mirror of
https://github.com/torvalds/linux.git
synced 2024-11-15 00:21:59 +00:00
241a94abcf
No functional change intended, aliases will be used in followup commits. Note for backporters: you may need to add aliases also for modules that are already removed in mainline kernel but still in your version. Patches were generated with the help of Coccinelle scripts like: cat >scripts/coccinelle/misc/tcf_alias.cocci <<EOD virtual patch virtual report @ haskernel @ @@ @ tcf_has_kind depends on report && haskernel @ identifier ops; constant K; @@ static struct tcf_proto_ops ops = { .kind = K, ... }; +char module_alias = K; EOD /usr/bin/spatch -D report --cocci-file scripts/coccinelle/misc/tcf_alias.cocci \ --dir . \ -I ./arch/x86/include -I ./arch/x86/include/generated -I ./include \ -I ./arch/x86/include/uapi -I ./arch/x86/include/generated/uapi \ -I ./include/uapi -I ./include/generated/uapi \ --include ./include/linux/compiler-version.h --include ./include/linux/kconfig.h \ --jobs 8 --chunksize 1 2>/dev/null | \ sed 's/char module_alias = "\([^"]*\)";/MODULE_ALIAS_NET_CLS("\1");/' And analogously for: static struct tc_action_ops ops = { .kind = K, static struct Qdisc_ops ops = { .id = K, (Someone familiar would be able to fit those into one .cocci file without sed post processing.) Signed-off-by: Michal Koutný <mkoutny@suse.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Jiri Pirko <jiri@nvidia.com> Link: https://lore.kernel.org/r/20240201130943.19536-3-mkoutny@suse.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
1540 lines
42 KiB
C
1540 lines
42 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
|
|
*
|
|
* Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
|
|
* Copyright (c) 2012 Paolo Valente.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/pkt_sched.h>
|
|
#include <net/sch_generic.h>
|
|
#include <net/pkt_sched.h>
|
|
#include <net/pkt_cls.h>
|
|
|
|
|
|
/* Quick Fair Queueing Plus
|
|
========================
|
|
|
|
Sources:
|
|
|
|
[1] Paolo Valente,
|
|
"Reducing the Execution Time of Fair-Queueing Schedulers."
|
|
http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
|
|
|
|
Sources for QFQ:
|
|
|
|
[2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
|
|
Packet Scheduling with Tight Bandwidth Distribution Guarantees."
|
|
|
|
See also:
|
|
http://retis.sssup.it/~fabio/linux/qfq/
|
|
*/
|
|
|
|
/*
|
|
|
|
QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
|
|
classes. Each aggregate is timestamped with a virtual start time S
|
|
and a virtual finish time F, and scheduled according to its
|
|
timestamps. S and F are computed as a function of a system virtual
|
|
time function V. The classes within each aggregate are instead
|
|
scheduled with DRR.
|
|
|
|
To speed up operations, QFQ+ divides also aggregates into a limited
|
|
number of groups. Which group a class belongs to depends on the
|
|
ratio between the maximum packet length for the class and the weight
|
|
of the class. Groups have their own S and F. In the end, QFQ+
|
|
schedules groups, then aggregates within groups, then classes within
|
|
aggregates. See [1] and [2] for a full description.
|
|
|
|
Virtual time computations.
|
|
|
|
S, F and V are all computed in fixed point arithmetic with
|
|
FRAC_BITS decimal bits.
|
|
|
|
QFQ_MAX_INDEX is the maximum index allowed for a group. We need
|
|
one bit per index.
|
|
QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
|
|
|
|
The layout of the bits is as below:
|
|
|
|
[ MTU_SHIFT ][ FRAC_BITS ]
|
|
[ MAX_INDEX ][ MIN_SLOT_SHIFT ]
|
|
^.__grp->index = 0
|
|
*.__grp->slot_shift
|
|
|
|
where MIN_SLOT_SHIFT is derived by difference from the others.
|
|
|
|
The max group index corresponds to Lmax/w_min, where
|
|
Lmax=1<<MTU_SHIFT, w_min = 1 .
|
|
From this, and knowing how many groups (MAX_INDEX) we want,
|
|
we can derive the shift corresponding to each group.
|
|
|
|
Because we often need to compute
|
|
F = S + len/w_i and V = V + len/wsum
|
|
instead of storing w_i store the value
|
|
inv_w = (1<<FRAC_BITS)/w_i
|
|
so we can do F = S + len * inv_w * wsum.
|
|
We use W_TOT in the formulas so we can easily move between
|
|
static and adaptive weight sum.
|
|
|
|
The per-scheduler-instance data contain all the data structures
|
|
for the scheduler: bitmaps and bucket lists.
|
|
|
|
*/
|
|
|
|
/*
|
|
* Maximum number of consecutive slots occupied by backlogged classes
|
|
* inside a group.
|
|
*/
|
|
#define QFQ_MAX_SLOTS 32
|
|
|
|
/*
|
|
* Shifts used for aggregate<->group mapping. We allow class weights that are
|
|
* in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
|
|
* group with the smallest index that can support the L_i / r_i configured
|
|
* for the classes in the aggregate.
|
|
*
|
|
* grp->index is the index of the group; and grp->slot_shift
|
|
* is the shift for the corresponding (scaled) sigma_i.
|
|
*/
|
|
#define QFQ_MAX_INDEX 24
|
|
#define QFQ_MAX_WSHIFT 10
|
|
|
|
#define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
|
|
#define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
|
|
|
|
#define FRAC_BITS 30 /* fixed point arithmetic */
|
|
#define ONE_FP (1UL << FRAC_BITS)
|
|
|
|
#define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
|
|
#define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
|
|
#define QFQ_MAX_LMAX (1UL << QFQ_MTU_SHIFT)
|
|
|
|
#define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
|
|
|
|
/*
|
|
* Possible group states. These values are used as indexes for the bitmaps
|
|
* array of struct qfq_queue.
|
|
*/
|
|
enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
|
|
|
|
struct qfq_group;
|
|
|
|
struct qfq_aggregate;
|
|
|
|
struct qfq_class {
|
|
struct Qdisc_class_common common;
|
|
|
|
struct gnet_stats_basic_sync bstats;
|
|
struct gnet_stats_queue qstats;
|
|
struct net_rate_estimator __rcu *rate_est;
|
|
struct Qdisc *qdisc;
|
|
struct list_head alist; /* Link for active-classes list. */
|
|
struct qfq_aggregate *agg; /* Parent aggregate. */
|
|
int deficit; /* DRR deficit counter. */
|
|
};
|
|
|
|
struct qfq_aggregate {
|
|
struct hlist_node next; /* Link for the slot list. */
|
|
u64 S, F; /* flow timestamps (exact) */
|
|
|
|
/* group we belong to. In principle we would need the index,
|
|
* which is log_2(lmax/weight), but we never reference it
|
|
* directly, only the group.
