mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 14:11:52 +00:00
548b6a1e55
Describe the caller's responsibilities when passing FAULT_FLAG_ALLOW_RETRY. Link: http://lkml.kernel.org/r/1586915606.5647.5.camel@mtkswgap22 Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2981 lines
83 KiB
C
2981 lines
83 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
#include "internal.h"
|
|
|
|
struct follow_page_context {
|
|
struct dev_pagemap *pgmap;
|
|
unsigned int page_mask;
|
|
};
|
|
|
|
static void hpage_pincount_add(struct page *page, int refs)
|
|
{
|
|
VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
|
|
VM_BUG_ON_PAGE(page != compound_head(page), page);
|
|
|
|
atomic_add(refs, compound_pincount_ptr(page));
|
|
}
|
|
|
|
static void hpage_pincount_sub(struct page *page, int refs)
|
|
{
|
|
VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
|
|
VM_BUG_ON_PAGE(page != compound_head(page), page);
|
|
|
|
atomic_sub(refs, compound_pincount_ptr(page));
|
|
}
|
|
|
|
/*
|
|
* Return the compound head page with ref appropriately incremented,
|
|
* or NULL if that failed.
|
|
*/
|
|
static inline struct page *try_get_compound_head(struct page *page, int refs)
|
|
{
|
|
struct page *head = compound_head(page);
|
|
|
|
if (WARN_ON_ONCE(page_ref_count(head) < 0))
|
|
return NULL;
|
|
if (unlikely(!page_cache_add_speculative(head, refs)))
|
|
return NULL;
|
|
return head;
|
|
}
|
|
|
|
/*
|
|
* try_grab_compound_head() - attempt to elevate a page's refcount, by a
|
|
* flags-dependent amount.
|
|
*
|
|
* "grab" names in this file mean, "look at flags to decide whether to use
|
|
* FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
|
|
*
|
|
* Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
|
|
* same time. (That's true throughout the get_user_pages*() and
|
|
* pin_user_pages*() APIs.) Cases:
|
|
*
|
|
* FOLL_GET: page's refcount will be incremented by 1.
|
|
* FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
|
|
*
|
|
* Return: head page (with refcount appropriately incremented) for success, or
|
|
* NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
|
|
* considered failure, and furthermore, a likely bug in the caller, so a warning
|
|
* is also emitted.
|
|
*/
|
|
static __maybe_unused struct page *try_grab_compound_head(struct page *page,
|
|
int refs,
|
|
unsigned int flags)
|
|
{
|
|
if (flags & FOLL_GET)
|
|
return try_get_compound_head(page, refs);
|
|
else if (flags & FOLL_PIN) {
|
|
int orig_refs = refs;
|
|
|
|
/*
|
|
* Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
|
|
* path, so fail and let the caller fall back to the slow path.
|
|
*/
|
|
if (unlikely(flags & FOLL_LONGTERM) &&
|
|
is_migrate_cma_page(page))
|
|
return NULL;
|
|
|
|
/*
|
|
* When pinning a compound page of order > 1 (which is what
|
|
* hpage_pincount_available() checks for), use an exact count to
|
|
* track it, via hpage_pincount_add/_sub().
|
|
*
|
|
* However, be sure to *also* increment the normal page refcount
|
|
* field at least once, so that the page really is pinned.
|
|
*/
|
|
if (!hpage_pincount_available(page))
|
|
refs *= GUP_PIN_COUNTING_BIAS;
|
|
|
|
page = try_get_compound_head(page, refs);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
if (hpage_pincount_available(page))
|
|
hpage_pincount_add(page, refs);
|
|
|
|
mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
|
|
orig_refs);
|
|
|
|
return page;
|
|
}
|
|
|
|
WARN_ON_ONCE(1);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* try_grab_page() - elevate a page's refcount by a flag-dependent amount
|
|
*
|
|
* This might not do anything at all, depending on the flags argument.
|
|
*
|
|
* "grab" names in this file mean, "look at flags to decide whether to use
|
|
* FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
|
|
*
|
|
* @page: pointer to page to be grabbed
|
|
* @flags: gup flags: these are the FOLL_* flag values.
|
|
*
|
|
* Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
|
|
* time. Cases:
|
|
*
|
|
* FOLL_GET: page's refcount will be incremented by 1.
|
|
* FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
|
|
*
|
|
* Return: true for success, or if no action was required (if neither FOLL_PIN
|
|
* nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
|
|
* FOLL_PIN was set, but the page could not be grabbed.
|
|
*/
|
|
bool __must_check try_grab_page(struct page *page, unsigned int flags)
|
|
{
|
|
WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
|
|
|
|
if (flags & FOLL_GET)
|
|
return try_get_page(page);
|
|
else if (flags & FOLL_PIN) {
|
|
int refs = 1;
|
|
|
|
page = compound_head(page);
|
|
|
|
if (WARN_ON_ONCE(page_ref_count(page) <= 0))
|
|
return false;
|
|
|
|
if (hpage_pincount_available(page))
|
|
hpage_pincount_add(page, 1);
|
|
else
|
|
refs = GUP_PIN_COUNTING_BIAS;
|
|
|
|
/*
|
|
* Similar to try_grab_compound_head(): even if using the
|
|
* hpage_pincount_add/_sub() routines, be sure to
|
|
* *also* increment the normal page refcount field at least
|
|
* once, so that the page really is pinned.
|
|
*/
|
|
page_ref_add(page, refs);
|
|
|
|
mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifdef CONFIG_DEV_PAGEMAP_OPS
|
|
static bool __unpin_devmap_managed_user_page(struct page *page)
|
|
{
|
|
int count, refs = 1;
|
|
|
|
if (!page_is_devmap_managed(page))
|
|
return false;
|
|
|
|
if (hpage_pincount_available(page))
|
|
hpage_pincount_sub(page, 1);
|
|
else
|
|
refs = GUP_PIN_COUNTING_BIAS;
|
|
|
|
count = page_ref_sub_return(page, refs);
|
|
|
|
mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
|
|
/*
|
|
* devmap page refcounts are 1-based, rather than 0-based: if
|
|
* refcount is 1, then the page is free and the refcount is
|
|
* stable because nobody holds a reference on the page.
|
|
*/
|
|
if (count == 1)
|
|
free_devmap_managed_page(page);
|
|
else if (!count)
|
|
__put_page(page);
|
|
|
|
return true;
|
|
}
|
|
#else
|
|
static bool __unpin_devmap_managed_user_page(struct page *page)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_DEV_PAGEMAP_OPS */
|
|
|
|
/**
|
|
* unpin_user_page() - release a dma-pinned page
|
|
* @page: pointer to page to be released
|
|
*
|
|
* Pages that were pinned via pin_user_pages*() must be released via either
|
|
* unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
|
|
* that such pages can be separately tracked and uniquely handled. In
|
|
* particular, interactions with RDMA and filesystems need special handling.
|
|
*/
|
|
void unpin_user_page(struct page *page)
|
|
{
|
|
int refs = 1;
|
|
|
|
page = compound_head(page);
|
|
|
|
/*
|
|
* For devmap managed pages we need to catch refcount transition from
|
|
* GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
|
|
* page is free and we need to inform the device driver through
|
|
* callback. See include/linux/memremap.h and HMM for details.
|
|
*/
|
|
if (__unpin_devmap_managed_user_page(page))
|
|
return;
|
|
|
|
if (hpage_pincount_available(page))
|
|
hpage_pincount_sub(page, 1);
|
|
else
|
|
refs = GUP_PIN_COUNTING_BIAS;
|
|
|
|
if (page_ref_sub_and_test(page, refs))
|
|
__put_page(page);
|
|
|
|
mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
|
|
}
|
|
EXPORT_SYMBOL(unpin_user_page);
|
|
|
|
/**
|
|
* unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
|
|
* @pages: array of pages to be maybe marked dirty, and definitely released.
|
|
* @npages: number of pages in the @pages array.
|
|
* @make_dirty: whether to mark the pages dirty
|
|
*
|
|
* "gup-pinned page" refers to a page that has had one of the get_user_pages()
|
|
* variants called on that page.
|
|
*
|
|
* For each page in the @pages array, make that page (or its head page, if a
|
|
* compound page) dirty, if @make_dirty is true, and if the page was previously
|
|
* listed as clean. In any case, releases all pages using unpin_user_page(),
|
|
* possibly via unpin_user_pages(), for the non-dirty case.
|
|
*
|
|
* Please see the unpin_user_page() documentation for details.
|
|
*
|
|
* set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
|
|
* required, then the caller should a) verify that this is really correct,
|
|
* because _lock() is usually required, and b) hand code it:
|
|
* set_page_dirty_lock(), unpin_user_page().
|
|
*
|
|
*/
|
|
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
|
|
bool make_dirty)
|
|
{
|
|
unsigned long index;
|
|
|
|
/*
|
|
* TODO: this can be optimized for huge pages: if a series of pages is
|
|
* physically contiguous and part of the same compound page, then a
|
|
* single operation to the head page should suffice.
|
|
*/
|
|
|
|
if (!make_dirty) {
|
|
unpin_user_pages(pages, npages);
|
|
return;
|
|
}
|
|
|
|
for (index = 0; index < npages; index++) {
|
|
struct page *page = compound_head(pages[index]);
|
|
/*
|
|
* Checking PageDirty at this point may race with
|
|
* clear_page_dirty_for_io(), but that's OK. Two key
|
|
* cases:
|
|
*
|
|
* 1) This code sees the page as already dirty, so it
|
|
* skips the call to set_page_dirty(). That could happen
|
|
* because clear_page_dirty_for_io() called
|
|
* page_mkclean(), followed by set_page_dirty().
|
|
* However, now the page is going to get written back,
|
|
* which meets the original intention of setting it
|
|
* dirty, so all is well: clear_page_dirty_for_io() goes
|
|
* on to call TestClearPageDirty(), and write the page
|
|
* back.
|
|
*
|
|
* 2) This code sees the page as clean, so it calls
|
|
* set_page_dirty(). The page stays dirty, despite being
|
|
* written back, so it gets written back again in the
|
|
* next writeback cycle. This is harmless.
|
|
*/
|
|
if (!PageDirty(page))
|
|
set_page_dirty_lock(page);
|
|
unpin_user_page(page);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
|
|
|
|
/**
|
|
* unpin_user_pages() - release an array of gup-pinned pages.
|
|
* @pages: array of pages to be marked dirty and released.
|
|
* @npages: number of pages in the @pages array.
|
|
*
|
|
* For each page in the @pages array, release the page using unpin_user_page().
|
|
*
|
|
* Please see the unpin_user_page() documentation for details.
|
|
*/
|
|
void unpin_user_pages(struct page **pages, unsigned long npages)
|
|
{
|
|
unsigned long index;
|
|
|
|
/*
|
|
* TODO: this can be optimized for huge pages: if a series of pages is
|
|
* physically contiguous and part of the same compound page, then a
|
|
* single operation to the head page should suffice.
|
|
*/
|
|
for (index = 0; index < npages; index++)
|
|
unpin_user_page(pages[index]);
|
|
}
|
|
EXPORT_SYMBOL(unpin_user_pages);
|
|
|
|
#ifdef CONFIG_MMU
|
|
static struct page *no_page_table(struct vm_area_struct *vma,
|
|
unsigned int flags)
|
|
{
|
|
/*
|
|
* When core dumping an enormous anonymous area that nobody
|
|
* has touched so far, we don't want to allocate unnecessary pages or
|
|
* page tables. Return error instead of NULL to skip handle_mm_fault,
|
|
* then get_dump_page() will return NULL to leave a hole in the dump.
|
|
* But we can only make this optimization where a hole would surely
|
|
* be zero-filled if handle_mm_fault() actually did handle it.
|
|
*/
|
|
if ((flags & FOLL_DUMP) &&
|
|
(vma_is_anonymous(vma) || !vma->vm_ops->fault))
|
|
return ERR_PTR(-EFAULT);
|
|
return NULL;
|
|
}
|
|
|
|
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
|
|
pte_t *pte, unsigned int flags)
|
|
{
|
|
/* No page to get reference */
|
|
if (flags & FOLL_GET)
|
|
return -EFAULT;
|
|
|
|
if (flags & FOLL_TOUCH) {
|
|
pte_t entry = *pte;
|
|
|
|
if (flags & FOLL_WRITE)
|
|
entry = pte_mkdirty(entry);
|
|
entry = pte_mkyoung(entry);
|
|
|
|
if (!pte_same(*pte, entry)) {
|
|
set_pte_at(vma->vm_mm, address, pte, entry);
|
|
update_mmu_cache(vma, address, pte);
|
|
}
|
|
}
|
|
|
|
/* Proper page table entry exists, but no corresponding struct page */
|
|
return -EEXIST;
|
|
}
|
|
|
|
/*
|
|
* FOLL_FORCE can write to even unwritable pte's, but only
|
|
* after we've gone through a COW cycle and they are dirty.
