;
|
|
struct cgroup_subsys_state *d_css;
|
|
struct cgroup_subsys *ss;
|
|
int ssid, ret;
|
|
|
|
cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
|
|
for_each_subsys(ss, ssid) {
|
|
struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
|
|
|
|
if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
|
|
continue;
|
|
|
|
if (!css) {
|
|
css = css_create(dsct, ss);
|
|
if (IS_ERR(css))
|
|
return PTR_ERR(css);
|
|
}
|
|
|
|
WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
|
|
|
|
if (css_visible(css)) {
|
|
ret = css_populate_dir(css);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cgroup_apply_control_disable - kill or hide csses according to control
|
|
* @cgrp: root of the target subtree
|
|
*
|
|
* Walk @cgrp's subtree and kill and hide csses so that they match
|
|
* cgroup_ss_mask() and cgroup_visible_mask().
|
|
*
|
|
* A css is hidden when the userland requests it to be disabled while other
|
|
* subsystems are still depending on it. The css must not actively control
|
|
* resources and be in the vanilla state if it's made visible again later.
|
|
* Controllers which may be depended upon should provide ->css_reset() for
|
|
* this purpose.
|
|
*/
|
|
static void cgroup_apply_control_disable(struct cgroup *cgrp)
|
|
{
|
|
struct cgroup *dsct;
|
|
struct cgroup_subsys_state *d_css;
|
|
struct cgroup_subsys *ss;
|
|
int ssid;
|
|
|
|
cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
|
|
for_each_subsys(ss, ssid) {
|
|
struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
|
|
|
|
if (!css)
|
|
continue;
|
|
|
|
WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
|
|
|
|
if (css->parent &&
|
|
!(cgroup_ss_mask(dsct) & (1 << ss->id))) {
|
|
kill_css(css);
|
|
} else if (!css_visible(css)) {
|
|
css_clear_dir(css);
|
|
if (ss->css_reset)
|
|
ss->css_reset(css);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cgroup_apply_control - apply control mask updates to the subtree
|
|
* @cgrp: root of the target subtree
|
|
*
|
|
* subsystems can be enabled and disabled in a subtree using the following
|
|
* steps.
|
|
*
|
|
* 1. Call cgroup_save_control() to stash the current state.
|
|
* 2. Update ->subtree_control masks in the subtree as desired.
|
|
* 3. Call cgroup_apply_control() to apply the changes.
|
|
* 4. Optionally perform other related operations.
|
|
* 5. Call cgroup_finalize_control() to finish up.
|
|
*
|
|
* This function implements step 3 and propagates the mask changes
|
|
* throughout @cgrp's subtree, updates csses accordingly and perform
|
|
* process migrations.
|
|
*/
|
|
static int cgroup_apply_control(struct cgroup *cgrp)
|
|
{
|
|
int ret;
|
|
|
|
cgroup_propagate_control(cgrp);
|
|
|
|
ret = cgroup_apply_control_enable(cgrp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* At this point, cgroup_e_css_by_mask() results reflect the new csses
|
|
* making the following cgroup_update_dfl_csses() properly update
|
|
* css associations of all tasks in the subtree.
|
|
*/
|
|
return cgroup_update_dfl_csses(cgrp);
|
|
}
|
|
|
|
/**
|
|
* cgroup_finalize_control - finalize control mask update
|
|
* @cgrp: root of the target subtree
|
|
* @ret: the result of the update
|
|
*
|
|
* Finalize control mask update. See cgroup_apply_control() for more info.
|
|
*/
|
|
static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
|
|
{
|
|
if (ret) {
|
|
cgroup_restore_control(cgrp);
|
|
cgroup_propagate_control(cgrp);
|
|
}
|
|
|
|
cgroup_apply_control_disable(cgrp);
|
|
}
|
|
|
|
static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
|
|
{
|
|
u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
|
|
|
|
/* if nothing is getting enabled, nothing to worry about */
|
|
if (!enable)
|
|
return 0;
|
|
|
|
/* can @cgrp host any resources? */
|
|
if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* mixables don't care */
|
|
if (cgroup_is_mixable(cgrp))
|
|
return 0;
|
|
|
|
if (domain_enable) {
|
|
/* can't enable domain controllers inside a thread subtree */
|
|
if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
|
|
return -EOPNOTSUPP;
|
|
} else {
|
|
/*
|
|
* Threaded controllers can handle internal competitions
|
|
* and are always allowed inside a (prospective) thread
|
|
* subtree.
|
|
*/
|
|
if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Controllers can't be enabled for a cgroup with tasks to avoid
|
|
* child cgroups competing against tasks.
|
|
*/
|
|
if (cgroup_has_tasks(cgrp))
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* change the enabled child controllers for a cgroup in the default hierarchy */
|
|
static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes,
|
|
loff_t off)
|
|
{
|
|
u16 enable = 0, disable = 0;
|
|
struct cgroup *cgrp, *child;
|
|
struct cgroup_subsys *ss;
|
|
char *tok;
|
|
int ssid, ret;
|
|
|
|
/*
|
|
* Parse input - space separated list of subsystem names prefixed
|
|
* with either + or -.
|
|
*/
|
|
buf = strstrip(buf);
|
|
while ((tok = strsep(&buf, " "))) {
|
|
if (tok[0] == '\0')
|
|
continue;
|
|
do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
|
|
if (!cgroup_ssid_enabled(ssid) ||
|
|
strcmp(tok + 1, ss->name))
|
|
continue;
|
|
|
|
if (*tok == '+') {
|
|
enable |= 1 << ssid;
|
|
disable &= ~(1 << ssid);
|
|
} else if (*tok == '-') {
|
|
disable |= 1 << ssid;
|
|
enable &= ~(1 << ssid);
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
} while_each_subsys_mask();
|
|
if (ssid == CGROUP_SUBSYS_COUNT)
|
|
return -EINVAL;
|
|
}
|
|
|
|
cgrp = cgroup_kn_lock_live(of->kn, true);
|
|
if (!cgrp)
|
|
return -ENODEV;
|
|
|
|
for_each_subsys(ss, ssid) {
|
|
if (enable & (1 << ssid)) {
|
|
if (cgrp->subtree_control & (1 << ssid)) {
|
|
enable &= ~(1 << ssid);
|
|
continue;
|
|
}
|
|
|
|
if (!(cgroup_control(cgrp) & (1 << ssid))) {
|
|
ret = -ENOENT;
|
|
goto out_unlock;
|
|
}
|
|
} else if (disable & (1 << ssid)) {
|
|
if (!(cgrp->subtree_control & (1 << ssid))) {
|
|
disable &= ~(1 << ssid);
|
|
continue;
|
|
}
|
|
|
|
/* a child has it enabled? */
|
|
cgroup_for_each_live_child(child, cgrp) {
|
|
if (child->subtree_control & (1 << ssid)) {
|
|
ret = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!enable && !disable) {
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = cgroup_vet_subtree_control_enable(cgrp, enable);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
/* save and update control masks and prepare csses */
|
|
cgroup_save_control(cgrp);
|
|
|
|
cgrp->subtree_control |= enable;
|
|
cgrp->subtree_control &= ~disable;
|
|
|
|
ret = cgroup_apply_control(cgrp);
|
|
cgroup_finalize_control(cgrp, ret);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
kernfs_activate(cgrp->kn);
|
|
out_unlock:
|
|
cgroup_kn_unlock(of->kn);
|
|
return ret ?: nbytes;
|
|
}
|
|
|
|
/**
|
|
* cgroup_enable_threaded - make @cgrp threaded
|
|
* @cgrp: the target cgroup
|
|
*
|
|
* Called when "threaded" is written to the cgroup.type interface file and
|
|
* tries to make @cgrp threaded and join the parent's resource domain.
|
|
* This function is never called on the root cgroup as cgroup.type doesn't
|
|
* exist on it.
|
|
*/
|
|
static int cgroup_enable_threaded(struct cgroup *cgrp)
|
|
{
|
|
struct cgroup *parent = cgroup_parent(cgrp);
|
|
struct cgroup *dom_cgrp = parent->dom_cgrp;
|
|
struct cgroup *dsct;
|
|
struct cgroup_subsys_state *d_css;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
/* noop if already threaded */
|
|
if (cgroup_is_threaded(cgrp))
|
|
return 0;
|
|
|
|
/*
|
|
* If @cgroup is populated or has domain controllers enabled, it
|
|
* can't be switched. While the below cgroup_can_be_thread_root()
|
|
* test can catch the same conditions, that's only when @parent is
|
|
* not mixable, so let's check it explicitly.
|
|
*/
|
|
if (cgroup_is_populated(cgrp) ||
|
|
cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* we're joining the parent's domain, ensure its validity */
|
|
if (!cgroup_is_valid_domain(dom_cgrp) ||
|
|
!cgroup_can_be_thread_root(dom_cgrp))
|
|
return -EOPNOTSUPP;
|
|
|
|
/*
|
|
* The following shouldn't cause actual migrations and should
|
|
* always succeed.
|
|
*/
|
|
cgroup_save_control(cgrp);
|
|
|
|
cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
|
|
if (dsct == cgrp || cgroup_is_threaded(dsct))
|
|
dsct->dom_cgrp = dom_cgrp;
|
|
|
|
ret = cgroup_apply_control(cgrp);
|
|
if (!ret)
|
|
parent->nr_threaded_children++;
|
|
|
|
cgroup_finalize_control(cgrp, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int cgroup_type_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct cgroup *cgrp = seq_css(seq)->cgroup;
|
|
|
|
if (cgroup_is_threaded(cgrp))
|
|
seq_puts(seq, "threaded\n");
|
|
else if (!cgroup_is_valid_domain(cgrp))
|
|
seq_puts(seq, "domain invalid\n");
|
|
else if (cgroup_is_thread_root(cgrp))
|
|
seq_puts(seq, "domain threaded\n");
|
|
else
|
|
seq_puts(seq, "domain\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
|
|
size_t nbytes, loff_t off)
|
|
{
|
|
struct cgroup *cgrp;
|
|
int ret;
|
|
|
|
/* only switching to threaded mode is supported */
|
|
if (strcmp(strstrip(buf), "threaded"))
|
|
return -EINVAL;
|
|
|
|
/* drain dying csses before we re-apply (threaded) subtree control */
|
|
cgrp = cgroup_kn_lock_live(of->kn, true);
|
|
if (!cgrp)
|
|
return -ENOENT;
|
|
|
|
/* threaded can only be enabled */
|
|
ret = cgroup_enable_threaded(cgrp);
|
|
|
|
cgroup_kn_unlock(of->kn);
|
|
return ret ?: nbytes;
|
|
}
|
|
|
|
static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct cgroup *cgrp = seq_css(seq)->cgroup;
|
|
int descendants = READ_ONCE(cgrp->max_descendants);
|
|
|
|
if (descendants == INT_MAX)
|
|
seq_puts(seq, "max\n");
|
|
else
|
|
seq_printf(seq, "%d\n", descendants);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off)
|
|
{
|
|
struct cgroup *cgrp;
|
|
int descendants;
|
|
ssize_t ret;
|
|
|
|
buf = strstrip(buf);
|
|
if (!strcmp(buf, "max")) {
|
|
descendants = INT_MAX;
|
|
} else {
|
|
ret = kstrtoint(buf, 0, &descendants);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (descendants < 0)
|
|
return -ERANGE;
|
|
|
|
cgrp = cgroup_kn_lock_live(of->kn, false);
|
|
if (!cgrp)
|
|
return -ENOENT;
|
|
|
|
cgrp->max_descendants = descendants;
|
|
|
|
cgroup_kn_unlock(of->kn);
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
static int cgroup_max_depth_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct cgroup *cgrp = seq_css(seq)->cgroup;
|
|
int depth = READ_ONCE(cgrp->max_depth);
|
|
|
|
if (depth == INT_MAX)
|
|
seq_puts(seq, "max\n");
|
|
else
|
|
seq_printf(seq, "%d\n", depth);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off)
|
|
{
|
|
struct cgroup *cgrp;
|
|
ssize_t ret;
|
|
int depth;
|
|
|
|
buf = strstrip(buf);
|
|
if (!strcmp(buf, "max")) {
|
|
depth = INT_MAX;
|
|
} else {
|
|
ret = kstrtoint(buf, 0, &depth);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (depth < 0)
|
|
return -ERANGE;
|
|
|
|
cgrp = cgroup_kn_lock_live(of->kn, false);
|
|
if (!cgrp)
|
|
return -ENOENT;
|
|
|
|
cgrp->max_depth = depth;
|
|
|
|
cgroup_kn_unlock(of->kn);
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
static int cgroup_events_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct cgroup *cgrp = seq_css(seq)->cgroup;
|
|
|
|
seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
|
|
seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cgroup_stat_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct cgroup *cgroup = seq_css(seq)->cgroup;
|
|
|
|
seq_printf(seq, "nr_descendants %d\n",
|
|
cgroup->nr_descendants);
|
|
seq_printf(seq, "nr_dying_descendants %d\n",
|
|
cgroup->nr_dying_descendants);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
/**
|
|
* cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
|
|
* @cgrp: the cgroup of interest
|
|
* @ss: the subsystem of interest
|
|
*
|
|
* Find and get @cgrp's css associated with @ss. If the css doesn't exist
|
|
* or is offline, %NULL is returned.