|
|
*/
|
|
struct qfq_group *grp;
|
|
|
|
/* these are copied from the flowset. */
|
|
u32 class_weight; /* Weight of each class in this aggregate. */
|
|
/* Max pkt size for the classes in this aggregate, DRR quantum. */
|
|
int lmax;
|
|
|
|
u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
|
|
u32 budgetmax; /* Max budget for this aggregate. */
|
|
u32 initial_budget, budget; /* Initial and current budget. */
|
|
|
|
int num_classes; /* Number of classes in this aggr. */
|
|
struct list_head active; /* DRR queue of active classes. */
|
|
|
|
struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
|
|
};
|
|
|
|
struct qfq_group {
|
|
u64 S, F; /* group timestamps (approx). */
|
|
unsigned int slot_shift; /* Slot shift. */
|
|
unsigned int index; /* Group index. */
|
|
unsigned int front; /* Index of the front slot. */
|
|
unsigned long full_slots; /* non-empty slots */
|
|
|
|
/* Array of RR lists of active aggregates. */
|
|
struct hlist_head slots[QFQ_MAX_SLOTS];
|
|
};
|
|
|
|
struct qfq_sched {
|
|
struct tcf_proto __rcu *filter_list;
|
|
struct tcf_block *block;
|
|
struct Qdisc_class_hash clhash;
|
|
|
|
u64 oldV, V; /* Precise virtual times. */
|
|
struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
|
|
u32 wsum; /* weight sum */
|
|
u32 iwsum; /* inverse weight sum */
|
|
|
|
unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
|
|
struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
|
|
u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
|
|
|
|
u32 max_agg_classes; /* Max number of classes per aggr. */
|
|
struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
|
|
};
|
|
|
|
/*
|
|
* Possible reasons why the timestamps of an aggregate are updated
|
|
* enqueue: the aggregate switches from idle to active and must scheduled
|
|
* for service
|
|
* requeue: the aggregate finishes its budget, so it stops being served and
|
|
* must be rescheduled for service
|
|
*/
|
|
enum update_reason {enqueue, requeue};
|
|
|
|
static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
|
|
{
|
|
struct qfq_sched *q = qdisc_priv(sch);
|
|
struct Qdisc_class_common *clc;
|
|
|
|
clc = qdisc_class_find(&q->clhash, classid);
|
|
if (clc == NULL)
|
|
return NULL;
|
|
return container_of(clc, struct qfq_class, common);
|
|
}
|
|
|
|
static const struct netlink_range_validation lmax_range = {
|
|
.min = QFQ_MIN_LMAX,
|
|
.max = QFQ_MAX_LMAX,
|
|
};
|
|
|
|
static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
|
|
[TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT),
|
|
[TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range),
|
|
};
|
|
|
|
/*
|
|
* Calculate a flow index, given its weight and maximum packet length.
|
|
* index = log_2(maxlen/weight) but we need to apply the scaling.
|
|
* This is used only once at flow creation.
|
|
*/
|
|
static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
|
|
{
|
|
u64 slot_size = (u64)maxlen * inv_w;
|
|
unsigned long size_map;
|
|
int index = 0;
|
|
|
|
size_map = slot_size >> min_slot_shift;
|
|
if (!size_map)
|
|
goto out;
|
|
|
|
index = __fls(size_map) + 1; /* basically a log_2 */
|
|
index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
|
|
|
|
if (index < 0)
|
|
index = 0;
|
|
out:
|
|
pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
|
|
(unsigned long) ONE_FP/inv_w, maxlen, index);
|
|
|
|
return index;
|
|
}
|
|
|
|
static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
|
|
static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
|
|
enum update_reason);
|
|
|
|
static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
|
|
u32 lmax, u32 weight)
|
|
{
|
|
INIT_LIST_HEAD(&agg->active);
|
|
hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
|
|
|
|
agg->lmax = lmax;
|
|
agg->class_weight = weight;
|
|
}
|
|
|
|
static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
|
|
u32 lmax, u32 weight)
|
|
{
|
|
struct qfq_aggregate *agg;
|
|
|
|
hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
|
|
if (agg->lmax == lmax && agg->class_weight == weight)
|
|
return agg;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Update aggregate as a function of the new number of classes. */
|
|
static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
|
|
int new_num_classes)
|
|
{
|
|
u32 new_agg_weight;
|
|
|
|
if (new_num_classes == q->max_agg_classes)
|
|
hlist_del_init(&agg->nonfull_next);
|
|
|
|
if (agg->num_classes > new_num_classes &&
|
|
new_num_classes == q->max_agg_classes - 1) /* agg no more full */
|
|
hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
|
|
|
|
/* The next assignment may let
|
|
* agg->initial_budget > agg->budgetmax
|
|
* hold, we will take it into account in charge_actual_service().
|
|
*/
|
|
agg->budgetmax = new_num_classes * agg->lmax;
|
|
new_agg_weight = agg->class_weight * new_num_classes;
|
|
agg->inv_w = ONE_FP/new_agg_weight;
|
|
|
|
if (agg->grp == NULL) {
|
|
int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
|
|
q->min_slot_shift);
|
|
agg->grp = &q->groups[i];
|
|
}
|
|
|
|
q->wsum +=
|
|
(int) agg->class_weight * (new_num_classes - agg->num_classes);
|
|
q->iwsum = ONE_FP / q->wsum;
|
|
|
|
agg->num_classes = new_num_classes;
|
|
}
|
|
|
|
/* Add class to aggregate. */
|
|
static void qfq_add_to_agg(struct qfq_sched *q,
|
|
struct qfq_aggregate *agg,
|
|
struct qfq_class *cl)
|
|
{
|
|
cl->agg = agg;
|
|
|
|
qfq_update_agg(q, agg, agg->num_classes+1);
|
|
if (cl->qdisc->q.qlen > 0) { /* adding an active class */
|
|
list_add_tail(&cl->alist, &agg->active);
|
|
if (list_first_entry(&agg->active, struct qfq_class, alist) ==
|
|
cl && q->in_serv_agg != agg) /* agg was inactive */
|
|
qfq_activate_agg(q, agg, enqueue); /* schedule agg */
|
|
}
|
|
}
|
|
|
|
static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
|
|
|
|
static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
|
|
{
|
|
hlist_del_init(&agg->nonfull_next);
|
|
q->wsum -= agg->class_weight;
|
|
if (q->wsum != 0)
|
|