|
|
*/
|
|
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
|
|
{
|
|
return pte_write(pte) ||
|
|
((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
|
|
}
|
|
|
|
static struct page *follow_page_pte(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmd, unsigned int flags,
|
|
struct dev_pagemap **pgmap)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct page *page;
|
|
spinlock_t *ptl;
|
|
pte_t *ptep, pte;
|
|
int ret;
|
|
|
|
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
|
|
if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
|
|
(FOLL_PIN | FOLL_GET)))
|
|
return ERR_PTR(-EINVAL);
|
|
retry:
|
|
if (unlikely(pmd_bad(*pmd)))
|
|
return no_page_table(vma, flags);
|
|
|
|
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
|
|
pte = *ptep;
|
|
if (!pte_present(pte)) {
|
|
swp_entry_t entry;
|
|
/*
|
|
* KSM's break_ksm() relies upon recognizing a ksm page
|
|
* even while it is being migrated, so for that case we
|
|
* need migration_entry_wait().
|
|
*/
|
|
if (likely(!(flags & FOLL_MIGRATION)))
|
|
goto no_page;
|
|
if (pte_none(pte))
|
|
goto no_page;
|
|
entry = pte_to_swp_entry(pte);
|
|
if (!is_migration_entry(entry))
|
|
goto no_page;
|
|
pte_unmap_unlock(ptep, ptl);
|
|
migration_entry_wait(mm, pmd, address);
|
|
goto retry;
|
|
}
|
|
if ((flags & FOLL_NUMA) && pte_protnone(pte))
|
|
goto no_page;
|
|
if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
|
|
pte_unmap_unlock(ptep, ptl);
|
|
return NULL;
|
|
}
|
|
|
|
page = vm_normal_page(vma, address, pte);
|
|
if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
|
|
/*
|
|
* Only return device mapping pages in the FOLL_GET or FOLL_PIN
|
|
* case since they are only valid while holding the pgmap
|
|
* reference.
|
|
*/
|
|
*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
|
|
if (*pgmap)
|
|
page = pte_page(pte);
|
|
else
|
|
goto no_page;
|
|
} else if (unlikely(!page)) {
|
|
if (flags & FOLL_DUMP) {
|
|
/* Avoid special (like zero) pages in core dumps */
|
|
page = ERR_PTR(-EFAULT);
|
|
goto out;
|
|
}
|
|
|
|
if (is_zero_pfn(pte_pfn(pte))) {
|
|
page = pte_page(pte);
|
|
} else {
|
|
ret = follow_pfn_pte(vma, address, ptep, flags);
|
|
page = ERR_PTR(ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (flags & FOLL_SPLIT && PageTransCompound(page)) {
|
|
get_page(page);
|
|
pte_unmap_unlock(ptep, ptl);
|
|
lock_page(page);
|
|
ret = split_huge_page(page);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
goto retry;
|
|
}
|
|
|
|
/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
|
|
if (unlikely(!try_grab_page(page, flags))) {
|
|
page = ERR_PTR(-ENOMEM);
|
|
goto out;
|
|
}
|
|
/*
|
|
* We need to make the page accessible if and only if we are going
|
|
* to access its content (the FOLL_PIN case). Please see
|
|
* Documentation/core-api/pin_user_pages.rst for details.
|
|
*/
|
|
if (flags & FOLL_PIN) {
|
|
ret = arch_make_page_accessible(page);
|
|
if (ret) {
|
|
unpin_user_page(page);
|
|
page = ERR_PTR(ret);
|
|
goto out;
|
|
}
|
|
}
|
|
if (flags & FOLL_TOUCH) {
|
|
if ((flags & FOLL_WRITE) &&
|
|
!pte_dirty(pte) && !PageDirty(page))
|
|
set_page_dirty(page);
|
|
/*
|
|
* pte_mkyoung() would be more correct here, but atomic care
|
|
* is needed to avoid losing the dirty bit: it is easier to use
|
|
* mark_page_accessed().
|
|
*/
|
|
mark_page_accessed(page);
|
|
}
|
|
if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
|
|
/* Do not mlock pte-mapped THP */
|
|
if (PageTransCompound(page))
|
|
goto out;
|
|
|
|
/*
|
|
* The preliminary mapping check is mainly to avoid the
|
|
* pointless overhead of lock_page on the ZERO_PAGE
|
|
* which might bounce very badly if there is contention.
|
|
*
|
|
* If the page is already locked, we don't need to
|
|
* handle it now - vmscan will handle it later if and
|
|
* when it attempts to reclaim the page.
|
|
*/
|
|
if (page->mapping && trylock_page(page)) {
|
|
lru_add_drain(); /* push cached pages to LRU */
|
|
/*
|
|
* Because we lock page here, and migration is
|
|
* blocked by the pte's page reference, and we
|
|
* know the page is still mapped, we don't even
|
|
* need to check for file-cache page truncation.
|
|
*/
|
|
mlock_vma_page(page);
|
|
unlock_page(page);
|
|
}
|
|
}
|
|
out:
|
|
pte_unmap_unlock(ptep, ptl);
|
|
return page;
|
|
no_page:
|
|
pte_unmap_unlock(ptep, ptl);
|
|
if (!pte_none(pte))
|
|
return NULL;
|
|
return no_page_table(vma, flags);
|
|
}
|
|
|
|
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
|
|
unsigned long address, pud_t *pudp,
|
|
unsigned int flags,
|
|
struct follow_page_context *ctx)
|
|
{
|
|
pmd_t *pmd, pmdval;
|
|
spinlock_t *ptl;
|
|
struct page *page;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
pmd = pmd_offset(pudp, address);
|
|
/*
|
|
* The READ_ONCE() will stabilize the pmdval in a register or
|
|
* on the stack so that it will stop changing under the code.
|
|
*/
|
|
pmdval = READ_ONCE(*pmd);
|
|
if (pmd_none(pmdval))
|
|
return no_page_table(vma, flags);
|
|
if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
|
|
page = follow_huge_pmd(mm, address, pmd, flags);
|
|
if (page)
|
|
return page;
|
|
return no_page_table(vma, flags);
|
|
}
|
|
if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
|
|
page = follow_huge_pd(vma, address,
|
|
__hugepd(pmd_val(pmdval)), flags,
|
|
PMD_SHIFT);
|
|
if (page)
|
|
return page;
|
|
return no_page_table(vma, flags);
|
|
}
|
|
retry:
|
|
if (!pmd_present(pmdval)) {
|
|
if (likely(!(flags & FOLL_MIGRATION)))
|
|
return no_page_table(vma, flags);
|
|
VM_BUG_ON(thp_migration_supported() &&
|
|
!is_pmd_migration_entry(pmdval));
|
|
if (is_pmd_migration_entry(pmdval))
|
|
pmd_migration_entry_wait(mm, pmd);
|
|
pmdval = READ_ONCE(*pmd);
|
|
/*
|
|
* MADV_DONTNEED may convert the pmd to null because
|
|
* mmap_sem is held in read mode
|
|
*/
|
|
if (pmd_none(pmdval))
|
|
return no_page_table(vma, flags);
|
|
goto retry;
|
|
}
|
|
if (pmd_devmap(pmdval)) {
|
|
ptl = pmd_lock(mm, pmd);
|
|
page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
|
|
spin_unlock(ptl);
|
|
if (page)
|
|
return page;
|
|
}
|
|
if (likely(!pmd_trans_huge(pmdval)))
|
|
return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
|
|
|
|
if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
|
|
return no_page_table(vma, flags);
|
|
|
|
retry_locked:
|
|
ptl = pmd_lock(mm, pmd);
|
|
if (unlikely(pmd_none(*pmd))) {
|
|
spin_unlock(ptl);
|
|
return no_page_table(vma, flags);
|
|
}
|
|
if (unlikely(!pmd_present(*pmd))) {
|
|
spin_unlock(ptl);
|
|
if (likely(!(flags & FOLL_MIGRATION)))
|
|
return no_page_table(vma, flags);
|
|
pmd_migration_entry_wait(mm, pmd);
|
|
goto retry_locked;
|
|
}
|
|
if (unlikely(!pmd_trans_huge(*pmd))) {
|
|
spin_unlock(ptl);
|
|
return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
|
|
}
|
|
if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
|
|
int ret;
|
|
page = pmd_page(*pmd);
|
|
if (is_huge_zero_page(page)) {
|
|
spin_unlock(ptl);
|
|
ret = 0;
|
|
split_huge_pmd(vma, pmd, address);
|
|
if (pmd_trans_unstable(pmd))
|
|
ret = -EBUSY;
|
|
} else if (flags & FOLL_SPLIT) {
|
|
if (unlikely(!try_get_page(page))) {
|
|
spin_unlock(ptl);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
spin_unlock(ptl);
|
|
lock_page(page);
|
|
ret = split_huge_page(page);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
if (pmd_none(*pmd))
|
|
return no_page_table(vma, flags);
|
|
} else { /* flags & FOLL_SPLIT_PMD */
|
|
spin_unlock(ptl);
|
|
split_huge_pmd(vma, pmd, address);
|
|
ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
|
|
}
|
|
|
|
return ret ? ERR_PTR(ret) :
|
|
follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
|
|
}
|
|
page = follow_trans_huge_pmd(vma, address, pmd, flags);
|
|
spin_unlock(ptl);
|
|
ctx->page_mask = HPAGE_PMD_NR - 1;
|
|
return page;
|
|
}
|
|
|
|
static struct page *follow_pud_mask(struct vm_area_struct *vma,
|
|
unsigned long address, p4d_t *p4dp,
|
|
unsigned int flags,
|
|
struct follow_page_context *ctx)
|
|
{
|
|
pud_t *pud;
|
|
spinlock_t *ptl;
|
|
struct page *page;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
pud = pud_offset(p4dp, address);
|
|
if (pud_none(*pud))
|
|
return no_page_table(vma, flags);
|
|
if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
|
|
page = follow_huge_pud(mm, address, pud, flags);
|
|
if (page)
|
|
return page;
|
|
return no_page_table(vma, flags);
|
|
}
|
|
if (is_hugepd(__hugepd(pud_val(*pud)))) {
|
|
page = follow_huge_pd(vma, address,
|
|
__hugepd(pud_val(*pud)), flags,
|
|
PUD_SHIFT);
|
|
if (page)
|
|
return page;
|
|
return no_page_table(vma, flags);
|
|
}
|
|
if (pud_devmap(*pud)) {
|
|
ptl = pud_lock(mm, pud);
|
|
page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
|
|
spin_unlock(ptl);
|
|
if (page)
|
|
return page;
|
|
}
|
|
if (unlikely(pud_bad(*pud)))
|
|
return no_page_table(vma, flags);
|
|
|
|
return follow_pmd_mask(vma, address, pud, flags, ctx);
|
|
}
|
|
|
|
static struct page *follow_p4d_mask(struct vm_area_struct *vma,
|
|
unsigned long address, pgd_t *pgdp,
|
|
unsigned int flags,
|
|
struct follow_page_context *ctx)
|
|
{
|
|
p4d_t *p4d;
|
|
struct page *page;
|
|
|
|
p4d = p4d_offset(pgdp, address);
|
|
if (p4d_none(*p4d))
|
|
return no_page_table(vma, flags);
|
|
BUILD_BUG_ON(p4d_huge(*p4d));
|
|
if (unlikely(p4d_bad(*p4d)))
|
|
return no_page_table(vma, flags);
|
|
|
|
if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
|
|
page = follow_huge_pd(vma, address,
|
|
__hugepd(p4d_val(*p4d)), flags,
|
|
P4D_SHIFT);
|
|
if (page)
|
|
return page;
|
|
return no_page_table(vma, flags);
|
|
}
|
|
return follow_pud_mask(vma, address, p4d, flags, ctx);
|
|
}
|
|
|
|
/**
|
|
* follow_page_mask - look up a page descriptor from a user-virtual address
|
|
* @vma: vm_area_struct mapping @address
|
|
* @address: virtual address to look up
|
|
* @flags: flags modifying lookup behaviour
|
|
* @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
|
|
* pointer to output page_mask
|
|
*
|
|
* @flags can have FOLL_ flags set, defined in <linux/mm.h>
|
|
*
|
|
* When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
|
|
* the device's dev_pagemap metadata to avoid repeating expensive lookups.
