mirror of
https://github.com/torvalds/linux.git
synced 2024-11-12 07:01:57 +00:00
3af229f207
Raghu noticed an issue with excessive memory allocation on power with a simple cgroup test, specifically, in mem_cgroup_css_alloc -> for_each_node -> alloc_mem_cgroup_per_zone_info(), which ends up blowing up the kmalloc-2048 slab (to the order of 200MB for 400 cgroup directories). The underlying issue is that NODES_SHIFT on power is 8 (256 NUMA nodes possible), which defines node_possible_map, which in turn defines the value of nr_node_ids in setup_nr_node_ids and the iteration of for_each_node. In practice, we never see a system with 256 NUMA nodes, and in fact, we do not support node hotplug on power in the first place, so the nodes that are online when we come up are the nodes that will be present for the lifetime of this kernel. So let's, at least, drop the NUMA possible map down to the online map at runtime. This is similar to what x86 does in its initialization routines. mem_cgroup_css_alloc should also be fixed to only iterate over memory-populated nodes and handle hotplug, but that is a separate change. Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Anton Blanchard <anton@samba.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
1653 lines
39 KiB
C
1653 lines
39 KiB
C
/*
|
|
* pSeries NUMA support
|
|
*
|
|
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
#define pr_fmt(fmt) "numa: " fmt
|
|
|
|
#include <linux/threads.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/export.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/of.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/node.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/cputhreads.h>
|
|
#include <asm/sparsemem.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/cputhreads.h>
|
|
#include <asm/topology.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/paca.h>
|
|
#include <asm/hvcall.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/vdso.h>
|
|
|
|
static int numa_enabled = 1;
|
|
|
|
static char *cmdline __initdata;
|
|
|
|
static int numa_debug;
|
|
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
|
|
|
|
int numa_cpu_lookup_table[NR_CPUS];
|
|
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
|
|
struct pglist_data *node_data[MAX_NUMNODES];
|
|
|
|
EXPORT_SYMBOL(numa_cpu_lookup_table);
|
|
EXPORT_SYMBOL(node_to_cpumask_map);
|
|
EXPORT_SYMBOL(node_data);
|
|
|
|
static int min_common_depth;
|
|
static int n_mem_addr_cells, n_mem_size_cells;
|
|
static int form1_affinity;
|
|
|
|
#define MAX_DISTANCE_REF_POINTS 4
|
|
static int distance_ref_points_depth;
|
|
static const __be32 *distance_ref_points;
|
|
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
|
|
|
|
/*
|
|
* Allocate node_to_cpumask_map based on number of available nodes
|
|
* Requires node_possible_map to be valid.
|
|
*
|
|
* Note: cpumask_of_node() is not valid until after this is done.
|
|
*/
|
|
static void __init setup_node_to_cpumask_map(void)
|
|
{
|
|
unsigned int node;
|
|
|
|
/* setup nr_node_ids if not done yet */
|
|
if (nr_node_ids == MAX_NUMNODES)
|
|
setup_nr_node_ids();
|
|
|
|
/* allocate the map */
|
|
for (node = 0; node < nr_node_ids; node++)
|
|
alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
|
|
|
|
/* cpumask_of_node() will now work */
|
|
dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
|
|
}
|
|
|
|
static int __init fake_numa_create_new_node(unsigned long end_pfn,
|
|
unsigned int *nid)
|
|
{
|
|
unsigned long long mem;
|
|
char *p = cmdline;
|
|
static unsigned int fake_nid;
|
|
static unsigned long long curr_boundary;
|
|
|
|
/*
|
|
* Modify node id, iff we started creating NUMA nodes
|
|
* We want to continue from where we left of the last time
|
|
*/
|
|
if (fake_nid)
|
|
*nid = fake_nid;
|
|
/*
|
|
* In case there are no more arguments to parse, the
|
|
* node_id should be the same as the last fake node id
|
|
* (we've handled this above).