q->iwsum = ONE_FP / q->wsum;
|
|
|
|
if (q->in_serv_agg == agg)
|
|
q->in_serv_agg = qfq_choose_next_agg(q);
|
|
kfree(agg);
|
|
}
|
|
|
|
/* Deschedule class from within its parent aggregate. */
|
|
static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
|
|
{
|
|
struct qfq_aggregate *agg = cl->agg;
|
|
|
|
|
|
list_del(&cl->alist); /* remove from RR queue of the aggregate */
|
|
if (list_empty(&agg->active)) /* agg is now inactive */
|
|
qfq_deactivate_agg(q, agg);
|
|
}
|
|
|
|
/* Remove class from its parent aggregate. */
|
|
static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
|
|
{
|
|
struct qfq_aggregate *agg = cl->agg;
|
|
|
|
cl->agg = NULL;
|
|
if (agg->num_classes == 1) { /* agg being emptied, destroy it */
|
|
qfq_destroy_agg(q, agg);
|
|
return;
|
|
}
|
|
qfq_update_agg(q, agg, agg->num_classes-1);
|
|
}
|
|
|
|
/* Deschedule class and remove it from its parent aggregate. */
|
|
static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
|
|
{
|
|
if (cl->qdisc->q.qlen > 0) /* class is active */
|
|
qfq_deactivate_class(q, cl);
|
|
|
|
qfq_rm_from_agg(q, cl);
|
|
}
|
|
|
|
/* Move class to a new aggregate, matching the new class weight and/or lmax */
|
|
static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
|
|
u32 lmax)
|
|
{
|
|
struct qfq_sched *q = qdisc_priv(sch);
|
|
struct qfq_aggregate *new_agg;
|
|
|
|
/* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */
|
|
if (lmax > QFQ_MAX_LMAX)
|
|
return -EINVAL;
|
|
|
|
new_agg = qfq_find_agg(q, lmax, weight);
|
|
if (new_agg == NULL) { /* create new aggregate */
|
|
new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
|
|
if (new_agg == NULL)
|
|
return -ENOBUFS;
|
|
qfq_init_agg(q, new_agg, lmax, weight);
|
|
}
|
|
qfq_deact_rm_from_agg(q, cl);
|
|
qfq_add_to_agg(q, new_agg, cl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
|
|
struct nlattr **tca, unsigned long *arg,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct qfq_sched *q = qdisc_priv(sch);
|
|
struct qfq_class *cl = (struct qfq_class *)*arg;
|
|
bool existing = false;
|
|
struct nlattr *tb[TCA_QFQ_MAX + 1];
|
|
struct qfq_aggregate *new_agg = NULL;
|
|
u32 weight, lmax, inv_w;
|
|
int err;
|
|
int delta_w;
|
|
|
|
if (NL_REQ_ATTR_CHECK(extack, NULL, tca, TCA_OPTIONS)) {
|
|
NL_SET_ERR_MSG_MOD(extack, "missing options");
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
|
|
qfq_policy, extack);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (tb[TCA_QFQ_WEIGHT])
|
|
weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
|
|
else
|
|
weight = 1;
|
|
|
|
if (tb[TCA_QFQ_LMAX]) {
|
|
lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
|
|
} else {
|
|
/* MTU size is user controlled */
|
|
lmax = psched_mtu(qdisc_dev(sch));
|
|
if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) {
|
|
NL_SET_ERR_MSG_MOD(extack,
|
|
"MTU size out of bounds for qfq");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
inv_w = ONE_FP / weight;
|
|
weight = ONE_FP / inv_w;
|
|
|
|
if (cl != NULL &&
|
|
lmax == cl->agg->lmax &&
|
|
weight == cl->agg->class_weight)
|
|
return 0; /* nothing to change */
|
|
|
|
delta_w = weight - (cl ? cl->agg->class_weight : 0);
|
|
|
|
if (q->wsum + delta_w > QFQ_MAX_WSUM) {
|
|
NL_SET_ERR_MSG_FMT_MOD(extack,
|
|
"total weight out of range (%d + %u)\n",
|
|
delta_w, q->wsum);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (cl != NULL) { /* modify existing class */
|
|
if (tca[TCA_RATE]) {
|
|
err = gen_replace_estimator(&cl->bstats, NULL,
|
|
&cl->rate_est,
|
|
NULL,
|
|
true,
|
|
tca[TCA_RATE]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
existing = true;
|
|
goto set_change_agg;
|
|
}
|
|
|
|
/* create and init new class */
|
|
cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
|
|
if (cl == NULL)
|
|
return -ENOBUFS;
|
|
|
|
gnet_stats_basic_sync_init(&cl->bstats);
|
|
cl->common.classid = classid;
|
|
cl->deficit = lmax;
|
|
|
|
cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
|
|
classid, NULL);
|
|
if (cl->qdisc == NULL)
|
|
cl->qdisc = &noop_qdisc;
|
|
|
|
if (tca[TCA_RATE]) {
|
|
err = gen_new_estimator(&cl->bstats, NULL,
|
|
&cl->rate_est,
|
|
NULL,
|
|
true,
|
|
tca[TCA_RATE]);
|
|
if (err)
|
|
goto destroy_class;
|
|
}
|
|
|
|
if (cl->qdisc != &noop_qdisc)
|
|
qdisc_hash_add(cl->qdisc, true);
|
|
|
|
set_change_agg:
|
|
sch_tree_lock(sch);
|
|
new_agg = qfq_find_agg(q, lmax, weight);
|
|
if (new_agg == NULL) { /* create new aggregate */
|
|
sch_tree_unlock(sch);
|
|
new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
|
|
if (new_agg == NULL) {
|
|
err = -ENOBUFS;
|
|
gen_kill_estimator(&cl->rate_est);
|
|
goto destroy_class;
|
|
}
|
|
sch_tree_lock(sch);
|
|
qfq_init_agg(q, new_agg, lmax, weight);
|
|
}
|
|
if (existing)
|
|
qfq_deact_rm_from_agg(q, cl);
|
|
else
|
|
qdisc_class_hash_insert(&q->clhash, &cl->common);
|
|
qfq_add_to_agg(q, new_agg, cl);
|
|
sch_tree_unlock(sch);
|
|
qdisc_class_hash_grow(sch, &q->clhash);
|
|
|
|
*arg = (unsigned long)cl;
|
|
return 0;
|
|
|
|
destroy_class:
|
|
qdisc_put(cl->qdisc);
|
|
kfree(cl);
|
|
return err;
|
|
}
|
|
|
|
static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
|
|
{
|
|
struct qfq_sched *q = qdisc_priv(sch);
|
|
|
|
qfq_rm_from_agg(q, cl);
|
|
gen_kill_estimator(&cl->rate_est);
|
|
qdisc_put(cl->qdisc);
|
|
kfree(cl);
|
|
}
|
|
|
|
static int qfq_delete_class(struct Qdisc *sch, unsigned long arg,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct qfq_sched *q = qdisc_priv(sch);
|
|
struct qfq_class *cl = (struct qfq_class *)arg;
|
|
|
|
if (qdisc_class_in_use(&cl->common)) {
|
|
NL_SET_ERR_MSG_MOD(extack, "QFQ class in use");
|
|
return -EBUSY;
|
|
}
|
|
|
|
sch_tree_lock(sch);
|
|
|
|
qdisc_purge_queue(cl->qdisc);
|
|
qdisc_class_hash_remove(&q->clhash, &cl->common);
|
|
|
|
sch_tree_unlock(sch);
|
|
|
|
qfq_destroy_class(sch, cl);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
|
|
{
|
|
return (unsigned long)qfq_find_class(sch, classid);
|
|
}
|