|
|
*
|
|
* On output, the @ctx->page_mask is set according to the size of the page.
|
|
*
|
|
* Return: the mapped (struct page *), %NULL if no mapping exists, or
|
|
* an error pointer if there is a mapping to something not represented
|
|
* by a page descriptor (see also vm_normal_page()).
|
|
*/
|
|
static struct page *follow_page_mask(struct vm_area_struct *vma,
|
|
unsigned long address, unsigned int flags,
|
|
struct follow_page_context *ctx)
|
|
{
|
|
pgd_t *pgd;
|
|
struct page *page;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
ctx->page_mask = 0;
|
|
|
|
/* make this handle hugepd */
|
|
page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
|
|
if (!IS_ERR(page)) {
|
|
WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
|
|
return page;
|
|
}
|
|
|
|
pgd = pgd_offset(mm, address);
|
|
|
|
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
|
|
return no_page_table(vma, flags);
|
|
|
|
if (pgd_huge(*pgd)) {
|
|
page = follow_huge_pgd(mm, address, pgd, flags);
|
|
if (page)
|
|
return page;
|
|
return no_page_table(vma, flags);
|
|
}
|
|
if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
|
|
page = follow_huge_pd(vma, address,
|
|
__hugepd(pgd_val(*pgd)), flags,
|
|
PGDIR_SHIFT);
|
|
if (page)
|
|
return page;
|
|
return no_page_table(vma, flags);
|
|
}
|
|
|
|
return follow_p4d_mask(vma, address, pgd, flags, ctx);
|
|
}
|
|
|
|
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned int foll_flags)
|
|
{
|
|
struct follow_page_context ctx = { NULL };
|
|
struct page *page;
|
|
|
|
page = follow_page_mask(vma, address, foll_flags, &ctx);
|
|
if (ctx.pgmap)
|
|
put_dev_pagemap(ctx.pgmap);
|
|
return page;
|
|
}
|
|
|
|
static int get_gate_page(struct mm_struct *mm, unsigned long address,
|
|
unsigned int gup_flags, struct vm_area_struct **vma,
|
|
struct page **page)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
int ret = -EFAULT;
|
|
|
|
/* user gate pages are read-only */
|
|
if (gup_flags & FOLL_WRITE)
|
|
return -EFAULT;
|
|
if (address > TASK_SIZE)
|
|
pgd = pgd_offset_k(address);
|
|
else
|
|
pgd = pgd_offset_gate(mm, address);
|
|
if (pgd_none(*pgd))
|
|
return -EFAULT;
|
|
p4d = p4d_offset(pgd, address);
|
|
if (p4d_none(*p4d))
|
|
return -EFAULT;
|
|
pud = pud_offset(p4d, address);
|
|
if (pud_none(*pud))
|
|
return -EFAULT;
|
|
pmd = pmd_offset(pud, address);
|
|
if (!pmd_present(*pmd))
|
|
return -EFAULT;
|
|
VM_BUG_ON(pmd_trans_huge(*pmd));
|
|
pte = pte_offset_map(pmd, address);
|
|
if (pte_none(*pte))
|
|
goto unmap;
|
|
*vma = get_gate_vma(mm);
|
|
if (!page)
|
|
goto out;
|
|
*page = vm_normal_page(*vma, address, *pte);
|
|
if (!*page) {
|
|
if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
|
|
goto unmap;
|
|
*page = pte_page(*pte);
|
|
}
|
|
if (unlikely(!try_get_page(*page))) {
|
|
ret = -ENOMEM;
|
|
goto unmap;
|
|
}
|
|
out:
|
|
ret = 0;
|
|
unmap:
|
|
pte_unmap(pte);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* mmap_sem must be held on entry. If @locked != NULL and *@flags
|
|
* does not include FOLL_NOWAIT, the mmap_sem may be released. If it
|
|
* is, *@locked will be set to 0 and -EBUSY returned.
|
|
*/
|
|
static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
|
|
unsigned long address, unsigned int *flags, int *locked)
|
|
{
|
|
unsigned int fault_flags = 0;
|
|
vm_fault_t ret;
|
|
|
|
/* mlock all present pages, but do not fault in new pages */
|
|
if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
|
|
return -ENOENT;
|
|
if (*flags & FOLL_WRITE)
|
|
fault_flags |= FAULT_FLAG_WRITE;
|
|
if (*flags & FOLL_REMOTE)
|
|
fault_flags |= FAULT_FLAG_REMOTE;
|
|
if (locked)
|
|
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
|
|
if (*flags & FOLL_NOWAIT)
|
|
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
|
|
if (*flags & FOLL_TRIED) {
|
|
/*
|
|
* Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
|
|
* can co-exist
|
|
*/
|
|
fault_flags |= FAULT_FLAG_TRIED;
|
|
}
|
|
|
|
ret = handle_mm_fault(vma, address, fault_flags);
|
|
if (ret & VM_FAULT_ERROR) {
|
|
int err = vm_fault_to_errno(ret, *flags);
|
|
|
|
if (err)
|
|
return err;
|
|
BUG();
|
|
}
|
|
|
|
if (tsk) {
|
|
if (ret & VM_FAULT_MAJOR)
|
|
tsk->maj_flt++;
|
|
else
|
|
tsk->min_flt++;
|
|
}
|
|
|
|
if (ret & VM_FAULT_RETRY) {
|
|
if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
|
|
*locked = 0;
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
|
|
* necessary, even if maybe_mkwrite decided not to set pte_write. We
|
|
* can thus safely do subsequent page lookups as if they were reads.
|
|
* But only do so when looping for pte_write is futile: in some cases
|
|
* userspace may also be wanting to write to the gotten user page,
|
|
* which a read fault here might prevent (a readonly page might get
|
|
* reCOWed by userspace write).
|
|
*/
|
|
if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
|
|
*flags |= FOLL_COW;
|
|
return 0;
|
|
}
|
|
|
|
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
|
|
{
|
|
vm_flags_t vm_flags = vma->vm_flags;
|
|
int write = (gup_flags & FOLL_WRITE);
|
|
int foreign = (gup_flags & FOLL_REMOTE);
|
|
|
|
if (vm_flags & (VM_IO | VM_PFNMAP))
|
|
return -EFAULT;
|
|
|
|
if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
|
|
return -EFAULT;
|
|
|
|
if (write) {
|
|
if (!(vm_flags & VM_WRITE)) {
|
|
if (!(gup_flags & FOLL_FORCE))
|
|
return -EFAULT;
|
|
/*
|
|
* We used to let the write,force case do COW in a
|
|
* VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
|
|
* set a breakpoint in a read-only mapping of an
|
|
* executable, without corrupting the file (yet only
|
|
* when that file had been opened for writing!).
|
|
* Anon pages in shared mappings are surprising: now
|
|
* just reject it.
|
|
*/
|
|
if (!is_cow_mapping(vm_flags))
|
|
return -EFAULT;
|
|
}
|
|
} else if (!(vm_flags & VM_READ)) {
|
|
if (!(gup_flags & FOLL_FORCE))
|
|
return -EFAULT;
|
|
/*
|
|
* Is there actually any vma we can reach here which does not
|
|
* have VM_MAYREAD set?
|
|
*/
|
|
if (!(vm_flags & VM_MAYREAD))
|
|
return -EFAULT;
|
|
}
|
|
/*
|
|
* gups are always data accesses, not instruction
|
|
* fetches, so execute=false here
|
|
*/
|
|
if (!arch_vma_access_permitted(vma, write, false, foreign))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __get_user_pages() - pin user pages in memory
|
|
* @tsk: task_struct of target task
|
|
* @mm: mm_struct of target mm
|
|
* @start: starting user address
|
|
* @nr_pages: number of pages from start to pin
|
|
* @gup_flags: flags modifying pin behaviour
|
|
* @pages: array that receives pointers to the pages pinned.
|
|
* Should be at least nr_pages long. Or NULL, if caller
|
|
* only intends to ensure the pages are faulted in.
|
|
* @vmas: array of pointers to vmas corresponding to each page.
|
|
* Or NULL if the caller does not require them.
|
|
* @locked: whether we're still with the mmap_sem held
|
|
*
|
|
* Returns either number of pages pinned (which may be less than the
|
|
* number requested), or an error. Details about the return value:
|
|
*
|
|
* -- If nr_pages is 0, returns 0.
|
|
* -- If nr_pages is >0, but no pages were pinned, returns -errno.
|
|
* -- If nr_pages is >0, and some pages were pinned, returns the number of
|
|
* pages pinned. Again, this may be less than nr_pages.
|
|
*
|
|
* The caller is responsible for releasing returned @pages, via put_page().
|
|
*
|
|
* @vmas are valid only as long as mmap_sem is held.
|
|
*
|
|
* Must be called with mmap_sem held. It may be released. See below.
|
|
*
|
|
* __get_user_pages walks a process's page tables and takes a reference to
|
|
* each struct page that each user address corresponds to at a given
|
|
* instant. That is, it takes the page that would be accessed if a user
|
|
* thread accesses the given user virtual address at that instant.
|
|
*
|
|
* This does not guarantee that the page exists in the user mappings when
|
|
* __get_user_pages returns, and there may even be a completely different
|
|
* page there in some cases (eg. if mmapped pagecache has been invalidated
|
|
* and subsequently re faulted). However it does guarantee that the page
|
|
* won't be freed completely. And mostly callers simply care that the page
|
|
* contains data that was valid *at some point in time*. Typically, an IO
|
|
* or similar operation cannot guarantee anything stronger anyway because
|
|
* locks can't be held over the syscall boundary.
|
|
*
|
|
* If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
|
|
* the page is written to, set_page_dirty (or set_page_dirty_lock, as
|
|
* appropriate) must be called after the page is finished with, and
|
|
* before put_page is called.
|
|
*
|
|
* If @locked != NULL, *@locked will be set to 0 when mmap_sem is
|
|
* released by an up_read(). That can happen if @gup_flags does not
|
|
* have FOLL_NOWAIT.
|
|
*
|
|
* A caller using such a combination of @locked and @gup_flags
|
|
* must therefore hold the mmap_sem for reading only, and recognize
|
|
* when it's been released. Otherwise, it must be held for either
|
|
* reading or writing and will not be released.
|
|
*
|
|
* In most cases, get_user_pages or get_user_pages_fast should be used
|
|
* instead of __get_user_pages. __get_user_pages should be used only if
|
|
* you need some special @gup_flags.
|
|
*/
|
|
static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
|
|
unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages,
|
|
struct vm_area_struct **vmas, int *locked)
|
|
{
|
|
long ret = 0, i = 0;
|
|
struct vm_area_struct *vma = NULL;
|
|
struct follow_page_context ctx = { NULL };
|
|
|
|
if (!nr_pages)
|
|
return 0;
|
|
|
|
start = untagged_addr(start);
|
|
|
|
VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
|
|
|
|
/*
|
|
* If FOLL_FORCE is set then do not force a full fault as the hinting
|
|
* fault information is unrelated to the reference behaviour of a task
|
|
* using the address space
|
|
*/
|
|
if (!(gup_flags & FOLL_FORCE))
|
|
gup_flags |= FOLL_NUMA;
|
|
|
|
do {
|
|
struct page *page;
|
|
unsigned int foll_flags = gup_flags;
|
|
unsigned int page_increm;
|
|
|
|
/* first iteration or cross vma bound */
|
|
if (!vma || start >= vma->vm_end) {
|
|
vma = find_extend_vma(mm, start);
|
|
if (!vma && in_gate_area(mm, start)) {
|
|
ret = get_gate_page(mm, start & PAGE_MASK,
|
|
gup_flags, &vma,
|
|
pages ? &pages[i] : NULL);
|
|
if (ret)
|
|
goto out;
|
|
ctx.page_mask = 0;
|
|
goto next_page;
|
|
}
|
|
|
|
if (!vma || check_vma_flags(vma, gup_flags)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
if (is_vm_hugetlb_page(vma)) {
|
|
i = follow_hugetlb_page(mm, vma, pages, vmas,
|
|
&start, &nr_pages, i,
|
|
gup_flags, locked);
|
|
if (locked && *locked == 0) {
|
|
/*
|
|
* We've got a VM_FAULT_RETRY
|
|
* and we've lost mmap_sem.
|
|
* We must stop here.