|
|
*/
|
|
static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
|
|
struct cgroup_subsys *ss)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
|
|
rcu_read_lock();
|
|
css = cgroup_css(cgrp, ss);
|
|
if (css && !css_tryget_online(css))
|
|
css = NULL;
|
|
rcu_read_unlock();
|
|
|
|
return css;
|
|
}
|
|
|
|
static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
|
|
{
|
|
struct cgroup *cgrp = seq_css(seq)->cgroup;
|
|
struct cgroup_subsys *ss = cgroup_subsys[ssid];
|
|
struct cgroup_subsys_state *css;
|
|
int ret;
|
|
|
|
if (!ss->css_extra_stat_show)
|
|
return 0;
|
|
|
|
css = cgroup_tryget_css(cgrp, ss);
|
|
if (!css)
|
|
return 0;
|
|
|
|
ret = ss->css_extra_stat_show(seq, css);
|
|
css_put(css);
|
|
return ret;
|
|
}
|
|
|
|
static int cgroup_local_stat_show(struct seq_file *seq,
|
|
struct cgroup *cgrp, int ssid)
|
|
{
|
|
struct cgroup_subsys *ss = cgroup_subsys[ssid];
|
|
struct cgroup_subsys_state *css;
|
|
int ret;
|
|
|
|
if (!ss->css_local_stat_show)
|
|
return 0;
|
|
|
|
css = cgroup_tryget_css(cgrp, ss);
|
|
if (!css)
|
|
return 0;
|
|
|
|
ret = ss->css_local_stat_show(seq, css);
|
|
css_put(css);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static int cpu_stat_show(struct seq_file *seq, void *v)
|
|
{
|
|
int ret = 0;
|
|
|
|
cgroup_base_stat_cputime_show(seq);
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
static int cpu_local_stat_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
|
|
int ret = 0;
|
|
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_PSI
|
|
static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct cgroup *cgrp = seq_css(seq)->cgroup;
|
|
struct psi_group *psi = cgroup_psi(cgrp);
|
|
|
|
return psi_show(seq, psi, PSI_IO);
|
|
}
|
|
static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct cgroup *cgrp = seq_css(seq)->cgroup;
|
|
struct psi_group *psi = cgroup_psi(cgrp);
|
|
|
|
return psi_show(seq, psi, PSI_MEM);
|
|
}
|
|
static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct cgroup *cgrp = seq_css(seq)->cgroup;
|
|
struct psi_group *psi = cgroup_psi(cgrp);
|
|
|
|
return psi_show(seq, psi, PSI_CPU);
|
|
}
|
|
|
|
static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
|
|
size_t nbytes, enum psi_res res)
|
|
{
|
|
struct cgroup_file_ctx *ctx = of->priv;
|
|
struct psi_trigger *new;
|
|
struct cgroup *cgrp;
|
|
struct psi_group *psi;
|
|
|
|
cgrp = cgroup_kn_lock_live(of->kn, false);
|
|
if (!cgrp)
|
|
return -ENODEV;
|
|
|
|
cgroup_get(cgrp);
|
|
cgroup_kn_unlock(of->kn);
|
|
|
|
/* Allow only one trigger per file descriptor */
|
|
if (ctx->psi.trigger) {
|
|
cgroup_put(cgrp);
|
|
return -EBUSY;
|
|
}
|
|
|
|
psi = cgroup_psi(cgrp);
|
|
new = psi_trigger_create(psi, buf, res, of->file, of);
|
|
if (IS_ERR(new)) {
|
|
cgroup_put(cgrp);
|
|
return PTR_ERR(new);
|
|
}
|
|
|
|
smp_store_release(&ctx->psi.trigger, new);
|
|
cgroup_put(cgrp);
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes,
|
|
loff_t off)
|
|
{
|
|
return pressure_write(of, buf, nbytes, PSI_IO);
|
|
}
|
|
|
|
static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes,
|
|
loff_t off)
|
|
{
|
|
return pressure_write(of, buf, nbytes, PSI_MEM);
|
|
}
|
|
|
|
static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes,
|
|
loff_t off)
|
|
{
|
|
return pressure_write(of, buf, nbytes, PSI_CPU);
|
|
}
|
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct cgroup *cgrp = seq_css(seq)->cgroup;
|
|
struct psi_group *psi = cgroup_psi(cgrp);
|
|
|
|
return psi_show(seq, psi, PSI_IRQ);
|
|
}
|
|
|
|
static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes,
|
|
loff_t off)
|
|
{
|
|
return pressure_write(of, buf, nbytes, PSI_IRQ);
|
|
}
|
|
#endif
|
|
|
|
static int cgroup_pressure_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct cgroup *cgrp = seq_css(seq)->cgroup;
|
|
struct psi_group *psi = cgroup_psi(cgrp);
|
|
|
|
seq_printf(seq, "%d\n", psi->enabled);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes,
|
|
loff_t off)
|
|
{
|
|
ssize_t ret;
|
|
int enable;
|
|
struct cgroup *cgrp;
|
|
struct psi_group *psi;
|
|
|
|
ret = kstrtoint(strstrip(buf), 0, &enable);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (enable < 0 || enable > 1)
|
|
return -ERANGE;
|
|
|
|
cgrp = cgroup_kn_lock_live(of->kn, false);
|
|
if (!cgrp)
|
|
return -ENOENT;
|
|
|
|
psi = cgroup_psi(cgrp);
|
|
if (psi->enabled != enable) {
|
|
int i;
|
|
|
|
/* show or hide {cpu,memory,io,irq}.pressure files */
|
|
for (i = 0; i < NR_PSI_RESOURCES; i++)
|
|
cgroup_file_show(&cgrp->psi_files[i], enable);
|
|
|
|
psi->enabled = enable;
|
|
if (enable)
|
|
psi_cgroup_restart(psi);
|
|
}
|
|
|
|
cgroup_kn_unlock(of->kn);
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
|
|
poll_table *pt)
|
|
{
|
|
struct cgroup_file_ctx *ctx = of->priv;
|
|
|
|
return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
|
|
}
|
|
|
|
static void cgroup_pressure_release(struct kernfs_open_file *of)
|
|
{
|
|
struct cgroup_file_ctx *ctx = of->priv;
|
|
|
|
psi_trigger_destroy(ctx->psi.trigger);
|
|
}
|
|
|
|
bool cgroup_psi_enabled(void)
|
|
{
|
|
if (static_branch_likely(&psi_disabled))
|
|
return false;
|
|
|
|
return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
|
|
}
|
|
|
|
#else /* CONFIG_PSI */
|
|
bool cgroup_psi_enabled(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif /* CONFIG_PSI */
|
|
|
|
static int cgroup_freeze_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct cgroup *cgrp = seq_css(seq)->cgroup;
|
|
|
|
seq_printf(seq, "%d\n", cgrp->freezer.freeze);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off)
|
|
{
|
|
struct cgroup *cgrp;
|
|
ssize_t ret;
|
|
int freeze;
|
|
|
|
ret = kstrtoint(strstrip(buf), 0, &freeze);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (freeze < 0 || freeze > 1)
|
|
return -ERANGE;
|
|
|
|
cgrp = cgroup_kn_lock_live(of->kn, false);
|
|
if (!cgrp)
|
|
return -ENOENT;
|
|
|
|
cgroup_freeze(cgrp, freeze);
|
|
|
|
cgroup_kn_unlock(of->kn);
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
static void __cgroup_kill(struct cgroup *cgrp)
|
|
{
|
|
struct css_task_iter it;
|
|
struct task_struct *task;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
set_bit(CGRP_KILL, &cgrp->flags);
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
|
|
while ((task = css_task_iter_next(&it))) {
|
|
/* Ignore kernel threads here. */
|
|
if (task->flags & PF_KTHREAD)
|
|
continue;
|
|
|
|
/* Skip tasks that are already dying. */
|
|
if (__fatal_signal_pending(task))
|
|
continue;
|
|
|
|
send_sig(SIGKILL, task, 0);
|
|
}
|
|
css_task_iter_end(&it);
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
clear_bit(CGRP_KILL, &cgrp->flags);
|
|
spin_unlock_irq(&css_set_lock);
|
|
}
|
|
|
|
static void cgroup_kill(struct cgroup *cgrp)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
struct cgroup *dsct;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
|
|
__cgroup_kill(dsct);
|
|
}
|
|
|
|
static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
|
|
size_t nbytes, loff_t off)
|
|
{
|
|
ssize_t ret = 0;
|
|
int kill;
|
|
struct cgroup *cgrp;
|
|
|
|
ret = kstrtoint(strstrip(buf), 0, &kill);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (kill != 1)
|
|
return -ERANGE;
|
|
|
|
cgrp = cgroup_kn_lock_live(of->kn, false);
|
|
if (!cgrp)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* Killing is a process directed operation, i.e. the whole thread-group
|
|
* is taken down so act like we do for cgroup.procs and only make this
|
|
* writable in non-threaded cgroups.
|
|
*/
|
|
if (cgroup_is_threaded(cgrp))
|
|
ret = -EOPNOTSUPP;
|
|
else
|
|
cgroup_kill(cgrp);
|
|
|
|
cgroup_kn_unlock(of->kn);
|
|
|
|
return ret ?: nbytes;
|
|
}
|
|
|
|
static int cgroup_file_open(struct kernfs_open_file *of)
|
|
{
|
|
struct cftype *cft = of_cft(of);
|
|
struct cgroup_file_ctx *ctx;
|
|
int ret;
|
|
|
|
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
|
|
ctx->ns = current->nsproxy->cgroup_ns;
|
|
get_cgroup_ns(ctx->ns);
|
|
of->priv = ctx;
|
|
|
|
if (!cft->open)
|
|
return 0;
|
|
|
|
ret = cft->open(of);
|
|
if (ret) {
|
|
put_cgroup_ns(ctx->ns);
|
|
kfree(ctx);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void cgroup_file_release(struct kernfs_open_file *of)
|
|
{
|
|
struct cftype *cft = of_cft(of);
|
|
struct cgroup_file_ctx *ctx = of->priv;
|
|
|
|
if (cft->release)
|
|
cft->release(of);
|
|
put_cgroup_ns(ctx->ns);
|
|
kfree(ctx);
|
|
}
|
|
|
|
static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
|
|
size_t nbytes, loff_t off)
|
|
{
|
|
struct cgroup_file_ctx *ctx = of->priv;
|
|
struct cgroup *cgrp = of->kn->parent->priv;
|
|
struct cftype *cft = of_cft(of);
|
|
struct cgroup_subsys_state *css;
|
|
int ret;
|
|
|
|
if (!nbytes)
|
|
return 0;
|
|
|
|
/*
|
|
* If namespaces are delegation boundaries, disallow writes to
|
|
* files in an non-init namespace root from inside the namespace
|
|
* except for the files explicitly marked delegatable -
|
|
* cgroup.procs and cgroup.subtree_control.
|
|
*/
|
|
if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
|
|
!(cft->flags & CFTYPE_NS_DELEGATABLE) &&
|
|
ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
|
|
return -EPERM;
|
|
|
|
if (cft->write)
|
|
return cft->write(of, buf, nbytes, off);
|
|
|
|
/*
|
|
* kernfs guarantees that a file isn't deleted with operations in
|
|
* flight, which means that the matching css is and stays alive and
|
|
* doesn't need to be pinned. The RCU locking is not necessary
|
|
* either. It's just for the convenience of using cgroup_css().
|
|
*/
|
|
rcu_read_lock();
|
|
css = cgroup_css(cgrp, cft->ss);
|
|
rcu_read_unlock();
|
|
|
|
if (cft->write_u64) {
|
|
unsigned long long v;
|
|
ret = kstrtoull(buf, 0, &v);
|
|
if (!ret)
|
|
ret = cft->write_u64(css, cft, v);
|
|
} else if (cft->write_s64) {
|
|
long long v;
|
|
ret = kstrtoll(buf, 0, &v);
|
|
if (!ret)
|
|
ret = cft->write_s64(css, cft, v);
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret ?: nbytes;
|
|
}
|
|
|
|
static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
|
|
{
|
|
struct cftype *cft = of_cft(of);
|
|
|
|
if (cft->poll)
|
|
return cft->poll(of, pt);
|
|
|
|
return kernfs_generic_poll(of, pt);
|
|
}
|
|
|
|
static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
|
|
{
|
|
return seq_cft(seq)->seq_start(seq, ppos);
|
|
}
|
|
|
|
static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
|
|
{
|
|
return seq_cft(seq)->seq_next(seq, v, ppos);
|
|
}
|
|
|
|
static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
|
|
{
|
|
if (seq_cft(seq)->seq_stop)
|
|
seq_cft(seq)->seq_stop(seq, v);
|
|
}
|
|
|
|
static int cgroup_seqfile_show(struct seq_file *m, void *arg)
|
|
{
|
|
struct cftype *cft = seq_cft(m);
|
|
struct cgroup_subsys_state *css = seq_css(m);
|
|
|
|
if (cft->seq_show)
|
|
return cft->seq_show(m, arg);
|
|
|
|
if (cft->read_u64)
|
|
seq_printf(m, "%llu\n", cft->read_u64(css, cft));
|
|
else if (cft->read_s64)
|
|
seq_printf(m, "%lld\n", cft->read_s64(css, cft));
|
|
else
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static struct kernfs_ops cgroup_kf_single_ops = {
|
|
.atomic_write_len = PAGE_SIZE,
|
|
.open = cgroup_file_open,
|
|
.release = cgroup_file_release,
|
|
.write = cgroup_file_write,
|
|
.poll = cgroup_file_poll,
|
|
.seq_show = cgroup_seqfile_show,
|
|
};
|
|
|
|
static struct kernfs_ops cgroup_kf_ops = {
|
|
.atomic_write_len = PAGE_SIZE,
|
|
.open = cgroup_file_open,
|
|
.release = cgroup_file_release,
|
|
.write = cgroup_file_write,
|
|
.poll = cgroup_file_poll,
|
|
.seq_start = cgroup_seqfile_start,
|
|
.seq_next = cgroup_seqfile_next,
|
|
.seq_stop = cgroup_seqfile_stop,
|
|
.seq_show = cgroup_seqfile_show,
|
|
};
|
|
|
|
/* set uid and gid of cgroup dirs and files to that of the creator */
|
|
static int cgroup_kn_set_ugid(struct kernfs_node *kn)
|
|
{
|
|
struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
|
|
.ia_uid = current_fsuid(),
|
|
.ia_gid = current_fsgid(), };
|
|
|
|
if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
|
|
gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
|
|
return 0;
|
|
|
|
return kernfs_setattr(kn, &iattr);
|
|
}
|
|
|
|
static void cgroup_file_notify_timer(struct timer_list *timer)
|
|
{
|
|
cgroup_file_notify(container_of(timer, struct cgroup_file,
|
|
notify_timer));
|
|
}
|
|
|
|
static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
|
|
struct cftype *cft)
|
|
{
|
|
char name[CGROUP_FILE_NAME_MAX];
|
|
struct kernfs_node *kn;
|
|
struct lock_class_key *key = NULL;
|
|
int ret;
|
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
key = &cft->lockdep_key;
|
|
#endif
|
|
kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
|
|
cgroup_file_mode(cft),
|
|
GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
|
|
0, cft->kf_ops, cft,
|
|
NULL, key);
|
|
if (IS_ERR(kn))
|
|
return PTR_ERR(kn);
|
|
|
|
ret = cgroup_kn_set_ugid(kn);
|
|
if (ret) {
|
|
kernfs_remove(kn);
|
|
return ret;
|
|
}
|
|
|
|
if (cft->file_offset) {
|
|
struct cgroup_file *cfile = (void *)css + cft->file_offset;
|
|
|
|
timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
|
|
|
|
spin_lock_irq(&cgroup_file_kn_lock);
|
|
cfile->kn = kn;
|
|
spin_unlock_irq(&cgroup_file_kn_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cgroup_addrm_files - add or remove files to a cgroup directory
|
|
* @css: the target css
|
|
* @cgrp: the target cgroup (usually css->cgroup)
|
|
* @cfts: array of cftypes to be added
|
|
* @is_add: whether to add or remove
|
|
*
|
|
* Depending on @is_add, add or remove files defined by @cfts on @cgrp.
|
|
* For removals, this function never fails.