|
|
|
static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct qfq_sched *q = qdisc_priv(sch);
|
|
|
|
if (cl)
|
|
return NULL;
|
|
|
|
return q->block;
|
|
}
|
|
|
|
static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
|
|
u32 classid)
|
|
{
|
|
struct qfq_class *cl = qfq_find_class(sch, classid);
|
|
|
|
if (cl)
|
|
qdisc_class_get(&cl->common);
|
|
|
|
return (unsigned long)cl;
|
|
}
|
|
|
|
static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
|
|
{
|
|
struct qfq_class *cl = (struct qfq_class *)arg;
|
|
|
|
qdisc_class_put(&cl->common);
|
|
}
|
|
|
|
static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
|
|
struct Qdisc *new, struct Qdisc **old,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct qfq_class *cl = (struct qfq_class *)arg;
|
|
|
|
if (new == NULL) {
|
|
new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
|
|
cl->common.classid, NULL);
|
|
if (new == NULL)
|
|
new = &noop_qdisc;
|
|
}
|
|
|
|
*old = qdisc_replace(sch, new, &cl->qdisc);
|
|
return 0;
|
|
}
|
|
|
|
static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
|
|
{
|
|
struct qfq_class *cl = (struct qfq_class *)arg;
|
|
|
|
return cl->qdisc;
|
|
}
|
|
|
|
static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
|
|
struct sk_buff *skb, struct tcmsg *tcm)
|
|
{
|
|
struct qfq_class *cl = (struct qfq_class *)arg;
|
|
struct nlattr *nest;
|
|
|
|
tcm->tcm_parent = TC_H_ROOT;
|
|
tcm->tcm_handle = cl->common.classid;
|
|
tcm->tcm_info = cl->qdisc->handle;
|
|
|
|
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
|
|
if (nest == NULL)
|
|
goto nla_put_failure;
|
|
if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
|
|
nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
|
|
goto nla_put_failure;
|
|
return nla_nest_end(skb, nest);
|
|
|
|
nla_put_failure:
|
|
nla_nest_cancel(skb, nest);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
|
|
struct gnet_dump *d)
|
|
{
|
|
struct qfq_class *cl = (struct qfq_class *)arg;
|
|
struct tc_qfq_stats xstats;
|
|
|
|
memset(&xstats, 0, sizeof(xstats));
|
|
|
|
xstats.weight = cl->agg->class_weight;
|
|
xstats.lmax = cl->agg->lmax;
|
|
|
|
if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 ||
|
|
gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
|
|
qdisc_qstats_copy(d, cl->qdisc) < 0)
|
|
return -1;
|
|
|
|
return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
|
|
}
|
|
|
|
static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
|
|
{
|
|
struct qfq_sched *q = qdisc_priv(sch);
|
|
struct qfq_class *cl;
|
|
unsigned int i;
|
|
|
|
if (arg->stop)
|
|
return;
|
|
|
|
for (i = 0; i < q->clhash.hashsize; i++) {
|
|
hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
|
|
if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg))
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
|
|
int *qerr)
|
|
{
|
|
struct qfq_sched *q = qdisc_priv(sch);
|
|
struct qfq_class *cl;
|
|
struct tcf_result res;
|
|
struct tcf_proto *fl;
|
|
int result;
|
|
|
|
if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
|
|
pr_debug("qfq_classify: found %d\n", skb->priority);
|
|
cl = qfq_find_class(sch, skb->priority);
|
|
if (cl != NULL)
|
|
return cl;
|
|
}
|
|
|
|
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
|
|
fl = rcu_dereference_bh(q->filter_list);
|
|
result = tcf_classify(skb, NULL, fl, &res, false);
|
|
if (result >= 0) {
|
|
#ifdef CONFIG_NET_CLS_ACT
|
|
switch (result) {
|
|
case TC_ACT_QUEUED:
|
|
case TC_ACT_STOLEN:
|
|
case TC_ACT_TRAP:
|
|
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
|
|
fallthrough;
|
|
case TC_ACT_SHOT:
|
|
return NULL;
|
|
}
|
|
#endif
|
|
cl = (struct qfq_class *)res.class;
|
|
if (cl == NULL)
|
|
cl = qfq_find_class(sch, res.classid);
|
|
return cl;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Generic comparison function, handling wraparound. */
|
|
static inline int qfq_gt(u64 a, u64 b)
|
|
{
|
|
return (s64)(a - b) > 0;
|
|
}
|
|
|
|
/* Round a precise timestamp to its slotted value. */
|
|
static inline u64 qfq_round_down(u64 ts, unsigned int shift)
|
|
{
|
|
return ts & ~((1ULL << shift) - 1);
|
|
}
|
|
|
|
/* return the pointer to the group with lowest index in the bitmap */
|
|
static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
|
|
unsigned long bitmap)
|
|
{
|
|
int index = __ffs(bitmap);
|
|
return &q->groups[index];
|
|
}
|
|
/* Calculate a mask to mimic what would be ffs_from(). */
|
|
static inline unsigned long mask_from(unsigned long bitmap, int from)
|
|
{
|
|
return bitmap & ~((1UL << from) - 1);
|
|
}
|
|
|
|
/*
|
|
* The state computation relies on ER=0, IR=1, EB=2, IB=3
|
|
* First compute eligibility comparing grp->S, q->V,
|
|
* then check if someone is blocking us and possibly add EB
|
|
*/
|
|
static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
|
|
{
|
|
/* if S > V we are not eligible */
|
|
unsigned int state = qfq_gt(grp->S, q->V);
|
|
unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
|
|
struct qfq_group *next;
|
|
|
|
if (mask) {
|
|
next = qfq_ffs(q, mask);
|
|
if (qfq_gt(grp->F, next->F))
|
|
state |= EB;
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
|
|
/*
|
|
* In principle
|
|
* q->bitmaps[dst] |= q->bitmaps[src] & mask;
|
|
* q->bitmaps[src] &= ~mask;
|
|
* but we should make sure that src != dst
|
|
*/
|
|
static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
|
|
int src, int dst)
|
|
{
|
|
q->bitmaps[dst] |= q->bitmaps[src] & mask;
|
|
q->bitmaps[src] &= ~mask;
|
|
}
|
|
|
|
static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
|
|
{
|
|
unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
|
|
struct qfq_group *next;
|
|
|
|
if (mask) {
|
|
next = qfq_ffs(q, mask);
|
|
if (!qfq_gt(next->F, old_F))
|
|
return;
|
|
}
|
|
|
|
mask = (1UL << index) - 1;
|
|
qfq_move_groups(q, mask, EB, ER);
|
|
qfq_move_groups(q, mask, IB, IR);
|
|
}
|
|
|
|
/*
|
|
* perhaps
|
|
*
|
|
old_V ^= q->V;
|
|
old_V >>= q->min_slot_shift;
|
|
if (old_V) {
|
|
...