|
|
*/
|
|
BUG_ON(gup_flags & FOLL_NOWAIT);
|
|
BUG_ON(ret != 0);
|
|
goto out;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
retry:
|
|
/*
|
|
* If we have a pending SIGKILL, don't keep faulting pages and
|
|
* potentially allocating memory.
|
|
*/
|
|
if (fatal_signal_pending(current)) {
|
|
ret = -EINTR;
|
|
goto out;
|
|
}
|
|
cond_resched();
|
|
|
|
page = follow_page_mask(vma, start, foll_flags, &ctx);
|
|
if (!page) {
|
|
ret = faultin_page(tsk, vma, start, &foll_flags,
|
|
locked);
|
|
switch (ret) {
|
|
case 0:
|
|
goto retry;
|
|
case -EBUSY:
|
|
ret = 0;
|
|
fallthrough;
|
|
case -EFAULT:
|
|
case -ENOMEM:
|
|
case -EHWPOISON:
|
|
goto out;
|
|
case -ENOENT:
|
|
goto next_page;
|
|
}
|
|
BUG();
|
|
} else if (PTR_ERR(page) == -EEXIST) {
|
|
/*
|
|
* Proper page table entry exists, but no corresponding
|
|
* struct page.
|
|
*/
|
|
goto next_page;
|
|
} else if (IS_ERR(page)) {
|
|
ret = PTR_ERR(page);
|
|
goto out;
|
|
}
|
|
if (pages) {
|
|
pages[i] = page;
|
|
flush_anon_page(vma, page, start);
|
|
flush_dcache_page(page);
|
|
ctx.page_mask = 0;
|
|
}
|
|
next_page:
|
|
if (vmas) {
|
|
vmas[i] = vma;
|
|
ctx.page_mask = 0;
|
|
}
|
|
page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
|
|
if (page_increm > nr_pages)
|
|
page_increm = nr_pages;
|
|
i += page_increm;
|
|
start += page_increm * PAGE_SIZE;
|
|
nr_pages -= page_increm;
|
|
} while (nr_pages);
|
|
out:
|
|
if (ctx.pgmap)
|
|
put_dev_pagemap(ctx.pgmap);
|
|
return i ? i : ret;
|
|
}
|
|
|
|
static bool vma_permits_fault(struct vm_area_struct *vma,
|
|
unsigned int fault_flags)
|
|
{
|
|
bool write = !!(fault_flags & FAULT_FLAG_WRITE);
|
|
bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
|
|
vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
|
|
|
|
if (!(vm_flags & vma->vm_flags))
|
|
return false;
|
|
|
|
/*
|
|
* The architecture might have a hardware protection
|
|
* mechanism other than read/write that can deny access.
|
|
*
|
|
* gup always represents data access, not instruction
|
|
* fetches, so execute=false here:
|
|
*/
|
|
if (!arch_vma_access_permitted(vma, write, false, foreign))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* fixup_user_fault() - manually resolve a user page fault
|
|
* @tsk: the task_struct to use for page fault accounting, or
|
|
* NULL if faults are not to be recorded.
|
|
* @mm: mm_struct of target mm
|
|
* @address: user address
|
|
* @fault_flags:flags to pass down to handle_mm_fault()
|
|
* @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
|
|
* does not allow retry. If NULL, the caller must guarantee
|
|
* that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
|
|
*
|
|
* This is meant to be called in the specific scenario where for locking reasons
|
|
* we try to access user memory in atomic context (within a pagefault_disable()
|
|
* section), this returns -EFAULT, and we want to resolve the user fault before
|
|
* trying again.
|
|
*
|
|
* Typically this is meant to be used by the futex code.
|
|
*
|
|
* The main difference with get_user_pages() is that this function will
|
|
* unconditionally call handle_mm_fault() which will in turn perform all the
|
|
* necessary SW fixup of the dirty and young bits in the PTE, while
|
|
* get_user_pages() only guarantees to update these in the struct page.
|
|
*
|
|
* This is important for some architectures where those bits also gate the
|
|
* access permission to the page because they are maintained in software. On
|
|
* such architectures, gup() will not be enough to make a subsequent access
|
|
* succeed.
|
|
*
|
|
* This function will not return with an unlocked mmap_sem. So it has not the
|
|
* same semantics wrt the @mm->mmap_sem as does filemap_fault().
|
|
*/
|
|
int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
|
|
unsigned long address, unsigned int fault_flags,
|
|
bool *unlocked)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
vm_fault_t ret, major = 0;
|
|
|
|
address = untagged_addr(address);
|
|
|
|
if (unlocked)
|
|
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
|
|
|
|
retry:
|
|
vma = find_extend_vma(mm, address);
|
|
if (!vma || address < vma->vm_start)
|
|
return -EFAULT;
|
|
|
|
if (!vma_permits_fault(vma, fault_flags))
|
|
return -EFAULT;
|
|
|
|
if ((fault_flags & FAULT_FLAG_KILLABLE) &&
|
|
fatal_signal_pending(current))
|
|
return -EINTR;
|
|
|
|
ret = handle_mm_fault(vma, address, fault_flags);
|
|
major |= ret & VM_FAULT_MAJOR;
|
|
if (ret & VM_FAULT_ERROR) {
|
|
int err = vm_fault_to_errno(ret, 0);
|
|
|
|
if (err)
|
|
return err;
|
|
BUG();
|
|
}
|
|
|
|
if (ret & VM_FAULT_RETRY) {
|
|
down_read(&mm->mmap_sem);
|
|
*unlocked = true;
|
|
fault_flags |= FAULT_FLAG_TRIED;
|
|
goto retry;
|
|
}
|
|
|
|
if (tsk) {
|
|
if (major)
|
|
tsk->maj_flt++;
|
|
else
|
|
tsk->min_flt++;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fixup_user_fault);
|
|
|
|
static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long nr_pages,
|
|
struct page **pages,
|
|
struct vm_area_struct **vmas,
|
|
int *locked,
|
|
unsigned int flags)
|
|
{
|
|
long ret, pages_done;
|
|
bool lock_dropped;
|
|
|
|
if (locked) {
|
|
/* if VM_FAULT_RETRY can be returned, vmas become invalid */
|
|
BUG_ON(vmas);
|
|
/* check caller initialized locked */
|
|
BUG_ON(*locked != 1);
|
|
}
|
|
|
|
/*
|
|
* FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
|
|
* is to set FOLL_GET if the caller wants pages[] filled in (but has
|
|
* carelessly failed to specify FOLL_GET), so keep doing that, but only
|
|
* for FOLL_GET, not for the newer FOLL_PIN.
|
|
*
|
|
* FOLL_PIN always expects pages to be non-null, but no need to assert
|
|
* that here, as any failures will be obvious enough.
|
|
*/
|
|
if (pages && !(flags & FOLL_PIN))
|
|
flags |= FOLL_GET;
|
|
|
|
pages_done = 0;
|
|
lock_dropped = false;
|
|
for (;;) {
|
|
ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
|
|
vmas, locked);
|
|
if (!locked)
|
|
/* VM_FAULT_RETRY couldn't trigger, bypass */
|
|
return ret;
|
|
|
|
/* VM_FAULT_RETRY cannot return errors */
|
|
if (!*locked) {
|
|
BUG_ON(ret < 0);
|
|
BUG_ON(ret >= nr_pages);
|
|
}
|
|
|
|
if (ret > 0) {
|
|
nr_pages -= ret;
|
|
pages_done += ret;
|
|
if (!nr_pages)
|
|
break;
|
|
}
|
|
if (*locked) {
|
|
/*
|
|
* VM_FAULT_RETRY didn't trigger or it was a
|
|
* FOLL_NOWAIT.
|
|
*/
|
|
if (!pages_done)
|
|
pages_done = ret;
|
|
break;
|
|
}
|
|
/*
|
|
* VM_FAULT_RETRY triggered, so seek to the faulting offset.
|
|
* For the prefault case (!pages) we only update counts.
|
|
*/
|
|
if (likely(pages))
|
|
pages += ret;
|
|
start += ret << PAGE_SHIFT;
|
|
lock_dropped = true;
|
|
|
|
retry:
|
|
/*
|
|
* Repeat on the address that fired VM_FAULT_RETRY
|
|
* with both FAULT_FLAG_ALLOW_RETRY and
|
|
* FAULT_FLAG_TRIED. Note that GUP can be interrupted
|
|
* by fatal signals, so we need to check it before we
|
|
* start trying again otherwise it can loop forever.
|
|
*/
|
|
|
|
if (fatal_signal_pending(current)) {
|
|
if (!pages_done)
|
|
pages_done = -EINTR;
|
|
break;
|
|
}
|
|
|
|
ret = down_read_killable(&mm->mmap_sem);
|
|
if (ret) {
|
|
BUG_ON(ret > 0);
|
|
if (!pages_done)
|
|
pages_done = ret;
|
|
break;
|
|
}
|
|
|
|
*locked = 1;
|
|
ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
|
|
pages, NULL, locked);
|
|
if (!*locked) {
|
|
/* Continue to retry until we succeeded */
|
|
BUG_ON(ret != 0);
|
|
goto retry;
|
|
}
|
|
if (ret != 1) {
|
|
BUG_ON(ret > 1);
|
|
if (!pages_done)
|
|
pages_done = ret;
|
|
break;
|
|
}
|
|
nr_pages--;
|
|
pages_done++;
|
|
if (!nr_pages)
|
|
break;
|
|
if (likely(pages))
|
|
pages++;
|
|
start += PAGE_SIZE;
|
|
}
|
|
if (lock_dropped && *locked) {
|
|
/*
|
|
* We must let the caller know we temporarily dropped the lock
|
|
* and so the critical section protected by it was lost.
|
|
*/
|
|
up_read(&mm->mmap_sem);
|
|
*locked = 0;
|
|
}
|
|
return pages_done;
|
|
}
|
|
|
|
/**
|
|
* populate_vma_page_range() - populate a range of pages in the vma.
|
|
* @vma: target vma
|
|
* @start: start address
|
|
* @end: end address
|
|
* @locked: whether the mmap_sem is still held
|
|
*
|
|
* This takes care of mlocking the pages too if VM_LOCKED is set.
|
|
*
|
|
* return 0 on success, negative error code on error.
|
|
*
|
|
* vma->vm_mm->mmap_sem must be held.
|
|
*
|
|
* If @locked is NULL, it may be held for read or write and will
|
|
* be unperturbed.
|
|
*
|
|
* If @locked is non-NULL, it must held for read only and may be
|
|
* released. If it's released, *@locked will be set to 0.
|
|
*/
|
|
long populate_vma_page_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end, int *locked)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long nr_pages = (end - start) / PAGE_SIZE;
|
|
int gup_flags;
|
|
|
|
VM_BUG_ON(start & ~PAGE_MASK);
|
|
VM_BUG_ON(end & ~PAGE_MASK);
|
|
VM_BUG_ON_VMA(start < vma->vm_start, vma);
|
|
VM_BUG_ON_VMA(end > vma->vm_end, vma);
|
|
VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
|
|
|
|
gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
|
|
if (vma->vm_flags & VM_LOCKONFAULT)
|
|
gup_flags &= ~FOLL_POPULATE;
|
|
/*
|
|
* We want to touch writable mappings with a write fault in order
|
|
* to break COW, except for shared mappings because these don't COW
|
|
* and we would not want to dirty them for nothing.
|
|
*/
|
|
if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
|
|
gup_flags |= FOLL_WRITE;
|
|
|
|
/*
|
|
* We want mlock to succeed for regions that have any permissions
|
|
* other than PROT_NONE.
|
|
*/
|
|
if (vma_is_accessible(vma))
|
|
gup_flags |= FOLL_FORCE;
|
|
|
|
/*
|
|
* We made sure addr is within a VMA, so the following will
|
|
* not result in a stack expansion that recurses back here.
|
|
*/
|
|
return __get_user_pages(current, mm, start, nr_pages, gup_flags,
|
|
NULL, NULL, locked);
|
|
}
|
|
|
|
/*
|
|
* __mm_populate - populate and/or mlock pages within a range of address space.
|
|
*
|
|
* This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
|
|
* flags. VMAs must be already marked with the desired vm_flags, and
|
|
* mmap_sem must not be held.
|
|
*/
|
|
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long end, nstart, nend;
|
|
struct vm_area_struct *vma = NULL;
|
|
int locked = 0;
|
|
long ret = 0;
|
|
|
|
end = start + len;
|
|
|
|
for (nstart = start; nstart < end; nstart = nend) {
|
|
/*
|
|
* We want to fault in pages for [nstart; end) address range.