|
|
*/
|
|
static int cgroup_addrm_files(struct cgroup_subsys_state *css,
|
|
struct cgroup *cgrp, struct cftype cfts[],
|
|
bool is_add)
|
|
{
|
|
struct cftype *cft, *cft_end = NULL;
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
restart:
|
|
for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
|
|
/* does cft->flags tell us to skip this file on @cgrp? */
|
|
if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
|
|
continue;
|
|
if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
|
|
continue;
|
|
if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
|
|
continue;
|
|
if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
|
|
continue;
|
|
if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
|
|
continue;
|
|
if (is_add) {
|
|
ret = cgroup_add_file(css, cgrp, cft);
|
|
if (ret) {
|
|
pr_warn("%s: failed to add %s, err=%d\n",
|
|
__func__, cft->name, ret);
|
|
cft_end = cft;
|
|
is_add = false;
|
|
goto restart;
|
|
}
|
|
} else {
|
|
cgroup_rm_file(cgrp, cft);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
|
|
{
|
|
struct cgroup_subsys *ss = cfts[0].ss;
|
|
struct cgroup *root = &ss->root->cgrp;
|
|
struct cgroup_subsys_state *css;
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
/* add/rm files for all cgroups created before */
|
|
css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
|
|
struct cgroup *cgrp = css->cgroup;
|
|
|
|
if (!(css->flags & CSS_VISIBLE))
|
|
continue;
|
|
|
|
ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
if (is_add && !ret)
|
|
kernfs_activate(root->kn);
|
|
return ret;
|
|
}
|
|
|
|
static void cgroup_exit_cftypes(struct cftype *cfts)
|
|
{
|
|
struct cftype *cft;
|
|
|
|
for (cft = cfts; cft->name[0] != '\0'; cft++) {
|
|
/* free copy for custom atomic_write_len, see init_cftypes() */
|
|
if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
|
|
kfree(cft->kf_ops);
|
|
cft->kf_ops = NULL;
|
|
cft->ss = NULL;
|
|
|
|
/* revert flags set by cgroup core while adding @cfts */
|
|
cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
|
|
__CFTYPE_ADDED);
|
|
}
|
|
}
|
|
|
|
static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
|
|
{
|
|
struct cftype *cft;
|
|
int ret = 0;
|
|
|
|
for (cft = cfts; cft->name[0] != '\0'; cft++) {
|
|
struct kernfs_ops *kf_ops;
|
|
|
|
WARN_ON(cft->ss || cft->kf_ops);
|
|
|
|
if (cft->flags & __CFTYPE_ADDED) {
|
|
ret = -EBUSY;
|
|
break;
|
|
}
|
|
|
|
if (cft->seq_start)
|
|
kf_ops = &cgroup_kf_ops;
|
|
else
|
|
kf_ops = &cgroup_kf_single_ops;
|
|
|
|
/*
|
|
* Ugh... if @cft wants a custom max_write_len, we need to
|
|
* make a copy of kf_ops to set its atomic_write_len.
|
|
*/
|
|
if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
|
|
kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
|
|
if (!kf_ops) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
kf_ops->atomic_write_len = cft->max_write_len;
|
|
}
|
|
|
|
cft->kf_ops = kf_ops;
|
|
cft->ss = ss;
|
|
cft->flags |= __CFTYPE_ADDED;
|
|
}
|
|
|
|
if (ret)
|
|
cgroup_exit_cftypes(cfts);
|
|
return ret;
|
|
}
|
|
|
|
static void cgroup_rm_cftypes_locked(struct cftype *cfts)
|
|
{
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
list_del(&cfts->node);
|
|
cgroup_apply_cftypes(cfts, false);
|
|
cgroup_exit_cftypes(cfts);
|
|
}
|
|
|
|
/**
|
|
* cgroup_rm_cftypes - remove an array of cftypes from a subsystem
|
|
* @cfts: zero-length name terminated array of cftypes
|
|
*
|
|
* Unregister @cfts. Files described by @cfts are removed from all
|
|
* existing cgroups and all future cgroups won't have them either. This
|
|
* function can be called anytime whether @cfts' subsys is attached or not.
|
|
*
|
|
* Returns 0 on successful unregistration, -ENOENT if @cfts is not
|
|
* registered.
|
|
*/
|
|
int cgroup_rm_cftypes(struct cftype *cfts)
|
|
{
|
|
if (!cfts || cfts[0].name[0] == '\0')
|
|
return 0;
|
|
|
|
if (!(cfts[0].flags & __CFTYPE_ADDED))
|
|
return -ENOENT;
|
|
|
|
cgroup_lock();
|
|
cgroup_rm_cftypes_locked(cfts);
|
|
cgroup_unlock();
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cgroup_add_cftypes - add an array of cftypes to a subsystem
|
|
* @ss: target cgroup subsystem
|
|
* @cfts: zero-length name terminated array of cftypes
|
|
*
|
|
* Register @cfts to @ss. Files described by @cfts are created for all
|
|
* existing cgroups to which @ss is attached and all future cgroups will
|
|
* have them too. This function can be called anytime whether @ss is
|
|
* attached or not.
|
|
*
|
|
* Returns 0 on successful registration, -errno on failure. Note that this
|
|
* function currently returns 0 as long as @cfts registration is successful
|
|
* even if some file creation attempts on existing cgroups fail.
|
|
*/
|
|
static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
|
|
{
|
|
int ret;
|
|
|
|
if (!cgroup_ssid_enabled(ss->id))
|
|
return 0;
|
|
|
|
if (!cfts || cfts[0].name[0] == '\0')
|
|
return 0;
|
|
|
|
ret = cgroup_init_cftypes(ss, cfts);
|
|
if (ret)
|
|
return ret;
|
|
|
|
cgroup_lock();
|
|
|
|
list_add_tail(&cfts->node, &ss->cfts);
|
|
ret = cgroup_apply_cftypes(cfts, true);
|
|
if (ret)
|
|
cgroup_rm_cftypes_locked(cfts);
|
|
|
|
cgroup_unlock();
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
|
|
* @ss: target cgroup subsystem
|
|
* @cfts: zero-length name terminated array of cftypes
|
|
*
|
|
* Similar to cgroup_add_cftypes() but the added files are only used for
|
|
* the default hierarchy.
|
|
*/
|
|
int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
|
|
{
|
|
struct cftype *cft;
|
|
|
|
for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
|
|
cft->flags |= __CFTYPE_ONLY_ON_DFL;
|
|
return cgroup_add_cftypes(ss, cfts);
|
|
}
|
|
|
|
/**
|
|
* cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
|
|
* @ss: target cgroup subsystem
|
|
* @cfts: zero-length name terminated array of cftypes
|
|
*
|
|
* Similar to cgroup_add_cftypes() but the added files are only used for
|
|
* the legacy hierarchies.
|
|
*/
|
|
int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
|
|
{
|
|
struct cftype *cft;
|
|
|
|
for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
|
|
cft->flags |= __CFTYPE_NOT_ON_DFL;
|
|
return cgroup_add_cftypes(ss, cfts);
|
|
}
|
|
|
|
/**
|
|
* cgroup_file_notify - generate a file modified event for a cgroup_file
|
|
* @cfile: target cgroup_file
|
|
*
|
|
* @cfile must have been obtained by setting cftype->file_offset.
|
|
*/
|
|
void cgroup_file_notify(struct cgroup_file *cfile)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cgroup_file_kn_lock, flags);
|
|
if (cfile->kn) {
|
|
unsigned long last = cfile->notified_at;
|
|
unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
|
|
|
|
if (time_in_range(jiffies, last, next)) {
|
|
timer_reduce(&cfile->notify_timer, next);
|
|
} else {
|
|
kernfs_notify(cfile->kn);
|
|
cfile->notified_at = jiffies;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* cgroup_file_show - show or hide a hidden cgroup file
|
|
* @cfile: target cgroup_file obtained by setting cftype->file_offset
|
|
* @show: whether to show or hide
|
|
*/
|
|
void cgroup_file_show(struct cgroup_file *cfile, bool show)
|
|
{
|
|
struct kernfs_node *kn;
|
|
|
|
spin_lock_irq(&cgroup_file_kn_lock);
|
|
kn = cfile->kn;
|
|
kernfs_get(kn);
|
|
spin_unlock_irq(&cgroup_file_kn_lock);
|
|
|
|
if (kn)
|
|
kernfs_show(kn, show);
|
|
|
|
kernfs_put(kn);
|
|
}
|
|
|
|
/**
|
|
* css_next_child - find the next child of a given css
|
|
* @pos: the current position (%NULL to initiate traversal)
|
|
* @parent: css whose children to walk
|
|
*
|
|
* This function returns the next child of @parent and should be called
|
|
* under either cgroup_mutex or RCU read lock. The only requirement is
|
|
* that @parent and @pos are accessible. The next sibling is guaranteed to
|
|
* be returned regardless of their states.
|
|
*
|
|
* If a subsystem synchronizes ->css_online() and the start of iteration, a
|
|
* css which finished ->css_online() is guaranteed to be visible in the
|
|
* future iterations and will stay visible until the last reference is put.
|
|
* A css which hasn't finished ->css_online() or already finished
|
|
* ->css_offline() may show up during traversal. It's each subsystem's
|
|
* responsibility to synchronize against on/offlining.
|
|
*/
|
|
struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
|
|
struct cgroup_subsys_state *parent)
|
|
{
|
|
struct cgroup_subsys_state *next;
|
|
|
|
cgroup_assert_mutex_or_rcu_locked();
|
|
|
|
/*
|
|
* @pos could already have been unlinked from the sibling list.
|
|
* Once a cgroup is removed, its ->sibling.next is no longer
|
|
* updated when its next sibling changes. CSS_RELEASED is set when
|
|
* @pos is taken off list, at which time its next pointer is valid,
|
|
* and, as releases are serialized, the one pointed to by the next
|
|
* pointer is guaranteed to not have started release yet. This
|
|
* implies that if we observe !CSS_RELEASED on @pos in this RCU
|
|
* critical section, the one pointed to by its next pointer is
|
|
* guaranteed to not have finished its RCU grace period even if we
|
|
* have dropped rcu_read_lock() in-between iterations.
|
|
*
|
|
* If @pos has CSS_RELEASED set, its next pointer can't be
|
|
* dereferenced; however, as each css is given a monotonically
|
|
* increasing unique serial number and always appended to the
|
|
* sibling list, the next one can be found by walking the parent's
|
|
* children until the first css with higher serial number than
|
|
* @pos's. While this path can be slower, it happens iff iteration
|
|
* races against release and the race window is very small.
|
|
*/
|
|
if (!pos) {
|
|
next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
|
|
} else if (likely(!(pos->flags & CSS_RELEASED))) {
|
|
next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
|
|
} else {
|
|
list_for_each_entry_rcu(next, &parent->children, sibling,
|
|
lockdep_is_held(&cgroup_mutex))
|
|
if (next->serial_nr > pos->serial_nr)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* @next, if not pointing to the head, can be dereferenced and is
|
|
* the next sibling.
|
|
*/
|
|
if (&next->sibling != &parent->children)
|
|
return next;
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* css_next_descendant_pre - find the next descendant for pre-order walk
|
|
* @pos: the current position (%NULL to initiate traversal)
|
|
* @root: css whose descendants to walk
|
|
*
|
|
* To be used by css_for_each_descendant_pre(). Find the next descendant
|
|
* to visit for pre-order traversal of @root's descendants. @root is
|
|
* included in the iteration and the first node to be visited.
|
|
*
|
|
* While this function requires cgroup_mutex or RCU read locking, it
|
|
* doesn't require the whole traversal to be contained in a single critical
|
|
* section. This function will return the correct next descendant as long
|
|
* as both @pos and @root are accessible and @pos is a descendant of @root.
|
|
*
|
|
* If a subsystem synchronizes ->css_online() and the start of iteration, a
|
|
* css which finished ->css_online() is guaranteed to be visible in the
|
|
* future iterations and will stay visible until the last reference is put.
|
|
* A css which hasn't finished ->css_online() or already finished
|
|
* ->css_offline() may show up during traversal. It's each subsystem's
|
|
* responsibility to synchronize against on/offlining.
|
|
*/
|
|
struct cgroup_subsys_state *
|
|
css_next_descendant_pre(struct cgroup_subsys_state *pos,
|
|
struct cgroup_subsys_state *root)
|
|
{
|
|
struct cgroup_subsys_state *next;
|
|
|
|
cgroup_assert_mutex_or_rcu_locked();
|
|
|
|
/* if first iteration, visit @root */
|
|
if (!pos)
|
|
return root;
|
|
|
|
/* visit the first child if exists */
|
|
next = css_next_child(NULL, pos);
|
|
if (next)
|
|
return next;
|
|
|
|
/* no child, visit my or the closest ancestor's next sibling */
|
|
while (pos != root) {
|
|
next = css_next_child(pos, pos->parent);
|
|
if (next)
|
|
return next;
|
|
pos = pos->parent;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(css_next_descendant_pre);
|
|
|
|
/**
|
|
* css_rightmost_descendant - return the rightmost descendant of a css
|
|
* @pos: css of interest
|
|
*
|
|
* Return the rightmost descendant of @pos. If there's no descendant, @pos
|
|
* is returned. This can be used during pre-order traversal to skip
|
|
* subtree of @pos.
|
|
*
|
|
* While this function requires cgroup_mutex or RCU read locking, it
|
|
* doesn't require the whole traversal to be contained in a single critical
|
|
* section. This function will return the correct rightmost descendant as
|
|
* long as @pos is accessible.
|
|
*/
|
|
struct cgroup_subsys_state *
|
|
css_rightmost_descendant(struct cgroup_subsys_state *pos)
|
|
{
|
|
struct cgroup_subsys_state *last, *tmp;
|
|
|
|
cgroup_assert_mutex_or_rcu_locked();
|
|
|
|
do {
|
|
last = pos;
|
|
/* ->prev isn't RCU safe, walk ->next till the end */
|
|
pos = NULL;
|
|
css_for_each_child(tmp, last)
|
|
pos = tmp;
|
|
} while (pos);
|
|
|
|
return last;
|
|
}
|
|
|
|
static struct cgroup_subsys_state *
|
|
css_leftmost_descendant(struct cgroup_subsys_state *pos)
|
|
{
|
|
struct cgroup_subsys_state *last;
|
|
|
|
do {
|
|
last = pos;
|
|
pos = css_next_child(NULL, pos);
|
|
} while (pos);
|
|
|
|
return last;
|
|
}
|
|
|
|
/**
|
|
* css_next_descendant_post - find the next descendant for post-order walk
|
|
* @pos: the current position (%NULL to initiate traversal)
|
|
* @root: css whose descendants to walk
|
|
*
|
|
* To be used by css_for_each_descendant_post(). Find the next descendant
|
|
* to visit for post-order traversal of @root's descendants. @root is
|
|
* included in the iteration and the last node to be visited.
|
|
*
|
|
* While this function requires cgroup_mutex or RCU read locking, it
|
|
* doesn't require the whole traversal to be contained in a single critical
|
|
* section. This function will return the correct next descendant as long
|
|
* as both @pos and @cgroup are accessible and @pos is a descendant of
|
|
* @cgroup.
|
|
*
|
|
* If a subsystem synchronizes ->css_online() and the start of iteration, a
|
|
* css which finished ->css_online() is guaranteed to be visible in the
|
|
* future iterations and will stay visible until the last reference is put.
|
|
* A css which hasn't finished ->css_online() or already finished
|
|
* ->css_offline() may show up during traversal. It's each subsystem's
|
|
* responsibility to synchronize against on/offlining.
|
|
*/
|
|
struct cgroup_subsys_state *
|
|
css_next_descendant_post(struct cgroup_subsys_state *pos,
|
|
struct cgroup_subsys_state *root)
|
|
{
|
|
struct cgroup_subsys_state *next;
|
|
|
|
cgroup_assert_mutex_or_rcu_locked();
|
|
|
|
/* if first iteration, visit leftmost descendant which may be @root */
|
|
if (!pos)
|
|
return css_leftmost_descendant(root);
|
|
|
|
/* if we visited @root, we're done */
|
|
if (pos == root)
|
|
return NULL;
|
|
|
|
/* if there's an unvisited sibling, visit its leftmost descendant */
|
|
next = css_next_child(pos, pos->parent);
|
|
if (next)
|
|
return css_leftmost_descendant(next);
|
|
|
|
/* no sibling left, visit parent */
|
|
return pos->parent;
|
|
}
|
|
|
|
/**
|
|
* css_has_online_children - does a css have online children
|
|
* @css: the target css
|
|
*
|
|
* Returns %true if @css has any online children; otherwise, %false. This
|
|
* function can be called from any context but the caller is responsible
|
|
* for synchronizing against on/offlining as necessary.