|
|
*/
|
|
if (!p)
|
|
return 0;
|
|
|
|
mem = memparse(p, &p);
|
|
if (!mem)
|
|
return 0;
|
|
|
|
if (mem < curr_boundary)
|
|
return 0;
|
|
|
|
curr_boundary = mem;
|
|
|
|
if ((end_pfn << PAGE_SHIFT) > mem) {
|
|
/*
|
|
* Skip commas and spaces
|
|
*/
|
|
while (*p == ',' || *p == ' ' || *p == '\t')
|
|
p++;
|
|
|
|
cmdline = p;
|
|
fake_nid++;
|
|
*nid = fake_nid;
|
|
dbg("created new fake_node with id %d\n", fake_nid);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void reset_numa_cpu_lookup_table(void)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
numa_cpu_lookup_table[cpu] = -1;
|
|
}
|
|
|
|
static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
|
|
{
|
|
numa_cpu_lookup_table[cpu] = node;
|
|
}
|
|
|
|
static void map_cpu_to_node(int cpu, int node)
|
|
{
|
|
update_numa_cpu_lookup_table(cpu, node);
|
|
|
|
dbg("adding cpu %d to node %d\n", cpu, node);
|
|
|
|
if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
|
|
cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
|
|
}
|
|
|
|
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
|
|
static void unmap_cpu_from_node(unsigned long cpu)
|
|
{
|
|
int node = numa_cpu_lookup_table[cpu];
|
|
|
|
dbg("removing cpu %lu from node %d\n", cpu, node);
|
|
|
|
if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
|
|
cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
|
|
} else {
|
|
printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
|
|
cpu, node);
|
|
}
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
|
|
|
|
/* must hold reference to node during call */
|
|
static const __be32 *of_get_associativity(struct device_node *dev)
|
|
{
|
|
return of_get_property(dev, "ibm,associativity", NULL);
|
|
}
|
|
|
|
/*
|
|
* Returns the property linux,drconf-usable-memory if
|
|
* it exists (the property exists only in kexec/kdump kernels,
|
|
* added by kexec-tools)
|
|
*/
|
|
static const __be32 *of_get_usable_memory(struct device_node *memory)
|
|
{
|
|
const __be32 *prop;
|
|
u32 len;
|
|
prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
|
|
if (!prop || len < sizeof(unsigned int))
|
|
return NULL;
|
|
return prop;
|
|
}
|
|
|
|
int __node_distance(int a, int b)
|
|
{
|
|
int i;
|
|
int distance = LOCAL_DISTANCE;
|
|
|
|
if (!form1_affinity)
|
|
return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
|
|
|
|
for (i = 0; i < distance_ref_points_depth; i++) {
|
|
if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
|
|
break;
|
|
|
|
/* Double the distance for each NUMA level */
|
|
distance *= 2;
|
|
}
|
|
|
|
return distance;
|
|
}
|
|
EXPORT_SYMBOL(__node_distance);
|
|
|
|
static void initialize_distance_lookup_table(int nid,
|
|
const __be32 *associativity)
|
|
{
|
|
int i;
|
|
|
|
if (!form1_affinity)
|
|
return;
|
|
|
|
for (i = 0; i < distance_ref_points_depth; i++) {
|
|
const __be32 *entry;
|
|
|
|
entry = &associativity[be32_to_cpu(distance_ref_points[i])];
|
|
distance_lookup_table[nid][i] = of_read_number(entry, 1);
|
|
}
|
|
}
|
|
|
|
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
|
|
* info is found.
|
|
*/
|
|
static int associativity_to_nid(const __be32 *associativity)
|
|
{
|
|
int nid = -1;
|
|
|
|
if (min_common_depth == -1)
|
|
goto out;
|
|
|
|
if (of_read_number(associativity, 1) >= min_common_depth)
|
|
nid = of_read_number(&associativity[min_common_depth], 1);
|
|
|
|
/* POWER4 LPAR uses 0xffff as invalid node */
|
|
if (nid == 0xffff || nid >= MAX_NUMNODES)
|
|
nid = -1;
|
|
|
|
if (nid > 0 &&
|
|
of_read_number(associativity, 1) >= distance_ref_points_depth)
|
|
initialize_distance_lookup_table(nid, associativity);
|
|
|
|
out:
|
|
return nid;
|
|
}
|
|
|
|
/* Returns the nid associated with the given device tree node,
|
|
* or -1 if not found.