|
|
}
|
|
*
|
|
*/
|
|
static void qfq_make_eligible(struct qfq_sched *q)
|
|
{
|
|
unsigned long vslot = q->V >> q->min_slot_shift;
|
|
unsigned long old_vslot = q->oldV >> q->min_slot_shift;
|
|
|
|
if (vslot != old_vslot) {
|
|
unsigned long mask;
|
|
int last_flip_pos = fls(vslot ^ old_vslot);
|
|
|
|
if (last_flip_pos > 31) /* higher than the number of groups */
|
|
mask = ~0UL; /* make all groups eligible */
|
|
else
|
|
mask = (1UL << last_flip_pos) - 1;
|
|
|
|
qfq_move_groups(q, mask, IR, ER);
|
|
qfq_move_groups(q, mask, IB, EB);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The index of the slot in which the input aggregate agg is to be
|
|
* inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
|
|
* and not a '-1' because the start time of the group may be moved
|
|
* backward by one slot after the aggregate has been inserted, and
|
|
* this would cause non-empty slots to be right-shifted by one
|
|
* position.
|
|
*
|
|
* QFQ+ fully satisfies this bound to the slot index if the parameters
|
|
* of the classes are not changed dynamically, and if QFQ+ never
|
|
* happens to postpone the service of agg unjustly, i.e., it never
|
|
* happens that the aggregate becomes backlogged and eligible, or just
|
|
* eligible, while an aggregate with a higher approximated finish time
|
|
* is being served. In particular, in this case QFQ+ guarantees that
|
|
* the timestamps of agg are low enough that the slot index is never
|
|
* higher than 2. Unfortunately, QFQ+ cannot provide the same
|
|
* guarantee if it happens to unjustly postpone the service of agg, or
|
|
* if the parameters of some class are changed.
|
|
*
|
|
* As for the first event, i.e., an out-of-order service, the
|
|
* upper bound to the slot index guaranteed by QFQ+ grows to
|
|
* 2 +
|
|
* QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
|
|
* (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
|
|
*
|
|
* The following function deals with this problem by backward-shifting
|
|
* the timestamps of agg, if needed, so as to guarantee that the slot
|
|
* index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
|
|
* cause the service of other aggregates to be postponed, yet the
|
|
* worst-case guarantees of these aggregates are not violated. In
|
|
* fact, in case of no out-of-order service, the timestamps of agg
|
|
* would have been even lower than they are after the backward shift,
|
|
* because QFQ+ would have guaranteed a maximum value equal to 2 for
|
|
* the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
|
|
* service is postponed because of the backward-shift would have
|
|
* however waited for the service of agg before being served.
|
|
*
|
|
* The other event that may cause the slot index to be higher than 2
|
|
* for agg is a recent change of the parameters of some class. If the
|
|
* weight of a class is increased or the lmax (max_pkt_size) of the
|
|
* class is decreased, then a new aggregate with smaller slot size
|
|
* than the original parent aggregate of the class may happen to be
|
|
* activated. The activation of this aggregate should be properly
|
|
* delayed to when the service of the class has finished in the ideal
|
|
* system tracked by QFQ+. If the activation of the aggregate is not
|
|
* delayed to this reference time instant, then this aggregate may be
|
|
* unjustly served before other aggregates waiting for service. This
|
|
* may cause the above bound to the slot index to be violated for some
|
|
* of these unlucky aggregates.
|
|
*
|
|
* Instead of delaying the activation of the new aggregate, which is
|
|
* quite complex, the above-discussed capping of the slot index is
|
|
* used to handle also the consequences of a change of the parameters
|
|
* of a class.
|
|
*/
|
|
static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
|
|
u64 roundedS)
|
|
{
|
|
u64 slot = (roundedS - grp->S) >> grp->slot_shift;
|
|
unsigned int i; /* slot index in the bucket list */
|
|
|
|
if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
|
|
u64 deltaS = roundedS - grp->S -
|
|
((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
|
|
agg->S -= deltaS;
|
|
agg->F -= deltaS;
|
|
slot = QFQ_MAX_SLOTS - 2;
|
|
}
|
|
|
|
i = (grp->front + slot) % QFQ_MAX_SLOTS;
|
|
|
|
hlist_add_head(&agg->next, &grp->slots[i]);
|
|
__set_bit(slot, &grp->full_slots);
|
|
}
|
|
|
|
/* Maybe introduce hlist_first_entry?? */
|
|
static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
|
|
{
|
|
return hlist_entry(grp->slots[grp->front].first,
|
|
struct qfq_aggregate, next);
|
|
}
|
|
|
|
/*
|
|
* remove the entry from the slot
|
|
*/
|
|
static void qfq_front_slot_remove(struct qfq_group *grp)
|
|
{
|
|
struct qfq_aggregate *agg = qfq_slot_head(grp);
|
|
|
|
BUG_ON(!agg);
|
|
hlist_del(&agg->next);
|
|
if (hlist_empty(&grp->slots[grp->front]))
|
|
__clear_bit(0, &grp->full_slots);
|
|
}
|
|
|
|
/*
|
|
* Returns the first aggregate in the first non-empty bucket of the
|
|
* group. As a side effect, adjusts the bucket list so the first
|
|
* non-empty bucket is at position 0 in full_slots.
|
|
*/
|
|
static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
|
|
{
|
|
unsigned int i;
|
|
|
|
pr_debug("qfq slot_scan: grp %u full %#lx\n",
|
|
grp->index, grp->full_slots);
|
|
|
|
if (grp->full_slots == 0)
|
|
return NULL;
|
|
|
|
i = __ffs(grp->full_slots); /* zero based */
|
|
if (i > 0) {
|
|
grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
|
|
grp->full_slots >>= i;
|
|
}
|
|
|
|
return qfq_slot_head(grp);
|
|
}
|
|
|
|
/*
|
|
* adjust the bucket list. When the start time of a group decreases,
|
|
* we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
|
|
* move the objects. The mask of occupied slots must be shifted
|
|
* because we use ffs() to find the first non-empty slot.
|
|
* This covers decreases in the group's start time, but what about
|
|
* increases of the start time ?