|
|
* Find first corresponding VMA.
|
|
*/
|
|
if (!locked) {
|
|
locked = 1;
|
|
down_read(&mm->mmap_sem);
|
|
vma = find_vma(mm, nstart);
|
|
} else if (nstart >= vma->vm_end)
|
|
vma = vma->vm_next;
|
|
if (!vma || vma->vm_start >= end)
|
|
break;
|
|
/*
|
|
* Set [nstart; nend) to intersection of desired address
|
|
* range with the first VMA. Also, skip undesirable VMA types.
|
|
*/
|
|
nend = min(end, vma->vm_end);
|
|
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
|
|
continue;
|
|
if (nstart < vma->vm_start)
|
|
nstart = vma->vm_start;
|
|
/*
|
|
* Now fault in a range of pages. populate_vma_page_range()
|
|
* double checks the vma flags, so that it won't mlock pages
|
|
* if the vma was already munlocked.
|
|
*/
|
|
ret = populate_vma_page_range(vma, nstart, nend, &locked);
|
|
if (ret < 0) {
|
|
if (ignore_errors) {
|
|
ret = 0;
|
|
continue; /* continue at next VMA */
|
|
}
|
|
break;
|
|
}
|
|
nend = nstart + ret * PAGE_SIZE;
|
|
ret = 0;
|
|
}
|
|
if (locked)
|
|
up_read(&mm->mmap_sem);
|
|
return ret; /* 0 or negative error code */
|
|
}
|
|
|
|
/**
|
|
* get_dump_page() - pin user page in memory while writing it to core dump
|
|
* @addr: user address
|
|
*
|
|
* Returns struct page pointer of user page pinned for dump,
|
|
* to be freed afterwards by put_page().
|
|
*
|
|
* Returns NULL on any kind of failure - a hole must then be inserted into
|
|
* the corefile, to preserve alignment with its headers; and also returns
|
|
* NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
|
|
* allowing a hole to be left in the corefile to save diskspace.
|
|
*
|
|
* Called without mmap_sem, but after all other threads have been killed.
|
|
*/
|
|
#ifdef CONFIG_ELF_CORE
|
|
struct page *get_dump_page(unsigned long addr)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct page *page;
|
|
|
|
if (__get_user_pages(current, current->mm, addr, 1,
|
|
FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
|
|
NULL) < 1)
|
|
return NULL;
|
|
flush_cache_page(vma, addr, page_to_pfn(page));
|
|
return page;
|
|
}
|
|
#endif /* CONFIG_ELF_CORE */
|
|
#else /* CONFIG_MMU */
|
|
static long __get_user_pages_locked(struct task_struct *tsk,
|
|
struct mm_struct *mm, unsigned long start,
|
|
unsigned long nr_pages, struct page **pages,
|
|
struct vm_area_struct **vmas, int *locked,
|
|
unsigned int foll_flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
unsigned long vm_flags;
|
|
int i;
|
|
|
|
/* calculate required read or write permissions.
|
|
* If FOLL_FORCE is set, we only require the "MAY" flags.
|
|
*/
|
|
vm_flags = (foll_flags & FOLL_WRITE) ?
|
|
(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
|
|
vm_flags &= (foll_flags & FOLL_FORCE) ?
|
|
(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
vma = find_vma(mm, start);
|
|
if (!vma)
|
|
goto finish_or_fault;
|
|
|
|
/* protect what we can, including chardevs */
|
|
if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
|
|
!(vm_flags & vma->vm_flags))
|
|
goto finish_or_fault;
|
|
|
|
if (pages) {
|
|
pages[i] = virt_to_page(start);
|
|
if (pages[i])
|
|
get_page(pages[i]);
|
|
}
|
|
if (vmas)
|
|
vmas[i] = vma;
|
|
start = (start + PAGE_SIZE) & PAGE_MASK;
|
|
}
|
|
|
|
return i;
|
|
|
|
finish_or_fault:
|
|
return i ? : -EFAULT;
|
|
}
|
|
#endif /* !CONFIG_MMU */
|
|
|
|
#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
|
|
static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
|
|
{
|
|
long i;
|
|
struct vm_area_struct *vma_prev = NULL;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct vm_area_struct *vma = vmas[i];
|
|
|
|
if (vma == vma_prev)
|
|
continue;
|
|
|
|
vma_prev = vma;
|
|
|
|
if (vma_is_fsdax(vma))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_CMA
|
|
static struct page *new_non_cma_page(struct page *page, unsigned long private)
|
|
{
|
|
/*
|
|
* We want to make sure we allocate the new page from the same node
|
|
* as the source page.
|
|
*/
|
|
int nid = page_to_nid(page);
|
|
/*
|
|
* Trying to allocate a page for migration. Ignore allocation
|
|
* failure warnings. We don't force __GFP_THISNODE here because
|
|
* this node here is the node where we have CMA reservation and
|
|
* in some case these nodes will have really less non movable
|
|
* allocation memory.
|
|
*/
|
|
gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
|
|
|
|
if (PageHighMem(page))
|
|
gfp_mask |= __GFP_HIGHMEM;
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
if (PageHuge(page)) {
|
|
struct hstate *h = page_hstate(page);
|
|
/*
|
|
* We don't want to dequeue from the pool because pool pages will
|
|
* mostly be from the CMA region.
|
|
*/
|
|
return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
|
|
}
|
|
#endif
|
|
if (PageTransHuge(page)) {
|
|
struct page *thp;
|
|
/*
|
|
* ignore allocation failure warnings
|
|
*/
|
|
gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
|
|
|
|
/*
|
|
* Remove the movable mask so that we don't allocate from
|
|
* CMA area again.
|
|
*/
|
|
thp_gfpmask &= ~__GFP_MOVABLE;
|
|
thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
|
|
if (!thp)
|
|
return NULL;
|
|
prep_transhuge_page(thp);
|
|
return thp;
|
|
}
|
|
|
|
return __alloc_pages_node(nid, gfp_mask, 0);
|
|
}
|
|
|
|
static long check_and_migrate_cma_pages(struct task_struct *tsk,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long nr_pages,
|
|
struct page **pages,
|
|
struct vm_area_struct **vmas,
|
|
unsigned int gup_flags)
|
|
{
|
|
unsigned long i;
|
|
unsigned long step;
|
|
bool drain_allow = true;
|
|
bool migrate_allow = true;
|
|
LIST_HEAD(cma_page_list);
|
|
long ret = nr_pages;
|
|
|
|
check_again:
|
|
for (i = 0; i < nr_pages;) {
|
|
|
|
struct page *head = compound_head(pages[i]);
|
|
|
|
/*
|
|
* gup may start from a tail page. Advance step by the left
|
|
* part.
|
|
*/
|
|
step = compound_nr(head) - (pages[i] - head);
|
|
/*
|
|
* If we get a page from the CMA zone, since we are going to
|
|
* be pinning these entries, we might as well move them out
|
|
* of the CMA zone if possible.
|
|
*/
|
|
if (is_migrate_cma_page(head)) {
|
|
if (PageHuge(head))
|
|
isolate_huge_page(head, &cma_page_list);
|
|
else {
|
|
if (!PageLRU(head) && drain_allow) {
|
|
lru_add_drain_all();
|
|
drain_allow = false;
|
|
}
|
|
|
|
if (!isolate_lru_page(head)) {
|
|
list_add_tail(&head->lru, &cma_page_list);
|
|
mod_node_page_state(page_pgdat(head),
|
|
NR_ISOLATED_ANON +
|
|
page_is_file_lru(head),
|
|
hpage_nr_pages(head));
|
|
}
|
|
}
|
|
}
|
|
|
|
i += step;
|
|
}
|
|
|
|
if (!list_empty(&cma_page_list)) {
|
|
/*
|
|
* drop the above get_user_pages reference.
|
|
*/
|
|
for (i = 0; i < nr_pages; i++)
|
|
put_page(pages[i]);
|
|
|
|
if (migrate_pages(&cma_page_list, new_non_cma_page,
|
|
NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
|
|
/*
|
|
* some of the pages failed migration. Do get_user_pages
|
|
* without migration.
|
|
*/
|
|
migrate_allow = false;
|
|
|
|
if (!list_empty(&cma_page_list))
|
|
putback_movable_pages(&cma_page_list);
|
|
}
|
|
/*
|
|
* We did migrate all the pages, Try to get the page references
|
|
* again migrating any new CMA pages which we failed to isolate
|
|
* earlier.
|
|
*/
|
|
ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
|
|
pages, vmas, NULL,
|
|
gup_flags);
|
|
|
|
if ((ret > 0) && migrate_allow) {
|
|
nr_pages = ret;
|
|
drain_allow = true;
|
|
goto check_again;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#else
|
|
static long check_and_migrate_cma_pages(struct task_struct *tsk,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long nr_pages,
|
|
struct page **pages,
|
|
struct vm_area_struct **vmas,
|
|
unsigned int gup_flags)
|
|
{
|
|
return nr_pages;
|
|
}
|
|
#endif /* CONFIG_CMA */
|
|
|
|
/*
|
|
* __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
|
|
* allows us to process the FOLL_LONGTERM flag.
|
|
*/
|
|
static long __gup_longterm_locked(struct task_struct *tsk,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long nr_pages,
|
|
struct page **pages,
|
|
struct vm_area_struct **vmas,
|
|
unsigned int gup_flags)
|
|
{
|
|
struct vm_area_struct **vmas_tmp = vmas;
|
|
unsigned long flags = 0;
|
|
long rc, i;
|
|
|
|
if (gup_flags & FOLL_LONGTERM) {
|
|
if (!pages)
|
|
return -EINVAL;
|
|
|
|
if (!vmas_tmp) {
|
|
vmas_tmp = kcalloc(nr_pages,
|
|
sizeof(struct vm_area_struct *),
|
|
GFP_KERNEL);
|
|
if (!vmas_tmp)
|
|
return -ENOMEM;
|
|
}
|
|
flags = memalloc_nocma_save();
|
|
}
|
|
|
|
rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
|
|
vmas_tmp, NULL, gup_flags);
|
|
|
|
if (gup_flags & FOLL_LONGTERM) {
|
|
memalloc_nocma_restore(flags);
|
|
if (rc < 0)
|
|
goto out;
|
|
|
|
if (check_dax_vmas(vmas_tmp, rc)) {
|
|
for (i = 0; i < rc; i++)
|
|
put_page(pages[i]);
|
|
rc = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
|
|
vmas_tmp, gup_flags);
|
|
}
|
|
|
|
out:
|
|
if (vmas_tmp != vmas)
|
|
kfree(vmas_tmp);
|
|
return rc;
|
|
}
|
|
#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
|
|
static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long nr_pages,
|
|
struct page **pages,
|
|
struct vm_area_struct **vmas,
|
|
unsigned int flags)
|
|
{
|
|
return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
|
|
NULL, flags);
|
|
}
|
|
#endif /* CONFIG_FS_DAX || CONFIG_CMA */
|
|
|
|
#ifdef CONFIG_MMU
|
|
static long __get_user_pages_remote(struct task_struct *tsk,
|
|
struct mm_struct *mm,
|
|
unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages,
|
|
struct vm_area_struct **vmas, int *locked)
|
|
{
|
|
/*
|
|
* Parts of FOLL_LONGTERM behavior are incompatible with
|
|
* FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
|
|
* vmas. However, this only comes up if locked is set, and there are
|
|
* callers that do request FOLL_LONGTERM, but do not set locked. So,
|
|
* allow what we can.
|
|
*/
|
|
if (gup_flags & FOLL_LONGTERM) {
|
|
if (WARN_ON_ONCE(locked))
|
|
return -EINVAL;
|
|
/*
|
|
* This will check the vmas (even if our vmas arg is NULL)
|
|
* and return -ENOTSUPP if DAX isn't allowed in this case:
|
|
*/
|
|
return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
|
|
vmas, gup_flags | FOLL_TOUCH |
|
|
FOLL_REMOTE);
|
|
}
|
|
|
|
return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
|
|
locked,
|
|
gup_flags | FOLL_TOUCH | FOLL_REMOTE);
|
|
}
|
|
|
|
/**
|
|
* get_user_pages_remote() - pin user pages in memory
|
|
* @tsk: the task_struct to use for page fault accounting, or
|
|
* NULL if faults are not to be recorded.
|
|
* @mm: mm_struct of target mm
|
|
* @start: starting user address
|
|
* @nr_pages: number of pages from start to pin
|
|
* @gup_flags: flags modifying lookup behaviour
|
|
* @pages: array that receives pointers to the pages pinned.