|
|
*/
|
|
static int of_node_to_nid_single(struct device_node *device)
|
|
{
|
|
int nid = -1;
|
|
const __be32 *tmp;
|
|
|
|
tmp = of_get_associativity(device);
|
|
if (tmp)
|
|
nid = associativity_to_nid(tmp);
|
|
return nid;
|
|
}
|
|
|
|
/* Walk the device tree upwards, looking for an associativity id */
|
|
int of_node_to_nid(struct device_node *device)
|
|
{
|
|
struct device_node *tmp;
|
|
int nid = -1;
|
|
|
|
of_node_get(device);
|
|
while (device) {
|
|
nid = of_node_to_nid_single(device);
|
|
if (nid != -1)
|
|
break;
|
|
|
|
tmp = device;
|
|
device = of_get_parent(tmp);
|
|
of_node_put(tmp);
|
|
}
|
|
of_node_put(device);
|
|
|
|
return nid;
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_node_to_nid);
|
|
|
|
static int __init find_min_common_depth(void)
|
|
{
|
|
int depth;
|
|
struct device_node *root;
|
|
|
|
if (firmware_has_feature(FW_FEATURE_OPAL))
|
|
root = of_find_node_by_path("/ibm,opal");
|
|
else
|
|
root = of_find_node_by_path("/rtas");
|
|
if (!root)
|
|
root = of_find_node_by_path("/");
|
|
|
|
/*
|
|
* This property is a set of 32-bit integers, each representing
|
|
* an index into the ibm,associativity nodes.
|
|
*
|
|
* With form 0 affinity the first integer is for an SMP configuration
|
|
* (should be all 0's) and the second is for a normal NUMA
|
|
* configuration. We have only one level of NUMA.
|
|
*
|
|
* With form 1 affinity the first integer is the most significant
|
|
* NUMA boundary and the following are progressively less significant
|
|
* boundaries. There can be more than one level of NUMA.
|
|
*/
|
|
distance_ref_points = of_get_property(root,
|
|
"ibm,associativity-reference-points",
|
|
&distance_ref_points_depth);
|
|
|
|
if (!distance_ref_points) {
|
|
dbg("NUMA: ibm,associativity-reference-points not found.\n");
|
|
goto err;
|
|
}
|
|
|
|
distance_ref_points_depth /= sizeof(int);
|
|
|
|
if (firmware_has_feature(FW_FEATURE_OPAL) ||
|
|
firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
|
|
dbg("Using form 1 affinity\n");
|
|
form1_affinity = 1;
|
|
}
|
|
|
|
if (form1_affinity) {
|
|
depth = of_read_number(distance_ref_points, 1);
|
|
} else {
|
|
if (distance_ref_points_depth < 2) {
|
|
printk(KERN_WARNING "NUMA: "
|
|
"short ibm,associativity-reference-points\n");
|
|
goto err;
|
|
}
|
|
|
|
depth = of_read_number(&distance_ref_points[1], 1);
|
|
}
|
|
|
|
/*
|
|
* Warn and cap if the hardware supports more than
|
|
* MAX_DISTANCE_REF_POINTS domains.
|
|
*/
|
|
if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
|
|
printk(KERN_WARNING "NUMA: distance array capped at "
|
|
"%d entries\n", MAX_DISTANCE_REF_POINTS);
|
|
distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
|
|
}
|
|
|
|
of_node_put(root);
|
|
return depth;
|
|
|
|
err:
|
|
of_node_put(root);
|
|
return -1;
|
|
}
|
|
|
|
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
|
|
{
|
|
struct device_node *memory = NULL;
|
|
|
|
memory = of_find_node_by_type(memory, "memory");
|
|
if (!memory)
|
|
panic("numa.c: No memory nodes found!");
|
|
|
|
*n_addr_cells = of_n_addr_cells(memory);
|
|
*n_size_cells = of_n_size_cells(memory);
|
|
of_node_put(memory);
|
|
}
|
|
|
|
static unsigned long read_n_cells(int n, const __be32 **buf)
|
|
{
|
|
unsigned long result = 0;
|
|
|
|
while (n--) {
|
|
result = (result << 32) | of_read_number(*buf, 1);
|
|
(*buf)++;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Read the next memblock list entry from the ibm,dynamic-memory property
|
|
* and return the information in the provided of_drconf_cell structure.
|
|
*/
|
|
static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
|
|
{
|
|
const __be32 *cp;
|
|
|
|
drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
|
|
|
|
cp = *cellp;
|
|
drmem->drc_index = of_read_number(cp, 1);
|
|
drmem->reserved = of_read_number(&cp[1], 1);
|
|
drmem->aa_index = of_read_number(&cp[2], 1);
|
|
drmem->flags = of_read_number(&cp[3], 1);
|
|
|
|
*cellp = cp + 4;
|
|
}
|
|
|
|
/*
|
|
* Retrieve and validate the ibm,dynamic-memory property of the device tree.