|
|
* Here too we should make sure that i is less than 32
|
|
*/
|
|
static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
|
|
{
|
|
unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
|
|
|
|
grp->full_slots <<= i;
|
|
grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
|
|
}
|
|
|
|
static void qfq_update_eligible(struct qfq_sched *q)
|
|
{
|
|
struct qfq_group *grp;
|
|
unsigned long ineligible;
|
|
|
|
ineligible = q->bitmaps[IR] | q->bitmaps[IB];
|
|
if (ineligible) {
|
|
if (!q->bitmaps[ER]) {
|
|
grp = qfq_ffs(q, ineligible);
|
|
if (qfq_gt(grp->S, q->V))
|
|
q->V = grp->S;
|
|
}
|
|
qfq_make_eligible(q);
|
|
}
|
|
}
|
|
|
|
/* Dequeue head packet of the head class in the DRR queue of the aggregate. */
|
|
static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg,
|
|
struct qfq_class *cl, unsigned int len)
|
|
{
|
|
struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc);
|
|
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
cl->deficit -= (int) len;
|
|
|
|
if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
|
|
list_del(&cl->alist);
|
|
else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
|
|
cl->deficit += agg->lmax;
|
|
list_move_tail(&cl->alist, &agg->active);
|
|
}
|
|
|
|
return skb;
|
|
}
|
|
|
|
static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
|
|
struct qfq_class **cl,
|
|
unsigned int *len)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
*cl = list_first_entry(&agg->active, struct qfq_class, alist);
|
|
skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
|
|
if (skb == NULL)
|
|
qdisc_warn_nonwc("qfq_dequeue", (*cl)->qdisc);
|
|
else
|
|
*len = qdisc_pkt_len(skb);
|
|
|
|
return skb;
|
|
}
|
|
|
|
/* Update F according to the actual service received by the aggregate. */
|
|
static inline void charge_actual_service(struct qfq_aggregate *agg)
|
|
{
|
|
/* Compute the service received by the aggregate, taking into
|
|
* account that, after decreasing the number of classes in
|
|
* agg, it may happen that
|
|
* agg->initial_budget - agg->budget > agg->bugdetmax
|
|
*/
|
|
u32 service_received = min(agg->budgetmax,
|
|
agg->initial_budget - agg->budget);
|
|
|
|
agg->F = agg->S + (u64)service_received * agg->inv_w;
|
|
}
|
|
|
|
/* Assign a reasonable start time for a new aggregate in group i.
|
|
* Admissible values for \hat(F) are multiples of \sigma_i
|
|
* no greater than V+\sigma_i . Larger values mean that
|
|
* we had a wraparound so we consider the timestamp to be stale.
|
|
*
|
|
* If F is not stale and F >= V then we set S = F.
|
|
* Otherwise we should assign S = V, but this may violate
|
|
* the ordering in EB (see [2]). So, if we have groups in ER,
|
|
* set S to the F_j of the first group j which would be blocking us.
|
|
* We are guaranteed not to move S backward because
|
|
* otherwise our group i would still be blocked.
|
|
*/
|
|
static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
|
|
{
|
|
unsigned long mask;
|
|
u64 limit, roundedF;
|
|
int slot_shift = agg->grp->slot_shift;
|
|
|
|
roundedF = qfq_round_down(agg->F, slot_shift);
|
|
limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
|
|
|
|
if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
|
|
/* timestamp was stale */
|
|
mask = mask_from(q->bitmaps[ER], agg->grp->index);
|
|
if (mask) {
|
|
struct qfq_group *next = qfq_ffs(q, mask);
|
|
if (qfq_gt(roundedF, next->F)) {
|
|
if (qfq_gt(limit, next->F))
|
|
agg->S = next->F;
|
|
else /* preserve timestamp correctness */
|
|
agg->S = limit;
|
|
return;
|
|
}
|
|
}
|
|
agg->S = q->V;
|
|
} else /* timestamp is not stale */
|
|
agg->S = agg->F;
|
|
}
|
|
|
|
/* Update the timestamps of agg before scheduling/rescheduling it for
|
|
* service. In particular, assign to agg->F its maximum possible
|
|
* value, i.e., the virtual finish time with which the aggregate
|
|
* should be labeled if it used all its budget once in service.
|
|
*/
|
|
static inline void
|
|
qfq_update_agg_ts(struct qfq_sched *q,
|
|
struct qfq_aggregate *agg, enum update_reason reason)
|
|
{
|
|
if (reason != requeue)
|
|
qfq_update_start(q, agg);
|
|
else /* just charge agg for the service received */
|
|
agg->S = agg->F;
|
|
|
|
agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
|
|
}
|
|
|
|
static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
|
|
|
|
static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
|
|
{
|
|
struct qfq_sched *q = qdisc_priv(sch);
|
|
struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
|
|
struct qfq_class *cl;
|
|
struct sk_buff *skb = NULL;
|
|
/* next-packet len, 0 means no more active classes in in-service agg */
|
|
unsigned int len = 0;
|
|
|
|
if (in_serv_agg == NULL)
|
|
return NULL;
|
|
|
|
if (!list_empty(&in_serv_agg->active))
|
|
skb = qfq_peek_skb(in_serv_agg, &cl, &len);
|
|
|
|
/*
|
|
* If there are no active classes in the in-service aggregate,
|
|
* or if the aggregate has not enough budget to serve its next
|
|
* class, then choose the next aggregate to serve.
|
|
*/
|
|
if (len == 0 || in_serv_agg->budget < len) {
|
|
charge_actual_service(in_serv_agg);
|
|
|
|
/* recharge the budget of the aggregate */
|
|
in_serv_agg->initial_budget = in_serv_agg->budget =
|
|
in_serv_agg->budgetmax;
|
|
|
|
if (!list_empty(&in_serv_agg->active)) {
|
|
/*
|
|
* Still active: reschedule for
|
|
* service. Possible optimization: if no other
|
|
* aggregate is active, then there is no point
|
|
* in rescheduling this aggregate, and we can
|
|
* just keep it as the in-service one. This
|
|
* should be however a corner case, and to
|
|
* handle it, we would need to maintain an
|
|
* extra num_active_aggs field.
|
|
*/
|
|
qfq_update_agg_ts(q, in_serv_agg, requeue);
|
|
qfq_schedule_agg(q, in_serv_agg);
|
|
} else if (sch->q.qlen == 0) { /* no aggregate to serve */
|
|
q->in_serv_agg = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If we get here, there are other aggregates queued:
|
|
* choose the new aggregate to serve.
|
|
*/
|
|
in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
|
|
skb = qfq_peek_skb(in_serv_agg, &cl, &len);
|
|
}
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
sch->q.qlen--;
|
|
|
|
skb = agg_dequeue(in_serv_agg, cl, len);
|
|
|
|
if (!skb) {
|
|
sch->q.qlen++;
|
|
return NULL;
|
|
}
|
|
|
|
qdisc_qstats_backlog_dec(sch, skb);
|
|
qdisc_bstats_update(sch, skb);
|
|
|
|
/* If lmax is lowered, through qfq_change_class, for a class
|
|
* owning pending packets with larger size than the new value
|
|
* of lmax, then the following condition may hold.