|
|
* Should be at least nr_pages long. Or NULL, if caller
|
|
* only intends to ensure the pages are faulted in.
|
|
* @vmas: array of pointers to vmas corresponding to each page.
|
|
* Or NULL if the caller does not require them.
|
|
* @locked: pointer to lock flag indicating whether lock is held and
|
|
* subsequently whether VM_FAULT_RETRY functionality can be
|
|
* utilised. Lock must initially be held.
|
|
*
|
|
* Returns either number of pages pinned (which may be less than the
|
|
* number requested), or an error. Details about the return value:
|
|
*
|
|
* -- If nr_pages is 0, returns 0.
|
|
* -- If nr_pages is >0, but no pages were pinned, returns -errno.
|
|
* -- If nr_pages is >0, and some pages were pinned, returns the number of
|
|
* pages pinned. Again, this may be less than nr_pages.
|
|
*
|
|
* The caller is responsible for releasing returned @pages, via put_page().
|
|
*
|
|
* @vmas are valid only as long as mmap_sem is held.
|
|
*
|
|
* Must be called with mmap_sem held for read or write.
|
|
*
|
|
* get_user_pages_remote walks a process's page tables and takes a reference
|
|
* to each struct page that each user address corresponds to at a given
|
|
* instant. That is, it takes the page that would be accessed if a user
|
|
* thread accesses the given user virtual address at that instant.
|
|
*
|
|
* This does not guarantee that the page exists in the user mappings when
|
|
* get_user_pages_remote returns, and there may even be a completely different
|
|
* page there in some cases (eg. if mmapped pagecache has been invalidated
|
|
* and subsequently re faulted). However it does guarantee that the page
|
|
* won't be freed completely. And mostly callers simply care that the page
|
|
* contains data that was valid *at some point in time*. Typically, an IO
|
|
* or similar operation cannot guarantee anything stronger anyway because
|
|
* locks can't be held over the syscall boundary.
|
|
*
|
|
* If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
|
|
* is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
|
|
* be called after the page is finished with, and before put_page is called.
|
|
*
|
|
* get_user_pages_remote is typically used for fewer-copy IO operations,
|
|
* to get a handle on the memory by some means other than accesses
|
|
* via the user virtual addresses. The pages may be submitted for
|
|
* DMA to devices or accessed via their kernel linear mapping (via the
|
|
* kmap APIs). Care should be taken to use the correct cache flushing APIs.
|
|
*
|
|
* See also get_user_pages_fast, for performance critical applications.
|
|
*
|
|
* get_user_pages_remote should be phased out in favor of
|
|
* get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
|
|
* should use get_user_pages_remote because it cannot pass
|
|
* FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
|
|
*/
|
|
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
|
|
unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages,
|
|
struct vm_area_struct **vmas, int *locked)
|
|
{
|
|
/*
|
|
* FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
|
|
* never directly by the caller, so enforce that with an assertion:
|
|
*/
|
|
if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
|
|
return -EINVAL;
|
|
|
|
return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
|
|
pages, vmas, locked);
|
|
}
|
|
EXPORT_SYMBOL(get_user_pages_remote);
|
|
|
|
#else /* CONFIG_MMU */
|
|
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
|
|
unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages,
|
|
struct vm_area_struct **vmas, int *locked)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static long __get_user_pages_remote(struct task_struct *tsk,
|
|
struct mm_struct *mm,
|
|
unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages,
|
|
struct vm_area_struct **vmas, int *locked)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* !CONFIG_MMU */
|
|
|
|
/**
|
|
* get_user_pages() - pin user pages in memory
|
|
* @start: starting user address
|
|
* @nr_pages: number of pages from start to pin
|
|
* @gup_flags: flags modifying lookup behaviour
|
|
* @pages: array that receives pointers to the pages pinned.
|
|
* Should be at least nr_pages long. Or NULL, if caller
|
|
* only intends to ensure the pages are faulted in.
|
|
* @vmas: array of pointers to vmas corresponding to each page.
|
|
* Or NULL if the caller does not require them.
|
|
*
|
|
* This is the same as get_user_pages_remote(), just with a
|
|
* less-flexible calling convention where we assume that the task
|
|
* and mm being operated on are the current task's and don't allow
|
|
* passing of a locked parameter. We also obviously don't pass
|
|
* FOLL_REMOTE in here.
|
|
*/
|
|
long get_user_pages(unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages,
|
|
struct vm_area_struct **vmas)
|
|
{
|
|
/*
|
|
* FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
|
|
* never directly by the caller, so enforce that with an assertion:
|
|
*/
|
|
if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
|
|
return -EINVAL;
|
|
|
|
return __gup_longterm_locked(current, current->mm, start, nr_pages,
|
|
pages, vmas, gup_flags | FOLL_TOUCH);
|
|
}
|
|
EXPORT_SYMBOL(get_user_pages);
|
|
|
|
/**
|
|
* get_user_pages_locked() is suitable to replace the form:
|
|
*
|
|
* down_read(&mm->mmap_sem);
|
|
* do_something()
|
|
* get_user_pages(tsk, mm, ..., pages, NULL);
|
|
* up_read(&mm->mmap_sem);
|
|
*
|
|
* to:
|
|
*
|
|
* int locked = 1;
|
|
* down_read(&mm->mmap_sem);
|
|
* do_something()
|
|
* get_user_pages_locked(tsk, mm, ..., pages, &locked);
|
|
* if (locked)
|
|
* up_read(&mm->mmap_sem);
|
|
*
|
|
* @start: starting user address
|
|
* @nr_pages: number of pages from start to pin
|
|
* @gup_flags: flags modifying lookup behaviour
|
|
* @pages: array that receives pointers to the pages pinned.
|
|
* Should be at least nr_pages long. Or NULL, if caller
|
|
* only intends to ensure the pages are faulted in.
|
|
* @locked: pointer to lock flag indicating whether lock is held and
|
|
* subsequently whether VM_FAULT_RETRY functionality can be
|
|
* utilised. Lock must initially be held.
|
|
*
|
|
* We can leverage the VM_FAULT_RETRY functionality in the page fault
|
|
* paths better by using either get_user_pages_locked() or
|
|
* get_user_pages_unlocked().
|
|
*
|
|
*/
|
|
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages,
|
|
int *locked)
|
|
{
|
|
/*
|
|
* FIXME: Current FOLL_LONGTERM behavior is incompatible with
|
|
* FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
|
|
* vmas. As there are no users of this flag in this call we simply
|
|
* disallow this option for now.
|
|
*/
|
|
if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
|
|
return -EINVAL;
|
|
|
|
return __get_user_pages_locked(current, current->mm, start, nr_pages,
|
|
pages, NULL, locked,
|
|
gup_flags | FOLL_TOUCH);
|
|
}
|
|
EXPORT_SYMBOL(get_user_pages_locked);
|
|
|
|
/*
|
|
* get_user_pages_unlocked() is suitable to replace the form:
|
|
*
|
|
* down_read(&mm->mmap_sem);
|
|
* get_user_pages(tsk, mm, ..., pages, NULL);
|
|
* up_read(&mm->mmap_sem);
|
|
*
|
|
* with:
|
|
*
|
|
* get_user_pages_unlocked(tsk, mm, ..., pages);
|
|
*
|
|
* It is functionally equivalent to get_user_pages_fast so
|
|
* get_user_pages_fast should be used instead if specific gup_flags
|
|
* (e.g. FOLL_FORCE) are not required.
|
|
*/
|
|
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
|
|
struct page **pages, unsigned int gup_flags)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
int locked = 1;
|
|
long ret;
|
|
|
|
/*
|
|
* FIXME: Current FOLL_LONGTERM behavior is incompatible with
|
|
* FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
|
|
* vmas. As there are no users of this flag in this call we simply
|
|
* disallow this option for now.
|
|
*/
|
|
if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
|
|
return -EINVAL;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
|
|
&locked, gup_flags | FOLL_TOUCH);
|
|
if (locked)
|
|
up_read(&mm->mmap_sem);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(get_user_pages_unlocked);
|
|
|
|
/*
|
|
* Fast GUP
|
|
*
|
|
* get_user_pages_fast attempts to pin user pages by walking the page
|
|
* tables directly and avoids taking locks. Thus the walker needs to be
|
|
* protected from page table pages being freed from under it, and should
|
|
* block any THP splits.
|
|
*
|
|
* One way to achieve this is to have the walker disable interrupts, and
|
|
* rely on IPIs from the TLB flushing code blocking before the page table
|
|
* pages are freed. This is unsuitable for architectures that do not need
|
|
* to broadcast an IPI when invalidating TLBs.
|
|
*
|
|
* Another way to achieve this is to batch up page table containing pages
|
|
* belonging to more than one mm_user, then rcu_sched a callback to free those
|
|
* pages. Disabling interrupts will allow the fast_gup walker to both block
|
|
* the rcu_sched callback, and an IPI that we broadcast for splitting THPs
|
|
* (which is a relatively rare event). The code below adopts this strategy.
|
|
*
|
|
* Before activating this code, please be aware that the following assumptions
|
|
* are currently made:
|
|
*
|
|
* *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
|
|
* free pages containing page tables or TLB flushing requires IPI broadcast.
|
|
*
|
|
* *) ptes can be read atomically by the architecture.
|
|
*
|
|
* *) access_ok is sufficient to validate userspace address ranges.
|
|
*
|
|
* The last two assumptions can be relaxed by the addition of helper functions.
|
|
*
|
|
* This code is based heavily on the PowerPC implementation by Nick Piggin.
|
|
*/
|
|
#ifdef CONFIG_HAVE_FAST_GUP
|
|
|
|
static void put_compound_head(struct page *page, int refs, unsigned int flags)
|
|
{
|
|
if (flags & FOLL_PIN) {
|
|
mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
|
|
refs);
|
|
|
|
if (hpage_pincount_available(page))
|
|
hpage_pincount_sub(page, refs);
|
|
else
|
|
refs *= GUP_PIN_COUNTING_BIAS;
|
|
}
|
|
|
|
VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
|
|
/*
|
|
* Calling put_page() for each ref is unnecessarily slow. Only the last
|
|
* ref needs a put_page().
|
|
*/
|
|
if (refs > 1)
|
|
page_ref_sub(page, refs - 1);
|
|
put_page(page);
|
|
}
|
|
|
|
#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
|
|
|
|
/*
|
|
* WARNING: only to be used in the get_user_pages_fast() implementation.
|
|
*
|
|
* With get_user_pages_fast(), we walk down the pagetables without taking any
|
|
* locks. For this we would like to load the pointers atomically, but sometimes
|
|
* that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
|
|
* we do have is the guarantee that a PTE will only either go from not present
|
|
* to present, or present to not present or both -- it will not switch to a
|
|
* completely different present page without a TLB flush in between; something
|
|
* that we are blocking by holding interrupts off.
|
|
*
|
|
* Setting ptes from not present to present goes:
|
|
*
|
|
* ptep->pte_high = h;
|
|
* smp_wmb();
|
|
* ptep->pte_low = l;
|
|
*
|
|
* And present to not present goes:
|
|
*
|
|
* ptep->pte_low = 0;
|
|
* smp_wmb();
|
|
* ptep->pte_high = 0;
|
|
*
|
|
* We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
|
|
* We load pte_high *after* loading pte_low, which ensures we don't see an older
|
|
* value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
|
|
* picked up a changed pte high. We might have gotten rubbish values from
|
|
* pte_low and pte_high, but we are guaranteed that pte_low will not have the
|
|
* present bit set *unless* it is 'l'. Because get_user_pages_fast() only
|
|
* operates on present ptes we're safe.
|
|
*/
|
|
static inline pte_t gup_get_pte(pte_t *ptep)
|
|
{
|
|
pte_t pte;
|
|
|
|
do {
|
|
pte.pte_low = ptep->pte_low;
|
|
smp_rmb();
|
|
pte.pte_high = ptep->pte_high;
|
|
smp_rmb();
|
|
} while (unlikely(pte.pte_low != ptep->pte_low));
|
|
|
|
return pte;
|
|
}
|
|
#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
|
|
/*
|
|
* We require that the PTE can be read atomically.