|
|
*/
|
|
bool css_has_online_children(struct cgroup_subsys_state *css)
|
|
{
|
|
struct cgroup_subsys_state *child;
|
|
bool ret = false;
|
|
|
|
rcu_read_lock();
|
|
css_for_each_child(child, css) {
|
|
if (child->flags & CSS_ONLINE) {
|
|
ret = true;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
|
|
{
|
|
struct list_head *l;
|
|
struct cgrp_cset_link *link;
|
|
struct css_set *cset;
|
|
|
|
lockdep_assert_held(&css_set_lock);
|
|
|
|
/* find the next threaded cset */
|
|
if (it->tcset_pos) {
|
|
l = it->tcset_pos->next;
|
|
|
|
if (l != it->tcset_head) {
|
|
it->tcset_pos = l;
|
|
return container_of(l, struct css_set,
|
|
threaded_csets_node);
|
|
}
|
|
|
|
it->tcset_pos = NULL;
|
|
}
|
|
|
|
/* find the next cset */
|
|
l = it->cset_pos;
|
|
l = l->next;
|
|
if (l == it->cset_head) {
|
|
it->cset_pos = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
if (it->ss) {
|
|
cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
|
|
} else {
|
|
link = list_entry(l, struct cgrp_cset_link, cset_link);
|
|
cset = link->cset;
|
|
}
|
|
|
|
it->cset_pos = l;
|
|
|
|
/* initialize threaded css_set walking */
|
|
if (it->flags & CSS_TASK_ITER_THREADED) {
|
|
if (it->cur_dcset)
|
|
put_css_set_locked(it->cur_dcset);
|
|
it->cur_dcset = cset;
|
|
get_css_set(cset);
|
|
|
|
it->tcset_head = &cset->threaded_csets;
|
|
it->tcset_pos = &cset->threaded_csets;
|
|
}
|
|
|
|
return cset;
|
|
}
|
|
|
|
/**
|
|
* css_task_iter_advance_css_set - advance a task iterator to the next css_set
|
|
* @it: the iterator to advance
|
|
*
|
|
* Advance @it to the next css_set to walk.
|
|
*/
|
|
static void css_task_iter_advance_css_set(struct css_task_iter *it)
|
|
{
|
|
struct css_set *cset;
|
|
|
|
lockdep_assert_held(&css_set_lock);
|
|
|
|
/* Advance to the next non-empty css_set and find first non-empty tasks list*/
|
|
while ((cset = css_task_iter_next_css_set(it))) {
|
|
if (!list_empty(&cset->tasks)) {
|
|
it->cur_tasks_head = &cset->tasks;
|
|
break;
|
|
} else if (!list_empty(&cset->mg_tasks)) {
|
|
it->cur_tasks_head = &cset->mg_tasks;
|
|
break;
|
|
} else if (!list_empty(&cset->dying_tasks)) {
|
|
it->cur_tasks_head = &cset->dying_tasks;
|
|
break;
|
|
}
|
|
}
|
|
if (!cset) {
|
|
it->task_pos = NULL;
|
|
return;
|
|
}
|
|
it->task_pos = it->cur_tasks_head->next;
|
|
|
|
/*
|
|
* We don't keep css_sets locked across iteration steps and thus
|
|
* need to take steps to ensure that iteration can be resumed after
|
|
* the lock is re-acquired. Iteration is performed at two levels -
|
|
* css_sets and tasks in them.
|
|
*
|
|
* Once created, a css_set never leaves its cgroup lists, so a
|
|
* pinned css_set is guaranteed to stay put and we can resume
|
|
* iteration afterwards.
|
|
*
|
|
* Tasks may leave @cset across iteration steps. This is resolved
|
|
* by registering each iterator with the css_set currently being
|
|
* walked and making css_set_move_task() advance iterators whose
|
|
* next task is leaving.
|
|
*/
|
|
if (it->cur_cset) {
|
|
list_del(&it->iters_node);
|
|
put_css_set_locked(it->cur_cset);
|
|
}
|
|
get_css_set(cset);
|
|
it->cur_cset = cset;
|
|
list_add(&it->iters_node, &cset->task_iters);
|
|
}
|
|
|
|
static void css_task_iter_skip(struct css_task_iter *it,
|
|
struct task_struct *task)
|
|
{
|
|
lockdep_assert_held(&css_set_lock);
|
|
|
|
if (it->task_pos == &task->cg_list) {
|
|
it->task_pos = it->task_pos->next;
|
|
it->flags |= CSS_TASK_ITER_SKIPPED;
|
|
}
|
|
}
|
|
|
|
static void css_task_iter_advance(struct css_task_iter *it)
|
|
{
|
|
struct task_struct *task;
|
|
|
|
lockdep_assert_held(&css_set_lock);
|
|
repeat:
|
|
if (it->task_pos) {
|
|
/*
|
|
* Advance iterator to find next entry. We go through cset
|
|
* tasks, mg_tasks and dying_tasks, when consumed we move onto
|
|
* the next cset.
|
|
*/
|
|
if (it->flags & CSS_TASK_ITER_SKIPPED)
|
|
it->flags &= ~CSS_TASK_ITER_SKIPPED;
|
|
else
|
|
it->task_pos = it->task_pos->next;
|
|
|
|
if (it->task_pos == &it->cur_cset->tasks) {
|
|
it->cur_tasks_head = &it->cur_cset->mg_tasks;
|
|
it->task_pos = it->cur_tasks_head->next;
|
|
}
|
|
if (it->task_pos == &it->cur_cset->mg_tasks) {
|
|
it->cur_tasks_head = &it->cur_cset->dying_tasks;
|
|
it->task_pos = it->cur_tasks_head->next;
|
|
}
|
|
if (it->task_pos == &it->cur_cset->dying_tasks)
|
|
css_task_iter_advance_css_set(it);
|
|
} else {
|
|
/* called from start, proceed to the first cset */
|
|
css_task_iter_advance_css_set(it);
|
|
}
|
|
|
|
if (!it->task_pos)
|
|
return;
|
|
|
|
task = list_entry(it->task_pos, struct task_struct, cg_list);
|
|
|
|
if (it->flags & CSS_TASK_ITER_PROCS) {
|
|
/* if PROCS, skip over tasks which aren't group leaders */
|
|
if (!thread_group_leader(task))
|
|
goto repeat;
|
|
|
|
/* and dying leaders w/o live member threads */
|
|
if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
|
|
!atomic_read(&task->signal->live))
|
|
goto repeat;
|
|
} else {
|
|
/* skip all dying ones */
|
|
if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
|
|
goto repeat;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* css_task_iter_start - initiate task iteration
|
|
* @css: the css to walk tasks of
|
|
* @flags: CSS_TASK_ITER_* flags
|
|
* @it: the task iterator to use
|
|
*
|
|
* Initiate iteration through the tasks of @css. The caller can call
|
|
* css_task_iter_next() to walk through the tasks until the function
|
|
* returns NULL. On completion of iteration, css_task_iter_end() must be
|
|
* called.
|
|
*/
|
|
void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
|
|
struct css_task_iter *it)
|
|
{
|
|
unsigned long irqflags;
|
|
|
|
memset(it, 0, sizeof(*it));
|
|
|
|
spin_lock_irqsave(&css_set_lock, irqflags);
|
|
|
|
it->ss = css->ss;
|
|
it->flags = flags;
|
|
|
|
if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
|
|
it->cset_pos = &css->cgroup->e_csets[css->ss->id];
|
|
else
|
|
it->cset_pos = &css->cgroup->cset_links;
|
|
|
|
it->cset_head = it->cset_pos;
|
|
|
|
css_task_iter_advance(it);
|
|
|
|
spin_unlock_irqrestore(&css_set_lock, irqflags);
|
|
}
|
|
|
|
/**
|
|
* css_task_iter_next - return the next task for the iterator
|
|
* @it: the task iterator being iterated
|
|
*
|
|
* The "next" function for task iteration. @it should have been
|
|
* initialized via css_task_iter_start(). Returns NULL when the iteration
|
|
* reaches the end.
|
|
*/
|
|
struct task_struct *css_task_iter_next(struct css_task_iter *it)
|
|
{
|
|
unsigned long irqflags;
|
|
|
|
if (it->cur_task) {
|
|
put_task_struct(it->cur_task);
|
|
it->cur_task = NULL;
|
|
}
|
|
|
|
spin_lock_irqsave(&css_set_lock, irqflags);
|
|
|
|
/* @it may be half-advanced by skips, finish advancing */
|
|
if (it->flags & CSS_TASK_ITER_SKIPPED)
|
|
css_task_iter_advance(it);
|
|
|
|
if (it->task_pos) {
|
|
it->cur_task = list_entry(it->task_pos, struct task_struct,
|
|
cg_list);
|
|
get_task_struct(it->cur_task);
|
|
css_task_iter_advance(it);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&css_set_lock, irqflags);
|
|
|
|
return it->cur_task;
|
|
}
|
|
|
|
/**
|
|
* css_task_iter_end - finish task iteration
|
|
* @it: the task iterator to finish
|
|
*
|
|
* Finish task iteration started by css_task_iter_start().
|
|
*/
|
|
void css_task_iter_end(struct css_task_iter *it)
|
|
{
|
|
unsigned long irqflags;
|
|
|
|
if (it->cur_cset) {
|
|
spin_lock_irqsave(&css_set_lock, irqflags);
|
|
list_del(&it->iters_node);
|
|
put_css_set_locked(it->cur_cset);
|
|
spin_unlock_irqrestore(&css_set_lock, irqflags);
|
|
}
|
|
|
|
if (it->cur_dcset)
|
|
put_css_set(it->cur_dcset);
|
|
|
|
if (it->cur_task)
|
|
put_task_struct(it->cur_task);
|
|
}
|
|
|
|
static void cgroup_procs_release(struct kernfs_open_file *of)
|
|
{
|
|
struct cgroup_file_ctx *ctx = of->priv;
|
|
|
|
if (ctx->procs.started)
|
|
css_task_iter_end(&ctx->procs.iter);
|
|
}
|
|
|
|
static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
|
|
{
|
|
struct kernfs_open_file *of = s->private;
|
|
struct cgroup_file_ctx *ctx = of->priv;
|
|
|
|
if (pos)
|
|
(*pos)++;
|
|
|
|
return css_task_iter_next(&ctx->procs.iter);
|
|
}
|
|
|
|
static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
|
|
unsigned int iter_flags)
|
|
{
|
|
struct kernfs_open_file *of = s->private;
|
|
struct cgroup *cgrp = seq_css(s)->cgroup;
|
|
struct cgroup_file_ctx *ctx = of->priv;
|
|
struct css_task_iter *it = &ctx->procs.iter;
|
|
|
|
/*
|
|
* When a seq_file is seeked, it's always traversed sequentially
|
|
* from position 0, so we can simply keep iterating on !0 *pos.
|
|
*/
|
|
if (!ctx->procs.started) {
|
|
if (WARN_ON_ONCE((*pos)))
|
|
return ERR_PTR(-EINVAL);
|
|
css_task_iter_start(&cgrp->self, iter_flags, it);
|
|
ctx->procs.started = true;
|
|
} else if (!(*pos)) {
|
|
css_task_iter_end(it);
|
|
css_task_iter_start(&cgrp->self, iter_flags, it);
|
|
} else
|
|
return it->cur_task;
|
|
|
|
return cgroup_procs_next(s, NULL, NULL);
|
|
}
|
|
|
|
static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
|
|
{
|
|
struct cgroup *cgrp = seq_css(s)->cgroup;
|
|
|
|
/*
|
|
* All processes of a threaded subtree belong to the domain cgroup
|
|
* of the subtree. Only threads can be distributed across the
|
|
* subtree. Reject reads on cgroup.procs in the subtree proper.
|
|
* They're always empty anyway.
|
|
*/
|
|
if (cgroup_is_threaded(cgrp))
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
|
|
return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
|
|
CSS_TASK_ITER_THREADED);
|
|
}
|
|
|
|
static int cgroup_procs_show(struct seq_file *s, void *v)
|
|
{
|
|
seq_printf(s, "%d\n", task_pid_vnr(v));
|
|
return 0;
|
|
}
|
|
|
|
static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
|
|
{
|
|
int ret;
|
|
struct inode *inode;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
|
|
if (!inode)
|
|
return -ENOMEM;
|
|
|
|
ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
|
|
iput(inode);
|
|
return ret;
|
|
}
|
|
|
|
static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
|
|
struct cgroup *dst_cgrp,
|
|
struct super_block *sb,
|
|
struct cgroup_namespace *ns)
|
|
{
|
|
struct cgroup *com_cgrp = src_cgrp;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
/* find the common ancestor */
|
|
while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
|
|
com_cgrp = cgroup_parent(com_cgrp);
|
|
|
|
/* %current should be authorized to migrate to the common ancestor */
|
|
ret = cgroup_may_write(com_cgrp, sb);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* If namespaces are delegation boundaries, %current must be able
|
|
* to see both source and destination cgroups from its namespace.
|
|
*/
|
|
if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
|
|
(!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
|
|
!cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
|
|
return -ENOENT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cgroup_attach_permissions(struct cgroup *src_cgrp,
|
|
struct cgroup *dst_cgrp,
|
|
struct super_block *sb, bool threadgroup,
|
|
struct cgroup_namespace *ns)
|
|
{
|
|
int ret = 0;
|
|
|
|
ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cgroup_migrate_vet_dst(dst_cgrp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
|
|
ret = -EOPNOTSUPP;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
|
|
bool threadgroup)
|
|
{
|
|
struct cgroup_file_ctx *ctx = of->priv;
|
|
struct cgroup *src_cgrp, *dst_cgrp;
|
|
struct task_struct *task;
|
|
const struct cred *saved_cred;
|
|
ssize_t ret;
|
|
bool threadgroup_locked;
|
|
|
|
dst_cgrp = cgroup_kn_lock_live(of->kn, false);
|
|
if (!dst_cgrp)
|
|
return -ENODEV;
|
|
|
|
task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
|
|
ret = PTR_ERR_OR_ZERO(task);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
/* find the source cgroup */
|
|
spin_lock_irq(&css_set_lock);
|
|
src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
/*
|
|
* Process and thread migrations follow same delegation rule. Check
|
|
* permissions using the credentials from file open to protect against
|
|
* inherited fd attacks.