|
|
*/
|
|
if (unlikely(in_serv_agg->budget < len))
|
|
in_serv_agg->budget = 0;
|
|
else
|
|
in_serv_agg->budget -= len;
|
|
|
|
q->V += (u64)len * q->iwsum;
|
|
pr_debug("qfq dequeue: len %u F %lld now %lld\n",
|
|
len, (unsigned long long) in_serv_agg->F,
|
|
(unsigned long long) q->V);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
|
|
{
|
|
struct qfq_group *grp;
|
|
struct qfq_aggregate *agg, *new_front_agg;
|
|
u64 old_F;
|
|
|
|
qfq_update_eligible(q);
|
|
q->oldV = q->V;
|
|
|
|
if (!q->bitmaps[ER])
|
|
return NULL;
|
|
|
|
grp = qfq_ffs(q, q->bitmaps[ER]);
|
|
old_F = grp->F;
|
|
|
|
agg = qfq_slot_head(grp);
|
|
|
|
/* agg starts to be served, remove it from schedule */
|
|
qfq_front_slot_remove(grp);
|
|
|
|
new_front_agg = qfq_slot_scan(grp);
|
|
|
|
if (new_front_agg == NULL) /* group is now inactive, remove from ER */
|
|
__clear_bit(grp->index, &q->bitmaps[ER]);
|
|
else {
|
|
u64 roundedS = qfq_round_down(new_front_agg->S,
|
|
grp->slot_shift);
|
|
unsigned int s;
|
|
|
|
if (grp->S == roundedS)
|
|
return agg;
|
|
grp->S = roundedS;
|
|
grp->F = roundedS + (2ULL << grp->slot_shift);
|
|
__clear_bit(grp->index, &q->bitmaps[ER]);
|
|
s = qfq_calc_state(q, grp);
|
|
__set_bit(grp->index, &q->bitmaps[s]);
|
|
}
|
|
|
|
qfq_unblock_groups(q, grp->index, old_F);
|
|
|
|
return agg;
|
|
}
|
|
|
|
static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
|
|
struct sk_buff **to_free)
|
|
{
|
|
unsigned int len = qdisc_pkt_len(skb), gso_segs;
|
|
struct qfq_sched *q = qdisc_priv(sch);
|
|
struct qfq_class *cl;
|
|
struct qfq_aggregate *agg;
|
|
int err = 0;
|
|
bool first;
|
|
|
|
cl = qfq_classify(skb, sch, &err);
|
|
if (cl == NULL) {
|
|
if (err & __NET_XMIT_BYPASS)
|
|
qdisc_qstats_drop(sch);
|
|
__qdisc_drop(skb, to_free);
|
|
return err;
|
|
}
|
|
pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
|
|
|
|
if (unlikely(cl->agg->lmax < len)) {
|
|
pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
|
|
cl->agg->lmax, len, cl->common.classid);
|
|
err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
|
|
if (err) {
|
|
cl->qstats.drops++;
|
|
return qdisc_drop(skb, sch, to_free);
|
|
}
|
|
}
|
|
|
|
gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
|
|
first = !cl->qdisc->q.qlen;
|
|
err = qdisc_enqueue(skb, cl->qdisc, to_free);
|
|
if (unlikely(err != NET_XMIT_SUCCESS)) {
|
|
pr_debug("qfq_enqueue: enqueue failed %d\n", err);
|
|
if (net_xmit_drop_count(err)) {
|
|
cl->qstats.drops++;
|
|
qdisc_qstats_drop(sch);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
_bstats_update(&cl->bstats, len, gso_segs);
|
|
sch->qstats.backlog += len;
|
|
++sch->q.qlen;
|
|
|
|
agg = cl->agg;
|
|
/* if the queue was not empty, then done here */
|
|
if (!first) {
|
|
if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
|
|
list_first_entry(&agg->active, struct qfq_class, alist)
|
|
== cl && cl->deficit < len)
|
|
list_move_tail(&cl->alist, &agg->active);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* schedule class for service within the aggregate */
|
|
cl->deficit = agg->lmax;
|
|
list_add_tail(&cl->alist, &agg->active);
|
|
|
|
if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
|
|
q->in_serv_agg == agg)
|
|
return err; /* non-empty or in service, nothing else to do */
|
|
|
|
qfq_activate_agg(q, agg, enqueue);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Schedule aggregate according to its timestamps.
|
|
*/
|
|
static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
|
|
{
|
|
struct qfq_group *grp = agg->grp;
|
|
u64 roundedS;
|
|
int s;
|
|
|
|
roundedS = qfq_round_down(agg->S, grp->slot_shift);
|
|
|
|
/*
|
|
* Insert agg in the correct bucket.
|
|
* If agg->S >= grp->S we don't need to adjust the
|
|
* bucket list and simply go to the insertion phase.
|
|
* Otherwise grp->S is decreasing, we must make room
|
|
* in the bucket list, and also recompute the group state.
|
|
* Finally, if there were no flows in this group and nobody
|
|
* was in ER make sure to adjust V.
|
|
*/
|
|
if (grp->full_slots) {
|
|
if (!qfq_gt(grp->S, agg->S))
|
|
goto skip_update;
|
|
|
|
/* create a slot for this agg->S */
|
|
qfq_slot_rotate(grp, roundedS);
|
|
/* group was surely ineligible, remove */
|
|
__clear_bit(grp->index, &q->bitmaps[IR]);
|
|
__clear_bit(grp->index, &q->bitmaps[IB]);
|
|
} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
|
|
q->in_serv_agg == NULL)
|
|
q->V = roundedS;
|
|
|
|
grp->S = roundedS;
|
|
grp->F = roundedS + (2ULL << grp->slot_shift);
|
|
s = qfq_calc_state(q, grp);
|
|
__set_bit(grp->index, &q->bitmaps[s]);
|
|
|
|
pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
|
|
s, q->bitmaps[s],
|
|
(unsigned long long) agg->S,
|
|
(unsigned long long) agg->F,
|
|
(unsigned long long) q->V);
|
|
|
|
skip_update:
|
|
qfq_slot_insert(grp, agg, roundedS);
|
|
}
|
|
|
|
|
|
/* Update agg ts and schedule agg for service */
|
|
static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
|
|
enum update_reason reason)
|
|
{
|
|
agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
|
|
|
|
qfq_update_agg_ts(q, agg, reason);
|
|
if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
|
|
q->in_serv_agg = agg; /* start serving this aggregate */
|
|
/* update V: to be in service, agg must be eligible */
|
|
q->oldV = q->V = agg->S;
|
|
} else if (agg != q->in_serv_agg)
|
|
qfq_schedule_agg(q, agg);
|
|
}
|
|
|
|
static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
|
|
struct qfq_aggregate *agg)
|
|
{
|
|
unsigned int i, offset;
|
|
u64 roundedS;
|
|
|
|
roundedS = qfq_round_down(agg->S, grp->slot_shift);
|
|
offset = (roundedS - grp->S) >> grp->slot_shift;
|
|
|
|
i = (grp->front + offset) % QFQ_MAX_SLOTS;
|
|
|
|
hlist_del(&agg->next);
|
|
if (hlist_empty(&grp->slots[i]))
|
|
__clear_bit(offset, &grp->full_slots);
|
|
}
|
|
|
|
/*
|
|
* Called to forcibly deschedule an aggregate. If the aggregate is
|
|
* not in the front bucket, or if the latter has other aggregates in
|
|
* the front bucket, we can simply remove the aggregate with no other
|
|
* side effects.