|
|
*/
|
|
static inline pte_t gup_get_pte(pte_t *ptep)
|
|
{
|
|
return READ_ONCE(*ptep);
|
|
}
|
|
#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
|
|
|
|
static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
|
|
unsigned int flags,
|
|
struct page **pages)
|
|
{
|
|
while ((*nr) - nr_start) {
|
|
struct page *page = pages[--(*nr)];
|
|
|
|
ClearPageReferenced(page);
|
|
if (flags & FOLL_PIN)
|
|
unpin_user_page(page);
|
|
else
|
|
put_page(page);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
|
|
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
|
|
unsigned int flags, struct page **pages, int *nr)
|
|
{
|
|
struct dev_pagemap *pgmap = NULL;
|
|
int nr_start = *nr, ret = 0;
|
|
pte_t *ptep, *ptem;
|
|
|
|
ptem = ptep = pte_offset_map(&pmd, addr);
|
|
do {
|
|
pte_t pte = gup_get_pte(ptep);
|
|
struct page *head, *page;
|
|
|
|
/*
|
|
* Similar to the PMD case below, NUMA hinting must take slow
|
|
* path using the pte_protnone check.
|
|
*/
|
|
if (pte_protnone(pte))
|
|
goto pte_unmap;
|
|
|
|
if (!pte_access_permitted(pte, flags & FOLL_WRITE))
|
|
goto pte_unmap;
|
|
|
|
if (pte_devmap(pte)) {
|
|
if (unlikely(flags & FOLL_LONGTERM))
|
|
goto pte_unmap;
|
|
|
|
pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
|
|
if (unlikely(!pgmap)) {
|
|
undo_dev_pagemap(nr, nr_start, flags, pages);
|
|
goto pte_unmap;
|
|
}
|
|
} else if (pte_special(pte))
|
|
goto pte_unmap;
|
|
|
|
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
|
|
page = pte_page(pte);
|
|
|
|
head = try_grab_compound_head(page, 1, flags);
|
|
if (!head)
|
|
goto pte_unmap;
|
|
|
|
if (unlikely(pte_val(pte) != pte_val(*ptep))) {
|
|
put_compound_head(head, 1, flags);
|
|
goto pte_unmap;
|
|
}
|
|
|
|
VM_BUG_ON_PAGE(compound_head(page) != head, page);
|
|
|
|
/*
|
|
* We need to make the page accessible if and only if we are
|
|
* going to access its content (the FOLL_PIN case). Please
|
|
* see Documentation/core-api/pin_user_pages.rst for
|
|
* details.
|
|
*/
|
|
if (flags & FOLL_PIN) {
|
|
ret = arch_make_page_accessible(page);
|
|
if (ret) {
|
|
unpin_user_page(page);
|
|
goto pte_unmap;
|
|
}
|
|
}
|
|
SetPageReferenced(page);
|
|
pages[*nr] = page;
|
|
(*nr)++;
|
|
|
|
} while (ptep++, addr += PAGE_SIZE, addr != end);
|
|
|
|
ret = 1;
|
|
|
|
pte_unmap:
|
|
if (pgmap)
|
|
put_dev_pagemap(pgmap);
|
|
pte_unmap(ptem);
|
|
return ret;
|
|
}
|
|
#else
|
|
|
|
/*
|
|
* If we can't determine whether or not a pte is special, then fail immediately
|
|
* for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
|
|
* to be special.
|
|
*
|
|
* For a futex to be placed on a THP tail page, get_futex_key requires a
|
|
* __get_user_pages_fast implementation that can pin pages. Thus it's still
|
|
* useful to have gup_huge_pmd even if we can't operate on ptes.
|
|
*/
|
|
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
|
|
unsigned int flags, struct page **pages, int *nr)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
|
|
|
|
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
|
|
unsigned long end, unsigned int flags,
|
|
struct page **pages, int *nr)
|
|
{
|
|
int nr_start = *nr;
|
|
struct dev_pagemap *pgmap = NULL;
|
|
|
|
do {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
pgmap = get_dev_pagemap(pfn, pgmap);
|
|
if (unlikely(!pgmap)) {
|
|
undo_dev_pagemap(nr, nr_start, flags, pages);
|
|
return 0;
|
|
}
|
|
SetPageReferenced(page);
|
|
pages[*nr] = page;
|
|
if (unlikely(!try_grab_page(page, flags))) {
|
|
undo_dev_pagemap(nr, nr_start, flags, pages);
|
|
return 0;
|
|
}
|
|
(*nr)++;
|
|
pfn++;
|
|
} while (addr += PAGE_SIZE, addr != end);
|
|
|
|
if (pgmap)
|
|
put_dev_pagemap(pgmap);
|
|
return 1;
|
|
}
|
|
|
|
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
|
|
unsigned long end, unsigned int flags,
|
|
struct page **pages, int *nr)
|
|
{
|
|
unsigned long fault_pfn;
|
|
int nr_start = *nr;
|
|
|
|
fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
|
|
if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
|
|
return 0;
|
|
|
|
if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
|
|
undo_dev_pagemap(nr, nr_start, flags, pages);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
|
|
unsigned long end, unsigned int flags,
|
|
struct page **pages, int *nr)
|
|
{
|
|
unsigned long fault_pfn;
|
|
int nr_start = *nr;
|
|
|
|
fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
|
|
if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
|
|
return 0;
|
|
|
|
if (unlikely(pud_val(orig) != pud_val(*pudp))) {
|
|
undo_dev_pagemap(nr, nr_start, flags, pages);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
#else
|
|
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
|
|
unsigned long end, unsigned int flags,
|
|
struct page **pages, int *nr)
|
|
{
|
|
BUILD_BUG();
|
|
return 0;
|
|
}
|
|
|
|
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
|
|
unsigned long end, unsigned int flags,
|
|
struct page **pages, int *nr)
|
|
{
|
|
BUILD_BUG();
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int record_subpages(struct page *page, unsigned long addr,
|
|
unsigned long end, struct page **pages)
|
|
{
|
|
int nr;
|
|
|
|
for (nr = 0; addr != end; addr += PAGE_SIZE)
|
|
pages[nr++] = page++;
|
|
|
|
return nr;
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_HAS_HUGEPD
|
|
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
|
|
unsigned long sz)
|
|
{
|
|
unsigned long __boundary = (addr + sz) & ~(sz-1);
|
|
return (__boundary - 1 < end - 1) ? __boundary : end;
|
|
}
|
|
|
|
static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
|
|
unsigned long end, unsigned int flags,
|
|
struct page **pages, int *nr)
|
|
{
|
|
unsigned long pte_end;
|
|
struct page *head, *page;
|
|
pte_t pte;
|
|
int refs;
|
|
|
|
pte_end = (addr + sz) & ~(sz-1);
|
|
if (pte_end < end)
|
|
end = pte_end;
|
|
|
|
pte = READ_ONCE(*ptep);
|
|
|
|
if (!pte_access_permitted(pte, flags & FOLL_WRITE))
|
|
return 0;
|
|
|
|
/* hugepages are never "special" */
|
|
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
|
|
|
|
head = pte_page(pte);
|
|
page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
|
|
refs = record_subpages(page, addr, end, pages + *nr);
|
|
|
|
head = try_grab_compound_head(head, refs, flags);
|
|
if (!head)
|
|
return 0;
|
|
|
|
if (unlikely(pte_val(pte) != pte_val(*ptep))) {
|
|
put_compound_head(head, refs, flags);
|
|
return 0;
|
|
}
|
|
|
|
*nr += refs;
|
|
SetPageReferenced(head);
|
|
return 1;
|
|
}
|
|
|
|
static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
|
|
unsigned int pdshift, unsigned long end, unsigned int flags,
|
|
struct page **pages, int *nr)
|
|
{
|
|
pte_t *ptep;
|
|
unsigned long sz = 1UL << hugepd_shift(hugepd);
|
|
unsigned long next;
|
|
|
|
ptep = hugepte_offset(hugepd, addr, pdshift);
|
|
do {
|
|
next = hugepte_addr_end(addr, end, sz);
|
|
if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
|
|
return 0;
|
|
} while (ptep++, addr = next, addr != end);
|
|
|
|
return 1;
|
|
}
|
|
#else
|
|
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
|
|
unsigned int pdshift, unsigned long end, unsigned int flags,
|
|
struct page **pages, int *nr)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_ARCH_HAS_HUGEPD */
|
|
|
|
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
|
|
unsigned long end, unsigned int flags,
|
|
struct page **pages, int *nr)
|
|
{
|
|
struct page *head, *page;
|
|
int refs;
|
|
|
|
if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
|
|
return 0;
|
|
|
|
if (pmd_devmap(orig)) {
|
|
if (unlikely(flags & FOLL_LONGTERM))
|
|
return 0;
|
|
return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
|
|
pages, nr);
|
|
}
|
|
|
|
page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
|
|
refs = record_subpages(page, addr, end, pages + *nr);
|
|
|
|
head = try_grab_compound_head(pmd_page(orig), refs, flags);
|
|
if (!head)
|
|
return 0;
|
|
|
|
if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
|
|
put_compound_head(head, refs, flags);
|
|
return 0;
|
|
}
|
|
|
|
*nr += refs;
|
|
SetPageReferenced(head);
|
|
return 1;
|
|
}
|
|
|
|
static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
|
|
unsigned long end, unsigned int flags,
|
|
struct page **pages, int *nr)
|
|
{
|
|
struct page *head, *page;
|
|
int refs;
|
|
|
|
if (!pud_access_permitted(orig, flags & FOLL_WRITE))
|
|
return 0;
|
|
|
|
if (pud_devmap(orig)) {
|
|
if (unlikely(flags & FOLL_LONGTERM))
|
|
return 0;
|
|
return __gup_device_huge_pud(orig, pudp, addr, end, flags,
|
|
pages, nr);
|
|
}
|
|
|
|
page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
|
|
refs = record_subpages(page, addr, end, pages + *nr);
|
|
|
|
head = try_grab_compound_head(pud_page(orig), refs, flags);
|
|
if (!head)
|
|
return 0;
|
|
|
|
if (unlikely(pud_val(orig) != pud_val(*pudp))) {
|
|
put_compound_head(head, refs, flags);
|
|
return 0;
|
|
}
|
|
|
|
*nr += refs;
|
|
SetPageReferenced(head);
|
|
return 1;
|
|
}
|
|
|
|
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
|
|
unsigned long end, unsigned int flags,
|
|
struct page **pages, int *nr)
|
|
{
|
|
int refs;
|
|
struct page *head, *page;
|
|
|
|
if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
|
|
return 0;
|
|
|
|
BUILD_BUG_ON(pgd_devmap(orig));
|
|
|
|
page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
|
|
refs = record_subpages(page, addr, end, pages + *nr);
|
|
|
|
head = try_grab_compound_head(pgd_page(orig), refs, flags);
|
|
if (!head)
|
|
return 0;
|
|
|
|
if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
|
|
put_compound_head(head, refs, flags);
|
|
return 0;
|
|
}
|
|
|
|
*nr += refs;
|
|
SetPageReferenced(head);
|
|
return 1;
|
|
}
|
|
|
|
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
|
|
unsigned int flags, struct page **pages, int *nr)
|
|
{
|
|
unsigned long next;
|
|
pmd_t *pmdp;
|
|
|
|
pmdp = pmd_offset(&pud, addr);
|
|
do {
|
|
pmd_t pmd = READ_ONCE(*pmdp);
|
|
|
|
next = pmd_addr_end(addr, end);
|
|
if (!pmd_present(pmd))
|
|
return 0;
|
|
|
|
if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
|
|
pmd_devmap(pmd))) {
|
|
/*
|
|
* NUMA hinting faults need to be handled in the GUP
|
|
* slowpath for accounting purposes and so that they
|
|
* can be serialised against THP migration.