|
|
*/
|
|
saved_cred = override_creds(of->file->f_cred);
|
|
ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
|
|
of->file->f_path.dentry->d_sb,
|
|
threadgroup, ctx->ns);
|
|
revert_creds(saved_cred);
|
|
if (ret)
|
|
goto out_finish;
|
|
|
|
ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
|
|
|
|
out_finish:
|
|
cgroup_procs_write_finish(task, threadgroup_locked);
|
|
out_unlock:
|
|
cgroup_kn_unlock(of->kn);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off)
|
|
{
|
|
return __cgroup_procs_write(of, buf, true) ?: nbytes;
|
|
}
|
|
|
|
static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
|
|
{
|
|
return __cgroup_procs_start(s, pos, 0);
|
|
}
|
|
|
|
static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off)
|
|
{
|
|
return __cgroup_procs_write(of, buf, false) ?: nbytes;
|
|
}
|
|
|
|
/* cgroup core interface files for the default hierarchy */
|
|
static struct cftype cgroup_base_files[] = {
|
|
{
|
|
.name = "cgroup.type",
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
.seq_show = cgroup_type_show,
|
|
.write = cgroup_type_write,
|
|
},
|
|
{
|
|
.name = "cgroup.procs",
|
|
.flags = CFTYPE_NS_DELEGATABLE,
|
|
.file_offset = offsetof(struct cgroup, procs_file),
|
|
.release = cgroup_procs_release,
|
|
.seq_start = cgroup_procs_start,
|
|
.seq_next = cgroup_procs_next,
|
|
.seq_show = cgroup_procs_show,
|
|
.write = cgroup_procs_write,
|
|
},
|
|
{
|
|
.name = "cgroup.threads",
|
|
.flags = CFTYPE_NS_DELEGATABLE,
|
|
.release = cgroup_procs_release,
|
|
.seq_start = cgroup_threads_start,
|
|
.seq_next = cgroup_procs_next,
|
|
.seq_show = cgroup_procs_show,
|
|
.write = cgroup_threads_write,
|
|
},
|
|
{
|
|
.name = "cgroup.controllers",
|
|
.seq_show = cgroup_controllers_show,
|
|
},
|
|
{
|
|
.name = "cgroup.subtree_control",
|
|
.flags = CFTYPE_NS_DELEGATABLE,
|
|
.seq_show = cgroup_subtree_control_show,
|
|
.write = cgroup_subtree_control_write,
|
|
},
|
|
{
|
|
.name = "cgroup.events",
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
.file_offset = offsetof(struct cgroup, events_file),
|
|
.seq_show = cgroup_events_show,
|
|
},
|
|
{
|
|
.name = "cgroup.max.descendants",
|
|
.seq_show = cgroup_max_descendants_show,
|
|
.write = cgroup_max_descendants_write,
|
|
},
|
|
{
|
|
.name = "cgroup.max.depth",
|
|
.seq_show = cgroup_max_depth_show,
|
|
.write = cgroup_max_depth_write,
|
|
},
|
|
{
|
|
.name = "cgroup.stat",
|
|
.seq_show = cgroup_stat_show,
|
|
},
|
|
{
|
|
.name = "cgroup.freeze",
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
.seq_show = cgroup_freeze_show,
|
|
.write = cgroup_freeze_write,
|
|
},
|
|
{
|
|
.name = "cgroup.kill",
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
.write = cgroup_kill_write,
|
|
},
|
|
{
|
|
.name = "cpu.stat",
|
|
.seq_show = cpu_stat_show,
|
|
},
|
|
{
|
|
.name = "cpu.stat.local",
|
|
.seq_show = cpu_local_stat_show,
|
|
},
|
|
{ } /* terminate */
|
|
};
|
|
|
|
static struct cftype cgroup_psi_files[] = {
|
|
#ifdef CONFIG_PSI
|
|
{
|
|
.name = "io.pressure",
|
|
.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
|
|
.seq_show = cgroup_io_pressure_show,
|
|
.write = cgroup_io_pressure_write,
|
|
.poll = cgroup_pressure_poll,
|
|
.release = cgroup_pressure_release,
|
|
},
|
|
{
|
|
.name = "memory.pressure",
|
|
.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
|
|
.seq_show = cgroup_memory_pressure_show,
|
|
.write = cgroup_memory_pressure_write,
|
|
.poll = cgroup_pressure_poll,
|
|
.release = cgroup_pressure_release,
|
|
},
|
|
{
|
|
.name = "cpu.pressure",
|
|
.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
|
|
.seq_show = cgroup_cpu_pressure_show,
|
|
.write = cgroup_cpu_pressure_write,
|
|
.poll = cgroup_pressure_poll,
|
|
.release = cgroup_pressure_release,
|
|
},
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
{
|
|
.name = "irq.pressure",
|
|
.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
|
|
.seq_show = cgroup_irq_pressure_show,
|
|
.write = cgroup_irq_pressure_write,
|
|
.poll = cgroup_pressure_poll,
|
|
.release = cgroup_pressure_release,
|
|
},
|
|
#endif
|
|
{
|
|
.name = "cgroup.pressure",
|
|
.seq_show = cgroup_pressure_show,
|
|
.write = cgroup_pressure_write,
|
|
},
|
|
#endif /* CONFIG_PSI */
|
|
{ } /* terminate */
|
|
};
|
|
|
|
/*
|
|
* css destruction is four-stage process.
|
|
*
|
|
* 1. Destruction starts. Killing of the percpu_ref is initiated.
|
|
* Implemented in kill_css().
|
|
*
|
|
* 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
|
|
* and thus css_tryget_online() is guaranteed to fail, the css can be
|
|
* offlined by invoking offline_css(). After offlining, the base ref is
|
|
* put. Implemented in css_killed_work_fn().
|
|
*
|
|
* 3. When the percpu_ref reaches zero, the only possible remaining
|
|
* accessors are inside RCU read sections. css_release() schedules the
|
|
* RCU callback.
|
|
*
|
|
* 4. After the grace period, the css can be freed. Implemented in
|
|
* css_free_rwork_fn().
|
|
*
|
|
* It is actually hairier because both step 2 and 4 require process context
|
|
* and thus involve punting to css->destroy_work adding two additional
|
|
* steps to the already complex sequence.
|
|
*/
|
|
static void css_free_rwork_fn(struct work_struct *work)
|
|
{
|
|
struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
|
|
struct cgroup_subsys_state, destroy_rwork);
|
|
struct cgroup_subsys *ss = css->ss;
|
|
struct cgroup *cgrp = css->cgroup;
|
|
|
|
percpu_ref_exit(&css->refcnt);
|
|
|
|
if (ss) {
|
|
/* css free path */
|
|
struct cgroup_subsys_state *parent = css->parent;
|
|
int id = css->id;
|
|
|
|
ss->css_free(css);
|
|
cgroup_idr_remove(&ss->css_idr, id);
|
|
cgroup_put(cgrp);
|
|
|
|
if (parent)
|
|
css_put(parent);
|
|
} else {
|
|
/* cgroup free path */
|
|
atomic_dec(&cgrp->root->nr_cgrps);
|
|
cgroup1_pidlist_destroy_all(cgrp);
|
|
cancel_work_sync(&cgrp->release_agent_work);
|
|
bpf_cgrp_storage_free(cgrp);
|
|
|
|
if (cgroup_parent(cgrp)) {
|
|
/*
|
|
* We get a ref to the parent, and put the ref when
|
|
* this cgroup is being freed, so it's guaranteed
|
|
* that the parent won't be destroyed before its
|
|
* children.
|
|
*/
|
|
cgroup_put(cgroup_parent(cgrp));
|
|
kernfs_put(cgrp->kn);
|
|
psi_cgroup_free(cgrp);
|
|
cgroup_rstat_exit(cgrp);
|
|
kfree(cgrp);
|
|
} else {
|
|
/*
|
|
* This is root cgroup's refcnt reaching zero,
|
|
* which indicates that the root should be
|
|
* released.
|
|
*/
|
|
cgroup_destroy_root(cgrp->root);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void css_release_work_fn(struct work_struct *work)
|
|
{
|
|
struct cgroup_subsys_state *css =
|
|
container_of(work, struct cgroup_subsys_state, destroy_work);
|
|
struct cgroup_subsys *ss = css->ss;
|
|
struct cgroup *cgrp = css->cgroup;
|
|
|
|
cgroup_lock();
|
|
|
|
css->flags |= CSS_RELEASED;
|
|
list_del_rcu(&css->sibling);
|
|
|
|
if (ss) {
|
|
/* css release path */
|
|
if (!list_empty(&css->rstat_css_node)) {
|
|
cgroup_rstat_flush(cgrp);
|
|
list_del_rcu(&css->rstat_css_node);
|
|
}
|
|
|
|
cgroup_idr_replace(&ss->css_idr, NULL, css->id);
|
|
if (ss->css_released)
|
|
ss->css_released(css);
|
|
} else {
|
|
struct cgroup *tcgrp;
|
|
|
|
/* cgroup release path */
|
|
TRACE_CGROUP_PATH(release, cgrp);
|
|
|
|
cgroup_rstat_flush(cgrp);
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
for (tcgrp = cgroup_parent(cgrp); tcgrp;
|
|
tcgrp = cgroup_parent(tcgrp))
|
|
tcgrp->nr_dying_descendants--;
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
/*
|
|
* There are two control paths which try to determine
|
|
* cgroup from dentry without going through kernfs -
|
|
* cgroupstats_build() and css_tryget_online_from_dir().
|
|
* Those are supported by RCU protecting clearing of
|
|
* cgrp->kn->priv backpointer.
|
|
*/
|
|
if (cgrp->kn)
|
|
RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
|
|
NULL);
|
|
}
|
|
|
|
cgroup_unlock();
|
|
|
|
INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
|
|
queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
|
|
}
|
|
|
|
static void css_release(struct percpu_ref *ref)
|
|
{
|
|
struct cgroup_subsys_state *css =
|
|
container_of(ref, struct cgroup_subsys_state, refcnt);
|
|
|
|
INIT_WORK(&css->destroy_work, css_release_work_fn);
|
|
queue_work(cgroup_destroy_wq, &css->destroy_work);
|
|
}
|
|
|
|
static void init_and_link_css(struct cgroup_subsys_state *css,
|
|
struct cgroup_subsys *ss, struct cgroup *cgrp)
|
|
{
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
cgroup_get_live(cgrp);
|
|
|
|
memset(css, 0, sizeof(*css));
|
|
css->cgroup = cgrp;
|
|
css->ss = ss;
|
|
css->id = -1;
|
|
INIT_LIST_HEAD(&css->sibling);
|
|
INIT_LIST_HEAD(&css->children);
|
|
INIT_LIST_HEAD(&css->rstat_css_node);
|
|
css->serial_nr = css_serial_nr_next++;
|
|
atomic_set(&css->online_cnt, 0);
|
|
|
|
if (cgroup_parent(cgrp)) {
|
|
css->parent = cgroup_css(cgroup_parent(cgrp), ss);
|
|
css_get(css->parent);
|
|
}
|
|
|
|
if (ss->css_rstat_flush)
|
|
list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
|
|
|
|
BUG_ON(cgroup_css(cgrp, ss));
|
|
}
|
|
|
|
/* invoke ->css_online() on a new CSS and mark it online if successful */
|
|
static int online_css(struct cgroup_subsys_state *css)
|
|
{
|
|
struct cgroup_subsys *ss = css->ss;
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
if (ss->css_online)
|
|
ret = ss->css_online(css);
|
|
if (!ret) {
|
|
css->flags |= CSS_ONLINE;
|
|
rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
|
|
|
|
atomic_inc(&css->online_cnt);
|
|
if (css->parent)
|
|
atomic_inc(&css->parent->online_cnt);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
|
|
static void offline_css(struct cgroup_subsys_state *css)
|
|
{
|
|
struct cgroup_subsys *ss = css->ss;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
if (!(css->flags & CSS_ONLINE))
|
|
return;
|
|
|
|
if (ss->css_offline)
|
|
ss->css_offline(css);
|
|
|
|
css->flags &= ~CSS_ONLINE;
|
|
RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
|
|
|
|
wake_up_all(&css->cgroup->offline_waitq);
|
|
}
|
|
|
|
/**
|
|
* css_create - create a cgroup_subsys_state
|
|
* @cgrp: the cgroup new css will be associated with
|
|
* @ss: the subsys of new css
|
|
*
|
|
* Create a new css associated with @cgrp - @ss pair. On success, the new
|
|
* css is online and installed in @cgrp. This function doesn't create the
|
|
* interface files. Returns 0 on success, -errno on failure.
|
|
*/
|
|
static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
|
|
struct cgroup_subsys *ss)
|
|
{
|
|
struct cgroup *parent = cgroup_parent(cgrp);
|
|
struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
|
|
struct cgroup_subsys_state *css;
|
|
int err;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
css = ss->css_alloc(parent_css);
|
|
if (!css)
|
|
css = ERR_PTR(-ENOMEM);
|
|
if (IS_ERR(css))
|
|
return css;
|
|
|
|
init_and_link_css(css, ss, cgrp);
|
|
|
|
err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
|
|
if (err)
|
|
goto err_free_css;
|
|
|
|
err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
|
|
if (err < 0)
|
|
goto err_free_css;
|
|
css->id = err;
|
|
|
|
/* @css is ready to be brought online now, make it visible */
|
|
list_add_tail_rcu(&css->sibling, &parent_css->children);
|
|
cgroup_idr_replace(&ss->css_idr, css, css->id);
|
|
|
|
err = online_css(css);
|
|
if (err)
|
|
goto err_list_del;
|
|
|
|
return css;
|
|
|
|
err_list_del:
|
|
list_del_rcu(&css->sibling);
|
|
err_free_css:
|
|
list_del_rcu(&css->rstat_css_node);
|
|
INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
|
|
queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/*
|
|
* The returned cgroup is fully initialized including its control mask, but
|
|
* it doesn't have the control mask applied.
|
|
*/
|
|
static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
|
|
umode_t mode)
|
|
{
|
|
struct cgroup_root *root = parent->root;
|
|
struct cgroup *cgrp, *tcgrp;
|
|
struct kernfs_node *kn;
|
|
int level = parent->level + 1;
|
|
int ret;
|
|
|
|
/* allocate the cgroup and its ID, 0 is reserved for the root */
|
|
cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
|
|
if (!cgrp)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
|
|
if (ret)
|
|
goto out_free_cgrp;
|
|
|
|
ret = cgroup_rstat_init(cgrp);
|
|
if (ret)
|
|
goto out_cancel_ref;
|
|
|
|
/* create the directory */
|
|
kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
|
|
if (IS_ERR(kn)) {
|
|
ret = PTR_ERR(kn);
|
|
goto out_stat_exit;
|
|
}
|
|
cgrp->kn = kn;
|
|
|
|
init_cgroup_housekeeping(cgrp);
|
|
|
|
cgrp->self.parent = &parent->self;
|
|
cgrp->root = root;
|
|
cgrp->level = level;
|
|
|
|
ret = psi_cgroup_alloc(cgrp);
|
|
if (ret)
|
|
goto out_kernfs_remove;
|
|
|
|
ret = cgroup_bpf_inherit(cgrp);
|
|
if (ret)
|
|
goto out_psi_free;
|
|
|
|
/*
|
|
* New cgroup inherits effective freeze counter, and
|
|
* if the parent has to be frozen, the child has too.
|
|
*/
|
|
cgrp->freezer.e_freeze = parent->freezer.e_freeze;
|
|
if (cgrp->freezer.e_freeze) {
|
|
/*
|
|
* Set the CGRP_FREEZE flag, so when a process will be
|
|
* attached to the child cgroup, it will become frozen.
|
|
* At this point the new cgroup is unpopulated, so we can
|
|
* consider it frozen immediately.
|
|
*/
|
|
set_bit(CGRP_FREEZE, &cgrp->flags);
|
|
set_bit(CGRP_FROZEN, &cgrp->flags);
|
|
}
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
|
|
cgrp->ancestors[tcgrp->level] = tcgrp;
|
|
|
|
if (tcgrp != cgrp) {
|
|
tcgrp->nr_descendants++;
|
|
|
|
/*
|
|
* If the new cgroup is frozen, all ancestor cgroups
|
|
* get a new frozen descendant, but their state can't
|
|
* change because of this.