|
|
* Otherwise we must propagate the event up.
|
|
*/
|
|
static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
|
|
{
|
|
struct qfq_group *grp = agg->grp;
|
|
unsigned long mask;
|
|
u64 roundedS;
|
|
int s;
|
|
|
|
if (agg == q->in_serv_agg) {
|
|
charge_actual_service(agg);
|
|
q->in_serv_agg = qfq_choose_next_agg(q);
|
|
return;
|
|
}
|
|
|
|
agg->F = agg->S;
|
|
qfq_slot_remove(q, grp, agg);
|
|
|
|
if (!grp->full_slots) {
|
|
__clear_bit(grp->index, &q->bitmaps[IR]);
|
|
__clear_bit(grp->index, &q->bitmaps[EB]);
|
|
__clear_bit(grp->index, &q->bitmaps[IB]);
|
|
|
|
if (test_bit(grp->index, &q->bitmaps[ER]) &&
|
|
!(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
|
|
mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
|
|
if (mask)
|
|
mask = ~((1UL << __fls(mask)) - 1);
|
|
else
|
|
mask = ~0UL;
|
|
qfq_move_groups(q, mask, EB, ER);
|
|
qfq_move_groups(q, mask, IB, IR);
|
|
}
|
|
__clear_bit(grp->index, &q->bitmaps[ER]);
|
|
} else if (hlist_empty(&grp->slots[grp->front])) {
|
|
agg = qfq_slot_scan(grp);
|
|
roundedS = qfq_round_down(agg->S, grp->slot_shift);
|
|
if (grp->S != roundedS) {
|
|
__clear_bit(grp->index, &q->bitmaps[ER]);
|
|
__clear_bit(grp->index, &q->bitmaps[IR]);
|
|
__clear_bit(grp->index, &q->bitmaps[EB]);
|
|
__clear_bit(grp->index, &q->bitmaps[IB]);
|
|
grp->S = roundedS;
|
|
grp->F = roundedS + (2ULL << grp->slot_shift);
|
|
s = qfq_calc_state(q, grp);
|
|
__set_bit(grp->index, &q->bitmaps[s]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
|
|
{
|
|
struct qfq_sched *q = qdisc_priv(sch);
|
|
struct qfq_class *cl = (struct qfq_class *)arg;
|
|
|
|
qfq_deactivate_class(q, cl);
|
|
}
|
|
|
|
static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct qfq_sched *q = qdisc_priv(sch);
|
|
struct qfq_group *grp;
|
|
int i, j, err;
|
|
u32 max_cl_shift, maxbudg_shift, max_classes;
|
|
|
|
err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
|
|
if (err)
|
|
return err;
|
|
|
|
err = qdisc_class_hash_init(&q->clhash);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
|
|
QFQ_MAX_AGG_CLASSES);
|
|
/* max_cl_shift = floor(log_2(max_classes)) */
|
|
max_cl_shift = __fls(max_classes);
|
|
q->max_agg_classes = 1<<max_cl_shift;
|
|
|
|
/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
|
|
maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
|
|
q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
|
|
|
|
for (i = 0; i <= QFQ_MAX_INDEX; i++) {
|
|
grp = &q->groups[i];
|
|
grp->index = i;
|
|
grp->slot_shift = q->min_slot_shift + i;
|
|
for (j = 0; j < QFQ_MAX_SLOTS; j++)
|
|
INIT_HLIST_HEAD(&grp->slots[j]);
|
|
}
|
|
|
|
INIT_HLIST_HEAD(&q->nonfull_aggs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void qfq_reset_qdisc(struct Qdisc *sch)
|
|
{
|
|
struct qfq_sched *q = qdisc_priv(sch);
|
|
struct qfq_class *cl;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < q->clhash.hashsize; i++) {
|
|
hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
|
|
if (cl->qdisc->q.qlen > 0)
|
|
qfq_deactivate_class(q, cl);
|
|
|
|
qdisc_reset(cl->qdisc);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void qfq_destroy_qdisc(struct Qdisc *sch)
|
|
{
|
|
struct qfq_sched *q = qdisc_priv(sch);
|
|
struct qfq_class *cl;
|
|
struct hlist_node *next;
|
|
unsigned int i;
|
|
|
|
tcf_block_put(q->block);
|
|
|
|
for (i = 0; i < q->clhash.hashsize; i++) {
|
|
hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
|
|
common.hnode) {
|
|
qfq_destroy_class(sch, cl);
|
|
}
|
|
}
|
|
qdisc_class_hash_destroy(&q->clhash);
|
|
}
|
|
|
|
static const struct Qdisc_class_ops qfq_class_ops = {
|
|
.change = qfq_change_class,
|
|
.delete = qfq_delete_class,
|
|
.find = qfq_search_class,
|
|
.tcf_block = qfq_tcf_block,
|
|
.bind_tcf = qfq_bind_tcf,
|
|
.unbind_tcf = qfq_unbind_tcf,
|
|
.graft = qfq_graft_class,
|
|
.leaf = qfq_class_leaf,
|
|
.qlen_notify = qfq_qlen_notify,
|
|
.dump = qfq_dump_class,
|
|
.dump_stats = qfq_dump_class_stats,
|
|
.walk = qfq_walk,
|
|
};
|
|
|
|
static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
|
|
.cl_ops = &qfq_class_ops,
|
|
.id = "qfq",
|
|
.priv_size = sizeof(struct qfq_sched),
|
|
.enqueue = qfq_enqueue,
|
|
.dequeue = qfq_dequeue,
|
|
.peek = qdisc_peek_dequeued,
|
|
.init = qfq_init_qdisc,
|
|
.reset = qfq_reset_qdisc,
|
|
.destroy = qfq_destroy_qdisc,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
MODULE_ALIAS_NET_SCH("qfq");
|
|
|
|
static int __init qfq_init(void)
|
|
{
|
|
return register_qdisc(&qfq_qdisc_ops);
|
|
}
|
|
|
|
static void __exit qfq_exit(void)
|
|
{
|
|
unregister_qdisc(&qfq_qdisc_ops);
|
|
}
|
|
|
|
module_init(qfq_init);
|
|
module_exit(qfq_exit);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Quick Fair Queueing Plus qdisc");
|