|
|
*/
|
|
if (pmd_protnone(pmd))
|
|
return 0;
|
|
|
|
if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
|
|
pages, nr))
|
|
return 0;
|
|
|
|
} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
|
|
/*
|
|
* architecture have different format for hugetlbfs
|
|
* pmd format and THP pmd format
|
|
*/
|
|
if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
|
|
PMD_SHIFT, next, flags, pages, nr))
|
|
return 0;
|
|
} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
|
|
return 0;
|
|
} while (pmdp++, addr = next, addr != end);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
|
|
unsigned int flags, struct page **pages, int *nr)
|
|
{
|
|
unsigned long next;
|
|
pud_t *pudp;
|
|
|
|
pudp = pud_offset(&p4d, addr);
|
|
do {
|
|
pud_t pud = READ_ONCE(*pudp);
|
|
|
|
next = pud_addr_end(addr, end);
|
|
if (unlikely(!pud_present(pud)))
|
|
return 0;
|
|
if (unlikely(pud_huge(pud))) {
|
|
if (!gup_huge_pud(pud, pudp, addr, next, flags,
|
|
pages, nr))
|
|
return 0;
|
|
} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
|
|
if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
|
|
PUD_SHIFT, next, flags, pages, nr))
|
|
return 0;
|
|
} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
|
|
return 0;
|
|
} while (pudp++, addr = next, addr != end);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
|
|
unsigned int flags, struct page **pages, int *nr)
|
|
{
|
|
unsigned long next;
|
|
p4d_t *p4dp;
|
|
|
|
p4dp = p4d_offset(&pgd, addr);
|
|
do {
|
|
p4d_t p4d = READ_ONCE(*p4dp);
|
|
|
|
next = p4d_addr_end(addr, end);
|
|
if (p4d_none(p4d))
|
|
return 0;
|
|
BUILD_BUG_ON(p4d_huge(p4d));
|
|
if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
|
|
if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
|
|
P4D_SHIFT, next, flags, pages, nr))
|
|
return 0;
|
|
} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
|
|
return 0;
|
|
} while (p4dp++, addr = next, addr != end);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void gup_pgd_range(unsigned long addr, unsigned long end,
|
|
unsigned int flags, struct page **pages, int *nr)
|
|
{
|
|
unsigned long next;
|
|
pgd_t *pgdp;
|
|
|
|
pgdp = pgd_offset(current->mm, addr);
|
|
do {
|
|
pgd_t pgd = READ_ONCE(*pgdp);
|
|
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none(pgd))
|
|
return;
|
|
if (unlikely(pgd_huge(pgd))) {
|
|
if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
|
|
pages, nr))
|
|
return;
|
|
} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
|
|
if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
|
|
PGDIR_SHIFT, next, flags, pages, nr))
|
|
return;
|
|
} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
|
|
return;
|
|
} while (pgdp++, addr = next, addr != end);
|
|
}
|
|
#else
|
|
static inline void gup_pgd_range(unsigned long addr, unsigned long end,
|
|
unsigned int flags, struct page **pages, int *nr)
|
|
{
|
|
}
|
|
#endif /* CONFIG_HAVE_FAST_GUP */
|
|
|
|
#ifndef gup_fast_permitted
|
|
/*
|
|
* Check if it's allowed to use __get_user_pages_fast() for the range, or
|
|
* we need to fall back to the slow version:
|
|
*/
|
|
static bool gup_fast_permitted(unsigned long start, unsigned long end)
|
|
{
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
|
|
* the regular GUP.
|
|
* Note a difference with get_user_pages_fast: this always returns the
|
|
* number of pages pinned, 0 if no pages were pinned.
|
|
*
|
|
* If the architecture does not support this function, simply return with no
|
|
* pages pinned.
|
|
*/
|
|
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
|
|
struct page **pages)
|
|
{
|
|
unsigned long len, end;
|
|
unsigned long flags;
|
|
int nr_pinned = 0;
|
|
/*
|
|
* Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
|
|
* because gup fast is always a "pin with a +1 page refcount" request.
|
|
*/
|
|
unsigned int gup_flags = FOLL_GET;
|
|
|
|
if (write)
|
|
gup_flags |= FOLL_WRITE;
|
|
|
|
start = untagged_addr(start) & PAGE_MASK;
|
|
len = (unsigned long) nr_pages << PAGE_SHIFT;
|
|
end = start + len;
|
|
|
|
if (end <= start)
|
|
return 0;
|
|
if (unlikely(!access_ok((void __user *)start, len)))
|
|
return 0;
|
|
|
|
/*
|
|
* Disable interrupts. We use the nested form as we can already have
|
|
* interrupts disabled by get_futex_key.
|
|
*
|
|
* With interrupts disabled, we block page table pages from being
|
|
* freed from under us. See struct mmu_table_batch comments in
|
|
* include/asm-generic/tlb.h for more details.
|
|
*
|
|
* We do not adopt an rcu_read_lock(.) here as we also want to
|
|
* block IPIs that come from THPs splitting.
|
|
*/
|
|
|
|
if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
|
|
gup_fast_permitted(start, end)) {
|
|
local_irq_save(flags);
|
|
gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
return nr_pinned;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__get_user_pages_fast);
|
|
|
|
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
|
|
unsigned int gup_flags, struct page **pages)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* FIXME: FOLL_LONGTERM does not work with
|
|
* get_user_pages_unlocked() (see comments in that function)
|
|
*/
|
|
if (gup_flags & FOLL_LONGTERM) {
|
|
down_read(¤t->mm->mmap_sem);
|
|
ret = __gup_longterm_locked(current, current->mm,
|
|
start, nr_pages,
|
|
pages, NULL, gup_flags);
|
|
up_read(¤t->mm->mmap_sem);
|
|
} else {
|
|
ret = get_user_pages_unlocked(start, nr_pages,
|
|
pages, gup_flags);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
|
|
unsigned int gup_flags,
|
|
struct page **pages)
|
|
{
|
|
unsigned long addr, len, end;
|
|
int nr_pinned = 0, ret = 0;
|
|
|
|
if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
|
|
FOLL_FORCE | FOLL_PIN | FOLL_GET)))
|
|
return -EINVAL;
|
|
|
|
start = untagged_addr(start) & PAGE_MASK;
|
|
addr = start;
|
|
len = (unsigned long) nr_pages << PAGE_SHIFT;
|
|
end = start + len;
|
|
|
|
if (end <= start)
|
|
return 0;
|
|
if (unlikely(!access_ok((void __user *)start, len)))
|
|
return -EFAULT;
|
|
|
|
if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
|
|
gup_fast_permitted(start, end)) {
|
|
local_irq_disable();
|
|
gup_pgd_range(addr, end, gup_flags, pages, &nr_pinned);
|
|
local_irq_enable();
|
|
ret = nr_pinned;
|
|
}
|
|
|
|
if (nr_pinned < nr_pages) {
|
|
/* Try to get the remaining pages with get_user_pages */
|
|
start += nr_pinned << PAGE_SHIFT;
|
|
pages += nr_pinned;
|
|
|
|
ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
|
|
gup_flags, pages);
|
|
|
|
/* Have to be a bit careful with return values */
|
|
if (nr_pinned > 0) {
|
|
if (ret < 0)
|
|
ret = nr_pinned;
|
|
else
|
|
ret += nr_pinned;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* get_user_pages_fast() - pin user pages in memory
|
|
* @start: starting user address
|
|
* @nr_pages: number of pages from start to pin
|
|
* @gup_flags: flags modifying pin behaviour
|
|
* @pages: array that receives pointers to the pages pinned.
|
|
* Should be at least nr_pages long.
|
|
*
|
|
* Attempt to pin user pages in memory without taking mm->mmap_sem.
|
|
* If not successful, it will fall back to taking the lock and
|
|
* calling get_user_pages().
|
|
*
|
|
* Returns number of pages pinned. This may be fewer than the number requested.
|
|
* If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
|
|
* -errno.
|
|
*/
|
|
int get_user_pages_fast(unsigned long start, int nr_pages,
|
|
unsigned int gup_flags, struct page **pages)
|
|
{
|
|
/*
|
|
* FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
|
|
* never directly by the caller, so enforce that:
|
|
*/
|
|
if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The caller may or may not have explicitly set FOLL_GET; either way is
|
|
* OK. However, internally (within mm/gup.c), gup fast variants must set
|
|
* FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
|
|
* request.
|
|
*/
|
|
gup_flags |= FOLL_GET;
|
|
return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_user_pages_fast);
|
|
|
|
/**
|
|
* pin_user_pages_fast() - pin user pages in memory without taking locks
|
|
*
|
|
* @start: starting user address
|
|
* @nr_pages: number of pages from start to pin
|
|
* @gup_flags: flags modifying pin behaviour
|
|
* @pages: array that receives pointers to the pages pinned.
|
|
* Should be at least nr_pages long.
|
|
*
|
|
* Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
|
|
* get_user_pages_fast() for documentation on the function arguments, because
|
|
* the arguments here are identical.
|
|
*
|
|
* FOLL_PIN means that the pages must be released via unpin_user_page(). Please
|
|
* see Documentation/vm/pin_user_pages.rst for further details.
|
|
*
|
|
* This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
|
|
* is NOT intended for Case 2 (RDMA: long-term pins).
|
|
*/
|
|
int pin_user_pages_fast(unsigned long start, int nr_pages,
|
|
unsigned int gup_flags, struct page **pages)
|
|
{
|
|
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
|
|
if (WARN_ON_ONCE(gup_flags & FOLL_GET))
|
|
return -EINVAL;
|
|
|
|
gup_flags |= FOLL_PIN;
|
|
return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pin_user_pages_fast);
|
|
|
|
/**
|
|
* pin_user_pages_remote() - pin pages of a remote process (task != current)
|
|
*
|
|
* @tsk: the task_struct to use for page fault accounting, or
|
|
* NULL if faults are not to be recorded.
|
|
* @mm: mm_struct of target mm
|
|
* @start: starting user address
|
|
* @nr_pages: number of pages from start to pin
|
|
* @gup_flags: flags modifying lookup behaviour
|
|
* @pages: array that receives pointers to the pages pinned.
|
|
* Should be at least nr_pages long. Or NULL, if caller
|
|
* only intends to ensure the pages are faulted in.
|
|
* @vmas: array of pointers to vmas corresponding to each page.
|
|
* Or NULL if the caller does not require them.
|
|
* @locked: pointer to lock flag indicating whether lock is held and
|
|
* subsequently whether VM_FAULT_RETRY functionality can be
|
|
* utilised. Lock must initially be held.
|
|
*
|
|
* Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
|
|
* get_user_pages_remote() for documentation on the function arguments, because
|
|
* the arguments here are identical.
|
|
*
|
|
* FOLL_PIN means that the pages must be released via unpin_user_page(). Please
|
|
* see Documentation/vm/pin_user_pages.rst for details.
|
|
*
|
|
* This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
|
|
* is NOT intended for Case 2 (RDMA: long-term pins).
|
|
*/
|
|
long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
|
|
unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages,
|
|
struct vm_area_struct **vmas, int *locked)
|
|
{
|
|
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
|
|
if (WARN_ON_ONCE(gup_flags & FOLL_GET))
|
|
return -EINVAL;
|
|
|
|
gup_flags |= FOLL_PIN;
|
|
return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
|
|
pages, vmas, locked);
|
|
}
|
|
EXPORT_SYMBOL(pin_user_pages_remote);
|
|
|
|
/**
|
|
* pin_user_pages() - pin user pages in memory for use by other devices
|
|
*
|
|
* @start: starting user address
|
|
* @nr_pages: number of pages from start to pin
|
|
* @gup_flags: flags modifying lookup behaviour
|
|
* @pages: array that receives pointers to the pages pinned.
|
|
* Should be at least nr_pages long. Or NULL, if caller
|
|
* only intends to ensure the pages are faulted in.
|
|
* @vmas: array of pointers to vmas corresponding to each page.
|
|
* Or NULL if the caller does not require them.
|
|
*
|
|
* Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
|
|
* FOLL_PIN is set.
|
|
*
|
|
* FOLL_PIN means that the pages must be released via unpin_user_page(). Please
|
|
* see Documentation/vm/pin_user_pages.rst for details.
|
|
*
|
|
* This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
|
|
* is NOT intended for Case 2 (RDMA: long-term pins).
|
|
*/
|
|
long pin_user_pages(unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages,
|
|
struct vm_area_struct **vmas)
|
|
{
|
|
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
|
|
if (WARN_ON_ONCE(gup_flags & FOLL_GET))
|
|
return -EINVAL;
|
|
|
|
gup_flags |= FOLL_PIN;
|
|
return __gup_longterm_locked(current, current->mm, start, nr_pages,
|
|
pages, vmas, gup_flags);
|
|
}
|
|
EXPORT_SYMBOL(pin_user_pages);
|
|
|
|
/*
|
|
* pin_user_pages_unlocked() is the FOLL_PIN variant of
|
|
* get_user_pages_unlocked(). Behavior is the same, except that this one sets
|
|
* FOLL_PIN and rejects FOLL_GET.
|
|
*/
|
|
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
|
|
struct page **pages, unsigned int gup_flags)
|
|
{
|
|
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
|
|
if (WARN_ON_ONCE(gup_flags & FOLL_GET))
|
|
return -EINVAL;
|
|
|
|
gup_flags |= FOLL_PIN;
|
|
return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
|
|
}
|
|
EXPORT_SYMBOL(pin_user_pages_unlocked);
|