|
|
*/
|
|
if (cgrp->freezer.e_freeze)
|
|
tcgrp->freezer.nr_frozen_descendants++;
|
|
}
|
|
}
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
if (notify_on_release(parent))
|
|
set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
|
|
|
|
if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
|
|
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
|
|
|
|
cgrp->self.serial_nr = css_serial_nr_next++;
|
|
|
|
/* allocation complete, commit to creation */
|
|
list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
|
|
atomic_inc(&root->nr_cgrps);
|
|
cgroup_get_live(parent);
|
|
|
|
/*
|
|
* On the default hierarchy, a child doesn't automatically inherit
|
|
* subtree_control from the parent. Each is configured manually.
|
|
*/
|
|
if (!cgroup_on_dfl(cgrp))
|
|
cgrp->subtree_control = cgroup_control(cgrp);
|
|
|
|
cgroup_propagate_control(cgrp);
|
|
|
|
return cgrp;
|
|
|
|
out_psi_free:
|
|
psi_cgroup_free(cgrp);
|
|
out_kernfs_remove:
|
|
kernfs_remove(cgrp->kn);
|
|
out_stat_exit:
|
|
cgroup_rstat_exit(cgrp);
|
|
out_cancel_ref:
|
|
percpu_ref_exit(&cgrp->self.refcnt);
|
|
out_free_cgrp:
|
|
kfree(cgrp);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
|
|
{
|
|
struct cgroup *cgroup;
|
|
int ret = false;
|
|
int level = 1;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
|
|
if (cgroup->nr_descendants >= cgroup->max_descendants)
|
|
goto fail;
|
|
|
|
if (level > cgroup->max_depth)
|
|
goto fail;
|
|
|
|
level++;
|
|
}
|
|
|
|
ret = true;
|
|
fail:
|
|
return ret;
|
|
}
|
|
|
|
int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
|
|
{
|
|
struct cgroup *parent, *cgrp;
|
|
int ret;
|
|
|
|
/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
|
|
if (strchr(name, '\n'))
|
|
return -EINVAL;
|
|
|
|
parent = cgroup_kn_lock_live(parent_kn, false);
|
|
if (!parent)
|
|
return -ENODEV;
|
|
|
|
if (!cgroup_check_hierarchy_limits(parent)) {
|
|
ret = -EAGAIN;
|
|
goto out_unlock;
|
|
}
|
|
|
|
cgrp = cgroup_create(parent, name, mode);
|
|
if (IS_ERR(cgrp)) {
|
|
ret = PTR_ERR(cgrp);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* This extra ref will be put in cgroup_free_fn() and guarantees
|
|
* that @cgrp->kn is always accessible.
|
|
*/
|
|
kernfs_get(cgrp->kn);
|
|
|
|
ret = cgroup_kn_set_ugid(cgrp->kn);
|
|
if (ret)
|
|
goto out_destroy;
|
|
|
|
ret = css_populate_dir(&cgrp->self);
|
|
if (ret)
|
|
goto out_destroy;
|
|
|
|
ret = cgroup_apply_control_enable(cgrp);
|
|
if (ret)
|
|
goto out_destroy;
|
|
|
|
TRACE_CGROUP_PATH(mkdir, cgrp);
|
|
|
|
/* let's create and online css's */
|
|
kernfs_activate(cgrp->kn);
|
|
|
|
ret = 0;
|
|
goto out_unlock;
|
|
|
|
out_destroy:
|
|
cgroup_destroy_locked(cgrp);
|
|
out_unlock:
|
|
cgroup_kn_unlock(parent_kn);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is called when the refcnt of a css is confirmed to be killed.
|
|
* css_tryget_online() is now guaranteed to fail. Tell the subsystem to
|
|
* initiate destruction and put the css ref from kill_css().
|
|
*/
|
|
static void css_killed_work_fn(struct work_struct *work)
|
|
{
|
|
struct cgroup_subsys_state *css =
|
|
container_of(work, struct cgroup_subsys_state, destroy_work);
|
|
|
|
cgroup_lock();
|
|
|
|
do {
|
|
offline_css(css);
|
|
css_put(css);
|
|
/* @css can't go away while we're holding cgroup_mutex */
|
|
css = css->parent;
|
|
} while (css && atomic_dec_and_test(&css->online_cnt));
|
|
|
|
cgroup_unlock();
|
|
}
|
|
|
|
/* css kill confirmation processing requires process context, bounce */
|
|
static void css_killed_ref_fn(struct percpu_ref *ref)
|
|
{
|
|
struct cgroup_subsys_state *css =
|
|
container_of(ref, struct cgroup_subsys_state, refcnt);
|
|
|
|
if (atomic_dec_and_test(&css->online_cnt)) {
|
|
INIT_WORK(&css->destroy_work, css_killed_work_fn);
|
|
queue_work(cgroup_destroy_wq, &css->destroy_work);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kill_css - destroy a css
|
|
* @css: css to destroy
|
|
*
|
|
* This function initiates destruction of @css by removing cgroup interface
|
|
* files and putting its base reference. ->css_offline() will be invoked
|
|
* asynchronously once css_tryget_online() is guaranteed to fail and when
|
|
* the reference count reaches zero, @css will be released.
|
|
*/
|
|
static void kill_css(struct cgroup_subsys_state *css)
|
|
{
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
if (css->flags & CSS_DYING)
|
|
return;
|
|
|
|
css->flags |= CSS_DYING;
|
|
|
|
/*
|
|
* This must happen before css is disassociated with its cgroup.
|
|
* See seq_css() for details.
|
|
*/
|
|
css_clear_dir(css);
|
|
|
|
/*
|
|
* Killing would put the base ref, but we need to keep it alive
|
|
* until after ->css_offline().
|
|
*/
|
|
css_get(css);
|
|
|
|
/*
|
|
* cgroup core guarantees that, by the time ->css_offline() is
|
|
* invoked, no new css reference will be given out via
|
|
* css_tryget_online(). We can't simply call percpu_ref_kill() and
|
|
* proceed to offlining css's because percpu_ref_kill() doesn't
|
|
* guarantee that the ref is seen as killed on all CPUs on return.
|
|
*
|
|
* Use percpu_ref_kill_and_confirm() to get notifications as each
|
|
* css is confirmed to be seen as killed on all CPUs.
|
|
*/
|
|
percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
|
|
}
|
|
|
|
/**
|
|
* cgroup_destroy_locked - the first stage of cgroup destruction
|
|
* @cgrp: cgroup to be destroyed
|
|
*
|
|
* css's make use of percpu refcnts whose killing latency shouldn't be
|
|
* exposed to userland and are RCU protected. Also, cgroup core needs to
|
|
* guarantee that css_tryget_online() won't succeed by the time
|
|
* ->css_offline() is invoked. To satisfy all the requirements,
|
|
* destruction is implemented in the following two steps.
|
|
*
|
|
* s1. Verify @cgrp can be destroyed and mark it dying. Remove all
|
|
* userland visible parts and start killing the percpu refcnts of
|
|
* css's. Set up so that the next stage will be kicked off once all
|
|
* the percpu refcnts are confirmed to be killed.
|
|
*
|
|
* s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
|
|
* rest of destruction. Once all cgroup references are gone, the
|
|
* cgroup is RCU-freed.
|
|
*
|
|
* This function implements s1. After this step, @cgrp is gone as far as
|
|
* the userland is concerned and a new cgroup with the same name may be
|
|
* created. As cgroup doesn't care about the names internally, this
|
|
* doesn't cause any problem.
|
|
*/
|
|
static int cgroup_destroy_locked(struct cgroup *cgrp)
|
|
__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
|
|
{
|
|
struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
|
|
struct cgroup_subsys_state *css;
|
|
struct cgrp_cset_link *link;
|
|
int ssid;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
|
|
/*
|
|
* Only migration can raise populated from zero and we're already
|
|
* holding cgroup_mutex.
|
|
*/
|
|
if (cgroup_is_populated(cgrp))
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* Make sure there's no live children. We can't test emptiness of
|
|
* ->self.children as dead children linger on it while being
|
|
* drained; otherwise, "rmdir parent/child parent" may fail.
|
|
*/
|
|
if (css_has_online_children(&cgrp->self))
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* Mark @cgrp and the associated csets dead. The former prevents
|
|
* further task migration and child creation by disabling
|
|
* cgroup_kn_lock_live(). The latter makes the csets ignored by
|
|
* the migration path.
|
|
*/
|
|
cgrp->self.flags &= ~CSS_ONLINE;
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
list_for_each_entry(link, &cgrp->cset_links, cset_link)
|
|
link->cset->dead = true;
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
/* initiate massacre of all css's */
|
|
for_each_css(css, ssid, cgrp)
|
|
kill_css(css);
|
|
|
|
/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
|
|
css_clear_dir(&cgrp->self);
|
|
kernfs_remove(cgrp->kn);
|
|
|
|
if (cgroup_is_threaded(cgrp))
|
|
parent->nr_threaded_children--;
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
|
|
tcgrp->nr_descendants--;
|
|
tcgrp->nr_dying_descendants++;
|
|
/*
|
|
* If the dying cgroup is frozen, decrease frozen descendants
|
|
* counters of ancestor cgroups.
|
|
*/
|
|
if (test_bit(CGRP_FROZEN, &cgrp->flags))
|
|
tcgrp->freezer.nr_frozen_descendants--;
|
|
}
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
cgroup1_check_for_release(parent);
|
|
|
|
cgroup_bpf_offline(cgrp);
|
|
|
|
/* put the base reference */
|
|
percpu_ref_kill(&cgrp->self.refcnt);
|
|
|
|
return 0;
|
|
};
|
|
|
|
int cgroup_rmdir(struct kernfs_node *kn)
|
|
{
|
|
struct cgroup *cgrp;
|
|
int ret = 0;
|
|
|
|
cgrp = cgroup_kn_lock_live(kn, false);
|
|
if (!cgrp)
|
|
return 0;
|
|
|
|
ret = cgroup_destroy_locked(cgrp);
|
|
if (!ret)
|
|
TRACE_CGROUP_PATH(rmdir, cgrp);
|
|
|
|
cgroup_kn_unlock(kn);
|
|
return ret;
|
|
}
|
|
|
|
static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
|
|
.show_options = cgroup_show_options,
|
|
.mkdir = cgroup_mkdir,
|
|
.rmdir = cgroup_rmdir,
|
|
.show_path = cgroup_show_path,
|
|
};
|
|
|
|
static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
|
|
pr_debug("Initializing cgroup subsys %s\n", ss->name);
|
|
|
|
cgroup_lock();
|
|
|
|
idr_init(&ss->css_idr);
|
|
INIT_LIST_HEAD(&ss->cfts);
|
|
|
|
/* Create the root cgroup state for this subsystem */
|
|
ss->root = &cgrp_dfl_root;
|
|
css = ss->css_alloc(NULL);
|
|
/* We don't handle early failures gracefully */
|
|
BUG_ON(IS_ERR(css));
|
|
init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
|
|
|
|
/*
|
|
* Root csses are never destroyed and we can't initialize
|
|
* percpu_ref during early init. Disable refcnting.
|
|
*/
|
|
css->flags |= CSS_NO_REF;
|
|
|
|
if (early) {
|
|
/* allocation can't be done safely during early init */
|
|
css->id = 1;
|
|
} else {
|
|
css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
|
|
BUG_ON(css->id < 0);
|
|
}
|
|
|
|
/* Update the init_css_set to contain a subsys
|
|
* pointer to this state - since the subsystem is
|
|
* newly registered, all tasks and hence the
|
|
* init_css_set is in the subsystem's root cgroup. */
|
|
init_css_set.subsys[ss->id] = css;
|
|
|
|
have_fork_callback |= (bool)ss->fork << ss->id;
|
|
have_exit_callback |= (bool)ss->exit << ss->id;
|
|
have_release_callback |= (bool)ss->release << ss->id;
|
|
have_canfork_callback |= (bool)ss->can_fork << ss->id;
|
|
|
|
/* At system boot, before all subsystems have been
|
|
* registered, no tasks have been forked, so we don't
|
|
* need to invoke fork callbacks here. */
|
|
BUG_ON(!list_empty(&init_task.tasks));
|
|
|
|
BUG_ON(online_css(css));
|
|
|
|
cgroup_unlock();
|
|
}
|
|
|
|
/**
|
|
* cgroup_init_early - cgroup initialization at system boot
|
|
*
|
|
* Initialize cgroups at system boot, and initialize any
|
|
* subsystems that request early init.
|
|
*/
|
|
int __init cgroup_init_early(void)
|
|
{
|
|
static struct cgroup_fs_context __initdata ctx;
|
|
struct cgroup_subsys *ss;
|
|
int i;
|
|
|
|
ctx.root = &cgrp_dfl_root;
|
|
init_cgroup_root(&ctx);
|
|
cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
|
|
|
|
RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
|
|
|
|
for_each_subsys(ss, i) {
|
|
WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
|
|
"invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
|
|
i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
|
|
ss->id, ss->name);
|
|
WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
|
|
"cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
|
|
|
|
ss->id = i;
|
|
ss->name = cgroup_subsys_name[i];
|
|
if (!ss->legacy_name)
|
|
ss->legacy_name = cgroup_subsys_name[i];
|
|
|
|
if (ss->early_init)
|
|
cgroup_init_subsys(ss, true);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cgroup_init - cgroup initialization
|
|
*
|
|
* Register cgroup filesystem and /proc file, and initialize
|
|
* any subsystems that didn't request early init.
|
|
*/
|
|
int __init cgroup_init(void)
|
|
{
|
|
struct cgroup_subsys *ss;
|
|
int ssid;
|
|
|
|
BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
|
|
BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
|
|
BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
|
|
BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
|
|
|
|
cgroup_rstat_boot();
|
|
|
|
get_user_ns(init_cgroup_ns.user_ns);
|
|
|
|
cgroup_lock();
|
|
|
|
/*
|
|
* Add init_css_set to the hash table so that dfl_root can link to
|
|
* it during init.
|
|
*/
|
|
hash_add(css_set_table, &init_css_set.hlist,
|
|
css_set_hash(init_css_set.subsys));
|
|
|
|
BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
|
|
|
|
cgroup_unlock();
|
|
|
|
for_each_subsys(ss, ssid) {
|
|
if (ss->early_init) {
|
|
struct cgroup_subsys_state *css =
|
|
init_css_set.subsys[ss->id];
|
|
|
|
css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
|
|
GFP_KERNEL);
|
|
BUG_ON(css->id < 0);
|
|
} else {
|
|
cgroup_init_subsys(ss, false);
|
|
}
|
|
|
|
list_add_tail(&init_css_set.e_cset_node[ssid],
|
|
&cgrp_dfl_root.cgrp.e_csets[ssid]);
|
|
|
|
/*
|
|
* Setting dfl_root subsys_mask needs to consider the
|
|
* disabled flag and cftype registration needs kmalloc,
|
|
* both of which aren't available during early_init.
|
|
*/
|
|
if (!cgroup_ssid_enabled(ssid))
|
|
continue;
|
|
|
|
if (cgroup1_ssid_disabled(ssid))
|
|
pr_info("Disabling %s control group subsystem in v1 mounts\n",
|
|
ss->legacy_name);
|
|
|
|
cgrp_dfl_root.subsys_mask |= 1 << ss->id;
|
|
|
|
/* implicit controllers must be threaded too */
|
|
WARN_ON(ss->implicit_on_dfl && !ss->threaded);
|
|
|
|
if (ss->implicit_on_dfl)
|
|
cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
|
|
else if (!ss->dfl_cftypes)
|
|
cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
|
|
|
|
if (ss->threaded)
|
|
cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
|
|
|
|
if (ss->dfl_cftypes == ss->legacy_cftypes) {
|
|
WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
|
|
} else {
|
|
WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
|
|
WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
|
|
}
|
|
|
|
if (ss->bind)
|
|
ss->bind(init_css_set.subsys[ssid]);
|
|
|
|
cgroup_lock();
|
|
css_populate_dir(init_css_set.subsys[ssid]);
|
|
cgroup_unlock();
|
|
}
|
|
|
|
/* init_css_set.subsys[] has been updated, re-hash */
|
|
hash_del(&init_css_set.hlist);
|
|
hash_add(css_set_table, &init_css_set.hlist,
|
|
css_set_hash(init_css_set.subsys));
|
|
|
|
WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
|
|
WARN_ON(register_filesystem(&cgroup_fs_type));
|
|
WARN_ON(register_filesystem(&cgroup2_fs_type));
|
|
WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
|
|
#ifdef CONFIG_CPUSETS
|
|
WARN_ON(register_filesystem(&cpuset_fs_type));
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init cgroup_wq_init(void)
|
|
{
|
|
/*
|
|
* There isn't much point in executing destruction path in
|
|
* parallel. Good chunk is serialized with cgroup_mutex anyway.
|
|
* Use 1 for @max_active.
|
|
*
|
|
* We would prefer to do this in cgroup_init() above, but that
|
|
* is called before init_workqueues(): so leave this until after.
|
|
*/
|
|
cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
|
|
BUG_ON(!cgroup_destroy_wq);
|
|
return 0;
|
|
}
|
|
core_initcall(cgroup_wq_init);
|
|
|
|
void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
|
|
{
|
|
struct kernfs_node *kn;
|
|
|
|
kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
|
|
if (!kn)
|
|
return;
|
|
kernfs_path(kn, buf, buflen);
|
|
kernfs_put(kn);
|
|
}
|
|
|
|
/*
|
|
* cgroup_get_from_id : get the cgroup associated with cgroup id
|
|
* @id: cgroup id
|
|
* On success return the cgrp or ERR_PTR on failure
|
|
* Only cgroups within current task's cgroup NS are valid.
|
|
*/
|
|
struct cgroup *cgroup_get_from_id(u64 id)
|
|
{
|
|
struct kernfs_node *kn;
|
|
struct cgroup *cgrp, *root_cgrp;
|
|
|
|
kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
|
|
if (!kn)
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
if (kernfs_type(kn) != KERNFS_DIR) {
|
|
kernfs_put(kn);
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
|
|
rcu_read_lock();
|
|
|
|
cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
|
|
if (cgrp && !cgroup_tryget(cgrp))
|
|
cgrp = NULL;
|
|
|
|
rcu_read_unlock();
|
|
kernfs_put(kn);
|
|
|
|
if (!cgrp)
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
root_cgrp = current_cgns_cgroup_dfl();
|
|
if (!cgroup_is_descendant(cgrp, root_cgrp)) {
|
|
cgroup_put(cgrp);
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
|
|
return cgrp;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cgroup_get_from_id);
|
|
|
|
/*
|
|
* proc_cgroup_show()
|
|
* - Print task's cgroup paths into seq_file, one line for each hierarchy
|
|
* - Used for /proc/<pid>/cgroup.
|
|
*/
|
|
int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
|
|
struct pid *pid, struct task_struct *tsk)
|
|
{
|
|
char *buf;
|
|
int retval;
|
|
struct cgroup_root *root;
|
|
|
|
retval = -ENOMEM;
|
|
buf = kmalloc(PATH_MAX, GFP_KERNEL);
|
|
if (!buf)
|
|
goto out;
|
|
|
|
cgroup_lock();
|
|
spin_lock_irq(&css_set_lock);
|
|
|
|
for_each_root(root) {
|
|
struct cgroup_subsys *ss;
|
|
struct cgroup *cgrp;
|
|
int ssid, count = 0;
|
|
|
|
if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
|
|
continue;
|
|
|
|
seq_printf(m, "%d:", root->hierarchy_id);
|
|
if (root != &cgrp_dfl_root)
|
|
for_each_subsys(ss, ssid)
|
|
if (root->subsys_mask & (1 << ssid))
|
|
seq_printf(m, "%s%s", count++ ? "," : "",
|
|
ss->legacy_name);
|
|
if (strlen(root->name))
|
|
seq_printf(m, "%sname=%s", count ? "," : "",
|
|
root->name);
|
|
seq_putc(m, ':');
|
|
|
|
cgrp = task_cgroup_from_root(tsk, root);
|
|
|
|
/*
|
|
* On traditional hierarchies, all zombie tasks show up as
|
|
* belonging to the root cgroup. On the default hierarchy,
|
|
* while a zombie doesn't show up in "cgroup.procs" and
|
|
* thus can't be migrated, its /proc/PID/cgroup keeps
|
|
* reporting the cgroup it belonged to before exiting. If
|
|
* the cgroup is removed before the zombie is reaped,
|
|
* " (deleted)" is appended to the cgroup path.
|
|
*/
|
|
if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
|
|
retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
|
|
current->nsproxy->cgroup_ns);
|
|
if (retval >= PATH_MAX)
|
|
retval = -ENAMETOOLONG;
|
|
if (retval < 0)
|
|
goto out_unlock;
|
|
|
|
seq_puts(m, buf);
|
|
} else {
|
|
seq_puts(m, "/");
|
|
}
|
|
|
|
if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
|
|
seq_puts(m, " (deleted)\n");
|
|
else
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
retval = 0;
|
|
out_unlock:
|
|
spin_unlock_irq(&css_set_lock);
|
|
cgroup_unlock();
|
|
kfree(buf);
|
|
out:
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* cgroup_fork - initialize cgroup related fields during copy_process()
|
|
* @child: pointer to task_struct of forking parent process.
|
|
*
|
|
* A task is associated with the init_css_set until cgroup_post_fork()
|
|
* attaches it to the target css_set.
|
|
*/
|
|
void cgroup_fork(struct task_struct *child)
|
|
{
|
|
RCU_INIT_POINTER(child->cgroups, &init_css_set);
|
|
INIT_LIST_HEAD(&child->cg_list);
|
|
}
|
|
|
|
/**
|
|
* cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
|
|
* @f: file corresponding to cgroup_dir
|
|
*
|
|
* Find the cgroup from a file pointer associated with a cgroup directory.
|
|
* Returns a pointer to the cgroup on success. ERR_PTR is returned if the
|
|
* cgroup cannot be found.
|
|
*/
|
|
static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
|
|
css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
|
|
if (IS_ERR(css))
|
|
return ERR_CAST(css);
|
|
|
|
return css->cgroup;
|
|
}
|
|
|
|
/**
|
|
* cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
|
|
* cgroup2.
|
|
* @f: file corresponding to cgroup2_dir
|
|
*/
|
|
static struct cgroup *cgroup_get_from_file(struct file *f)
|
|
{
|
|
struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
|
|
|
|
if (IS_ERR(cgrp))
|
|
return ERR_CAST(cgrp);
|
|
|
|
if (!cgroup_on_dfl(cgrp)) {
|
|
cgroup_put(cgrp);
|
|
return ERR_PTR(-EBADF);
|
|
}
|
|
|
|
return cgrp;
|
|
}
|
|
|
|
/**
|
|
* cgroup_css_set_fork - find or create a css_set for a child process
|
|
* @kargs: the arguments passed to create the child process
|
|
*
|
|
* This functions finds or creates a new css_set which the child
|
|
* process will be attached to in cgroup_post_fork(). By default,
|
|
* the child process will be given the same css_set as its parent.
|
|
*
|
|
* If CLONE_INTO_CGROUP is specified this function will try to find an
|
|
* existing css_set which includes the requested cgroup and if not create
|
|
* a new css_set that the child will be attached to later. If this function
|
|
* succeeds it will hold cgroup_threadgroup_rwsem on return. If
|
|
* CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
|
|
* before grabbing cgroup_threadgroup_rwsem and will hold a reference
|
|
* to the target cgroup.
|
|
*/
|
|
static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
|
|
__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
|
|
{
|
|
int ret;
|
|
struct cgroup *dst_cgrp = NULL;
|
|
struct css_set *cset;
|
|
struct super_block *sb;
|
|
struct file *f;
|
|
|
|
if (kargs->flags & CLONE_INTO_CGROUP)
|
|
cgroup_lock();
|
|
|
|
cgroup_threadgroup_change_begin(current);
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
cset = task_css_set(current);
|
|
get_css_set(cset);
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
if (!(kargs->flags & CLONE_INTO_CGROUP)) {
|
|
kargs->cset = cset;
|
|
return 0;
|
|
}
|
|
|
|
f = fget_raw(kargs->cgroup);
|
|
if (!f) {
|
|
ret = -EBADF;
|
|
goto err;
|
|
}
|
|
sb = f->f_path.dentry->d_sb;
|
|
|
|
dst_cgrp = cgroup_get_from_file(f);
|
|
if (IS_ERR(dst_cgrp)) {
|
|
ret = PTR_ERR(dst_cgrp);
|
|
dst_cgrp = NULL;
|
|
goto err;
|
|
}
|
|
|
|
if (cgroup_is_dead(dst_cgrp)) {
|
|
ret = -ENODEV;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Verify that we the target cgroup is writable for us. This is
|
|
* usually done by the vfs layer but since we're not going through
|
|
* the vfs layer here we need to do it "manually".
|
|
*/
|
|
ret = cgroup_may_write(dst_cgrp, sb);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/*
|
|
* Spawning a task directly into a cgroup works by passing a file
|
|
* descriptor to the target cgroup directory. This can even be an O_PATH
|
|
* file descriptor. But it can never be a cgroup.procs file descriptor.
|
|
* This was done on purpose so spawning into a cgroup could be
|
|
* conceptualized as an atomic
|
|
*
|
|
* fd = openat(dfd_cgroup, "cgroup.procs", ...);
|
|
* write(fd, <child-pid>, ...);
|
|
*
|
|
* sequence, i.e. it's a shorthand for the caller opening and writing
|
|
* cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
|
|
* to always use the caller's credentials.
|
|
*/
|
|
ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
|
|
!(kargs->flags & CLONE_THREAD),
|
|
current->nsproxy->cgroup_ns);
|
|
if (ret)
|
|
goto err;
|
|
|
|
kargs->cset = find_css_set(cset, dst_cgrp);
|
|
if (!kargs->cset) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
put_css_set(cset);
|
|
fput(f);
|
|
kargs->cgrp = dst_cgrp;
|
|
return ret;
|
|
|
|
err:
|
|
cgroup_threadgroup_change_end(current);
|
|
cgroup_unlock();
|
|
if (f)
|
|
fput(f);
|
|
if (dst_cgrp)
|
|
cgroup_put(dst_cgrp);
|
|
put_css_set(cset);
|
|
if (kargs->cset)
|
|
put_css_set(kargs->cset);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cgroup_css_set_put_fork - drop references we took during fork
|
|
* @kargs: the arguments passed to create the child process
|
|
*
|
|
* Drop references to the prepared css_set and target cgroup if
|
|
* CLONE_INTO_CGROUP was requested.
|
|
*/
|
|
static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
|
|
__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
|
|
{
|
|
struct cgroup *cgrp = kargs->cgrp;
|
|
struct css_set *cset = kargs->cset;
|
|
|
|
cgroup_threadgroup_change_end(current);
|
|
|
|
if (cset) {
|
|
put_css_set(cset);
|
|
kargs->cset = NULL;
|
|
}
|
|
|
|
if (kargs->flags & CLONE_INTO_CGROUP) {
|
|
cgroup_unlock();
|
|
if (cgrp) {
|
|
cgroup_put(cgrp);
|
|
kargs->cgrp = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cgroup_can_fork - called on a new task before the process is exposed
|
|
* @child: the child process
|
|
* @kargs: the arguments passed to create the child process
|
|
*
|
|
* This prepares a new css_set for the child process which the child will
|
|
* be attached to in cgroup_post_fork().
|
|
* This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
|
|
* callback returns an error, the fork aborts with that error code. This
|
|
* allows for a cgroup subsystem to conditionally allow or deny new forks.
|
|
*/
|
|
int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
|
|
{
|
|
struct cgroup_subsys *ss;
|
|
int i, j, ret;
|
|
|
|
ret = cgroup_css_set_fork(kargs);
|
|
if (ret)
|
|
return ret;
|
|
|
|
do_each_subsys_mask(ss, i, have_canfork_callback) {
|
|
ret = ss->can_fork(child, kargs->cset);
|
|
if (ret)
|
|
goto out_revert;
|
|
} while_each_subsys_mask();
|
|
|
|
return 0;
|
|
|
|
out_revert:
|
|
for_each_subsys(ss, j) {
|
|
if (j >= i)
|
|
break;
|
|
if (ss->cancel_fork)
|
|
ss->cancel_fork(child, kargs->cset);
|
|
}
|
|
|
|
cgroup_css_set_put_fork(kargs);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
|
|
* @child: the child process
|
|
* @kargs: the arguments passed to create the child process
|
|
*
|
|
* This calls the cancel_fork() callbacks if a fork failed *after*
|
|
* cgroup_can_fork() succeeded and cleans up references we took to
|
|
* prepare a new css_set for the child process in cgroup_can_fork().
|
|
*/
|
|
void cgroup_cancel_fork(struct task_struct *child,
|
|
struct kernel_clone_args *kargs)
|
|
{
|
|
struct cgroup_subsys *ss;
|
|
int i;
|
|
|
|
for_each_subsys(ss, i)
|
|
if (ss->cancel_fork)
|
|
ss->cancel_fork(child, kargs->cset);
|
|
|
|
cgroup_css_set_put_fork(kargs);
|
|
}
|
|
|
|
/**
|
|
* cgroup_post_fork - finalize cgroup setup for the child process
|
|
* @child: the child process
|
|
* @kargs: the arguments passed to create the child process
|
|
*
|
|
* Attach the child process to its css_set calling the subsystem fork()
|
|
* callbacks.
|
|
*/
|
|
void cgroup_post_fork(struct task_struct *child,
|
|
struct kernel_clone_args *kargs)
|
|
__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
|
|
{
|
|
unsigned long cgrp_flags = 0;
|
|
bool kill = false;
|
|
struct cgroup_subsys *ss;
|
|
struct css_set *cset;
|
|
int i;
|
|
|
|
cset = kargs->cset;
|
|
kargs->cset = NULL;
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
|
|
/* init tasks are special, only link regular threads */
|
|
if (likely(child->pid)) {
|
|
if (kargs->cgrp)
|
|
cgrp_flags = kargs->cgrp->flags;
|
|
else
|
|
cgrp_flags = cset->dfl_cgrp->flags;
|
|
|
|
WARN_ON_ONCE(!list_empty(&child->cg_list));
|
|
cset->nr_tasks++;
|
|
css_set_move_task(child, NULL, cset, false);
|
|
} else {
|
|
put_css_set(cset);
|
|
cset = NULL;
|
|
}
|
|
|
|
if (!(child->flags & PF_KTHREAD)) {
|
|
if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
|
|
/*
|
|
* If the cgroup has to be frozen, the new task has
|
|
* too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
|
|
* get the task into the frozen state.
|
|
*/
|
|
spin_lock(&child->sighand->siglock);
|
|
WARN_ON_ONCE(child->frozen);
|
|
child->jobctl |= JOBCTL_TRAP_FREEZE;
|
|
spin_unlock(&child->sighand->siglock);
|
|
|
|
/*
|
|
* Calling cgroup_update_frozen() isn't required here,
|
|
* because it will be called anyway a bit later from
|
|
* do_freezer_trap(). So we avoid cgroup's transient
|
|
* switch from the frozen state and back.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* If the cgroup is to be killed notice it now and take the
|
|
* child down right after we finished preparing it for
|
|
* userspace.
|
|
*/
|
|
kill = test_bit(CGRP_KILL, &cgrp_flags);
|
|
}
|
|
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
/*
|
|
* Call ss->fork(). This must happen after @child is linked on
|
|
* css_set; otherwise, @child might change state between ->fork()
|
|
* and addition to css_set.
|
|
*/
|
|
do_each_subsys_mask(ss, i, have_fork_callback) {
|
|
ss->fork(child);
|
|
} while_each_subsys_mask();
|
|
|
|
/* Make the new cset the root_cset of the new cgroup namespace. */
|
|
if (kargs->flags & CLONE_NEWCGROUP) {
|
|
struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
|
|
|
|
get_css_set(cset);
|
|
child->nsproxy->cgroup_ns->root_cset = cset;
|
|
put_css_set(rcset);
|
|
}
|
|
|
|
/* Cgroup has to be killed so take down child immediately. */
|
|
if (unlikely(kill))
|
|
do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
|
|
|
|
cgroup_css_set_put_fork(kargs);
|
|
}
|
|
|
|
/**
|
|
* cgroup_exit - detach cgroup from exiting task
|
|
* @tsk: pointer to task_struct of exiting process
|
|
*
|
|
* Description: Detach cgroup from @tsk.
|
|
*
|
|
*/
|
|
void cgroup_exit(struct task_struct *tsk)
|
|
{
|
|
struct cgroup_subsys *ss;
|
|
struct css_set *cset;
|
|
int i;
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
|
|
WARN_ON_ONCE(list_empty(&tsk->cg_list));
|
|
cset = task_css_set(tsk);
|
|
css_set_move_task(tsk, cset, NULL, false);
|
|
list_add_tail(&tsk->cg_list, &cset->dying_tasks);
|
|
cset->nr_tasks--;
|
|
|
|
if (dl_task(tsk))
|
|
dec_dl_tasks_cs(tsk);
|
|
|
|
WARN_ON_ONCE(cgroup_task_frozen(tsk));
|
|
if (unlikely(!(tsk->flags & PF_KTHREAD) &&
|
|
test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
|
|
cgroup_update_frozen(task_dfl_cgroup(tsk));
|
|
|
|
spin_unlock_irq(&css_set_lock);
|
|
|
|
/* see cgroup_post_fork() for details */
|
|
do_each_subsys_mask(ss, i, have_exit_callback) {
|
|
ss->exit(tsk);
|
|
} while_each_subsys_mask();
|
|
}
|
|
|
|
void cgroup_release(struct task_struct *task)
|
|
{
|
|
struct cgroup_subsys *ss;
|
|
int ssid;
|
|
|
|
do_each_subsys_mask(ss, ssid, have_release_callback) {
|
|
ss->release(task);
|
|
} while_each_subsys_mask();
|
|
|
|
spin_lock_irq(&css_set_lock);
|
|
css_set_skip_task_iters(task_css_set(task), task);
|
|
list_del_init(&task->cg_list);
|
|
spin_unlock_irq(&css_set_lock);
|
|
}
|
|
|
|
void cgroup_free(struct task_struct *task)
|
|
{
|
|
struct css_set *cset = task_css_set(task);
|
|
put_css_set(cset);
|
|
}
|
|
|
|
static int __init cgroup_disable(char *str)
|
|
{
|
|
struct cgroup_subsys *ss;
|
|
char *token;
|
|
int i;
|
|
|
|
while ((token = strsep(&str, ",")) != NULL) {
|
|
if (!*token)
|
|
continue;
|
|
|
|
for_each_subsys(ss, i) {
|
|
if (strcmp(token, ss->name) &&
|
|
strcmp(token, ss->legacy_name))
|
|
continue;
|
|
|
|
static_branch_disable(cgroup_subsys_enabled_key[i]);
|
|
pr_info("Disabling %s control group subsystem\n",
|
|
ss->name);
|
|
}
|
|
|
|
for (i = 0; i < OPT_FEATURE_COUNT; i++) {
|
|
if (strcmp(token, cgroup_opt_feature_names[i]))
|
|
continue;
|
|
cgroup_feature_disable_mask |= 1 << i;
|
|
pr_info("Disabling %s control group feature\n",
|
|
cgroup_opt_feature_names[i]);
|
|
break;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
__setup("cgroup_disable=", cgroup_disable);
|
|
|
|
void __init __weak enable_debug_cgroup(void) { }
|
|
|
|
static int __init enable_cgroup_debug(char *str)
|
|
{
|
|
cgroup_debug = true;
|
|
enable_debug_cgroup();
|
|
return 1;
|
|
}
|
|
__setup("cgroup_debug", enable_cgroup_debug);
|
|
|
|
static int __init cgroup_favordynmods_setup(char *str)
|
|
{
|
|
return (kstrtobool(str, &have_favordynmods) == 0);
|
|
}
|
|
__setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
|
|
|
|
/**
|
|
* css_tryget_online_from_dir - get corresponding css from a cgroup dentry
|
|
* @dentry: directory dentry of interest
|
|
* @ss: subsystem of interest
|
|
*
|
|
* If @dentry is a directory for a cgroup which has @ss enabled on it, try
|
|
* to get the corresponding css and return it. If such css doesn't exist
|
|
* or can't be pinned, an ERR_PTR value is returned.
|
|
*/
|
|
struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
|
|
struct cgroup_subsys *ss)
|
|
{
|
|
struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
|
|
struct file_system_type *s_type = dentry->d_sb->s_type;
|
|
struct cgroup_subsys_state *css = NULL;
|
|
struct cgroup *cgrp;
|
|
|
|
/* is @dentry a cgroup dir? */
|
|
if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
|
|
!kn || kernfs_type(kn) != KERNFS_DIR)
|
|
return ERR_PTR(-EBADF);
|
|
|
|
rcu_read_lock();
|
|
|
|
/*
|
|
* This path doesn't originate from kernfs and @kn could already
|
|
* have been or be removed at any point. @kn->priv is RCU
|
|
* protected for this access. See css_release_work_fn() for details.
|
|
*/
|
|
cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
|
|
if (cgrp)
|
|
css = cgroup_css(cgrp, ss);
|
|
|
|
if (!css || !css_tryget_online(css))
|
|
css = ERR_PTR(-ENOENT);
|
|
|
|
rcu_read_unlock();
|
|
return css;
|
|
}
|
|
|
|
/**
|
|
* css_from_id - lookup css by id
|
|
* @id: the cgroup id
|
|
* @ss: cgroup subsys to be looked into
|
|
*
|
|
* Returns the css if there's valid one with @id, otherwise returns NULL.
|
|
* Should be called under rcu_read_lock().
|
|
*/
|
|
struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
|
|
{
|
|
WARN_ON_ONCE(!rcu_read_lock_held());
|
|
return idr_find(&ss->css_idr, id);
|
|
}
|
|
|
|
/**
|
|
* cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
|
|
* @path: path on the default hierarchy
|
|
*
|
|
* Find the cgroup at @path on the default hierarchy, increment its
|
|
* reference count and return it. Returns pointer to the found cgroup on
|
|
* success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
|
|
* been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
|
|
*/
|
|
struct cgroup *cgroup_get_from_path(const char *path)
|
|
{
|
|
struct kernfs_node *kn;
|
|
struct cgroup *cgrp = ERR_PTR(-ENOENT);
|
|
struct cgroup *root_cgrp;
|
|
|
|
root_cgrp = current_cgns_cgroup_dfl();
|
|
kn = kernfs_walk_and_get(root_cgrp->kn, path);
|
|
if (!kn)
|
|
goto out;
|
|
|
|
if (kernfs_type(kn) != KERNFS_DIR) {
|
|
cgrp = ERR_PTR(-ENOTDIR);
|
|
goto out_kernfs;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
|
|
cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
|
|
if (!cgrp || !cgroup_tryget(cgrp))
|
|
cgrp = ERR_PTR(-ENOENT);
|
|
|
|
rcu_read_unlock();
|
|
|
|
out_kernfs:
|
|
kernfs_put(kn);
|
|
out:
|
|
return cgrp;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cgroup_get_from_path);
|
|
|
|
/**
|
|
* cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
|
|
* @fd: fd obtained by open(cgroup_dir)
|
|
*
|
|
* Find the cgroup from a fd which should be obtained
|
|
* by opening a cgroup directory. Returns a pointer to the
|
|
* cgroup on success. ERR_PTR is returned if the cgroup
|
|
* cannot be found.
|
|
*/
|
|
struct cgroup *cgroup_v1v2_get_from_fd(int fd)
|
|
{
|
|
struct cgroup *cgrp;
|
|
struct fd f = fdget_raw(fd);
|
|
if (!f.file)
|
|
return ERR_PTR(-EBADF);
|
|
|
|
cgrp = cgroup_v1v2_get_from_file(f.file);
|
|
fdput(f);
|
|
return cgrp;
|
|
}
|
|
|
|
/**
|
|
* cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
|
|
* cgroup2.
|
|
* @fd: fd obtained by open(cgroup2_dir)
|
|
*/
|
|
struct cgroup *cgroup_get_from_fd(int fd)
|
|
{
|
|
struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
|
|
|
|
if (IS_ERR(cgrp))
|
|
return ERR_CAST(cgrp);
|
|
|
|
if (!cgroup_on_dfl(cgrp)) {
|
|
cgroup_put(cgrp);
|
|
return ERR_PTR(-EBADF);
|
|
}
|
|
return cgrp;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
|
|
|
|
static u64 power_of_ten(int power)
|
|
{
|
|
u64 v = 1;
|
|
while (power--)
|
|
v *= 10;
|
|
return v;
|
|
}
|
|
|
|
/**
|
|
* cgroup_parse_float - parse a floating number
|
|
* @input: input string
|
|
* @dec_shift: number of decimal digits to shift
|
|
* @v: output
|
|
*
|
|
* Parse a decimal floating point number in @input and store the result in
|
|
* @v with decimal point right shifted @dec_shift times. For example, if
|
|
* @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
|
|
* Returns 0 on success, -errno otherwise.
|
|
*
|
|
* There's nothing cgroup specific about this function except that it's
|
|
* currently the only user.
|
|
*/
|
|
int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
|
|
{
|
|
s64 whole, frac = 0;
|
|
int fstart = 0, fend = 0, flen;
|
|
|
|
if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
|
|
return -EINVAL;
|
|
if (frac < 0)
|
|
return -EINVAL;
|
|
|
|
flen = fend > fstart ? fend - fstart : 0;
|
|
if (flen < dec_shift)
|
|
frac *= power_of_ten(dec_shift - flen);
|
|
else
|
|
frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
|
|
|
|
*v = whole * power_of_ten(dec_shift) + frac;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
|
|
* definition in cgroup-defs.h.
|
|
*/
|
|
#ifdef CONFIG_SOCK_CGROUP_DATA
|
|
|
|
void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
|
|
{
|
|
struct cgroup *cgroup;
|
|
|
|
rcu_read_lock();
|
|
/* Don't associate the sock with unrelated interrupted task's cgroup. */
|
|
if (in_interrupt()) {
|
|
cgroup = &cgrp_dfl_root.cgrp;
|
|
cgroup_get(cgroup);
|
|
goto out;
|
|
}
|
|
|
|
while (true) {
|
|
struct css_set *cset;
|
|
|
|
cset = task_css_set(current);
|
|
if (likely(cgroup_tryget(cset->dfl_cgrp))) {
|
|
cgroup = cset->dfl_cgrp;
|
|
break;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
out:
|
|
skcd->cgroup = cgroup;
|
|
cgroup_bpf_get(cgroup);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
void cgroup_sk_clone(struct sock_cgroup_data *skcd)
|
|
{
|
|
struct cgroup *cgrp = sock_cgroup_ptr(skcd);
|
|
|
|
/*
|
|
* We might be cloning a socket which is left in an empty
|
|
* cgroup and the cgroup might have already been rmdir'd.
|
|
* Don't use cgroup_get_live().
|
|
*/
|
|
cgroup_get(cgrp);
|
|
cgroup_bpf_get(cgrp);
|
|
}
|
|
|
|
void cgroup_sk_free(struct sock_cgroup_data *skcd)
|
|
{
|
|
struct cgroup *cgrp = sock_cgroup_ptr(skcd);
|
|
|
|
cgroup_bpf_put(cgrp);
|
|
cgroup_put(cgrp);
|
|
}
|
|
|
|
#endif /* CONFIG_SOCK_CGROUP_DATA */
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t show_delegatable_files(struct cftype *files, char *buf,
|
|
ssize_t size, const char *prefix)
|
|
{
|
|
struct cftype *cft;
|
|
ssize_t ret = 0;
|
|
|
|
for (cft = files; cft && cft->name[0] != '\0'; cft++) {
|
|
if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
|
|
continue;
|
|
|
|
if (prefix)
|
|
ret += snprintf(buf + ret, size - ret, "%s.", prefix);
|
|
|
|
ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
|
|
|
|
if (WARN_ON(ret >= size))
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct cgroup_subsys *ss;
|
|
int ssid;
|
|
ssize_t ret = 0;
|
|
|
|
ret = show_delegatable_files(cgroup_base_files, buf + ret,
|
|
PAGE_SIZE - ret, NULL);
|
|
if (cgroup_psi_enabled())
|
|
ret += show_delegatable_files(cgroup_psi_files, buf + ret,
|
|
PAGE_SIZE - ret, NULL);
|
|
|
|
for_each_subsys(ss, ssid)
|
|
ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
|
|
PAGE_SIZE - ret,
|
|
cgroup_subsys_name[ssid]);
|
|
|
|
return ret;
|
|
}
|
|
static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
|
|
|
|
static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return snprintf(buf, PAGE_SIZE,
|
|
"nsdelegate\n"
|
|
"favordynmods\n"
|
|
"memory_localevents\n"
|
|
"memory_recursiveprot\n"
|
|
"memory_hugetlb_accounting\n");
|
|
}
|
|
static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
|
|
|
|
static struct attribute *cgroup_sysfs_attrs[] = {
|
|
&cgroup_delegate_attr.attr,
|
|
&cgroup_features_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group cgroup_sysfs_attr_group = {
|
|
.attrs = cgroup_sysfs_attrs,
|
|
.name = "cgroup",
|
|
};
|
|
|
|
static int __init cgroup_sysfs_init(void)
|
|
{
|
|
return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
|
|
}
|
|
subsys_initcall(cgroup_sysfs_init);
|
|
|
|
#endif /* CONFIG_SYSFS */
|