|
|
*
|
|
* The layout of the ibm,dynamic-memory property is a number N of memblock
|
|
* list entries followed by N memblock list entries. Each memblock list entry
|
|
* contains information as laid out in the of_drconf_cell struct above.
|
|
*/
|
|
static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
|
|
{
|
|
const __be32 *prop;
|
|
u32 len, entries;
|
|
|
|
prop = of_get_property(memory, "ibm,dynamic-memory", &len);
|
|
if (!prop || len < sizeof(unsigned int))
|
|
return 0;
|
|
|
|
entries = of_read_number(prop++, 1);
|
|
|
|
/* Now that we know the number of entries, revalidate the size
|
|
* of the property read in to ensure we have everything
|
|
*/
|
|
if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
|
|
return 0;
|
|
|
|
*dm = prop;
|
|
return entries;
|
|
}
|
|
|
|
/*
|
|
* Retrieve and validate the ibm,lmb-size property for drconf memory
|
|
* from the device tree.
|
|
*/
|
|
static u64 of_get_lmb_size(struct device_node *memory)
|
|
{
|
|
const __be32 *prop;
|
|
u32 len;
|
|
|
|
prop = of_get_property(memory, "ibm,lmb-size", &len);
|
|
if (!prop || len < sizeof(unsigned int))
|
|
return 0;
|
|
|
|
return read_n_cells(n_mem_size_cells, &prop);
|
|
}
|
|
|
|
struct assoc_arrays {
|
|
u32 n_arrays;
|
|
u32 array_sz;
|
|
const __be32 *arrays;
|
|
};
|
|
|
|
/*
|
|
* Retrieve and validate the list of associativity arrays for drconf
|
|
* memory from the ibm,associativity-lookup-arrays property of the
|
|
* device tree..
|
|
*
|
|
* The layout of the ibm,associativity-lookup-arrays property is a number N
|
|
* indicating the number of associativity arrays, followed by a number M
|
|
* indicating the size of each associativity array, followed by a list
|
|
* of N associativity arrays.
|
|
*/
|
|
static int of_get_assoc_arrays(struct device_node *memory,
|
|
struct assoc_arrays *aa)
|
|
{
|
|
const __be32 *prop;
|
|
u32 len;
|
|
|
|
prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
|
|
if (!prop || len < 2 * sizeof(unsigned int))
|
|
return -1;
|
|
|
|
aa->n_arrays = of_read_number(prop++, 1);
|
|
aa->array_sz = of_read_number(prop++, 1);
|
|
|
|
/* Now that we know the number of arrays and size of each array,
|
|
* revalidate the size of the property read in.
|
|
*/
|
|
if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
|
|
return -1;
|
|
|
|
aa->arrays = prop;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is like of_node_to_nid_single() for memory represented in the
|
|
* ibm,dynamic-reconfiguration-memory node.
|
|
*/
|
|
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
|
|
struct assoc_arrays *aa)
|
|
{
|
|
int default_nid = 0;
|
|
int nid = default_nid;
|
|
int index;
|
|
|
|
if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
|
|
!(drmem->flags & DRCONF_MEM_AI_INVALID) &&
|
|
drmem->aa_index < aa->n_arrays) {
|
|
index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
|
|
nid = of_read_number(&aa->arrays[index], 1);
|
|
|
|
if (nid == 0xffff || nid >= MAX_NUMNODES)
|
|
nid = default_nid;
|
|
}
|
|
|
|
return nid;
|
|
}
|
|
|
|
/*
|
|
* Figure out to which domain a cpu belongs and stick it there.
|
|
* Return the id of the domain used.
|
|
*/
|
|
static int numa_setup_cpu(unsigned long lcpu)
|
|
{
|
|
int nid = -1;
|
|
struct device_node *cpu;
|
|
|
|
/*
|
|
* If a valid cpu-to-node mapping is already available, use it
|
|
* directly instead of querying the firmware, since it represents
|
|
* the most recent mapping notified to us by the platform (eg: VPHN).
|
|
*/
|
|
if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
|
|
map_cpu_to_node(lcpu, nid);
|
|
return nid;
|
|
}
|
|
|
|
cpu = of_get_cpu_node(lcpu, NULL);
|
|
|
|
if (!cpu) {
|
|
WARN_ON(1);
|
|
if (cpu_present(lcpu))
|
|
goto out_present;
|
|
else
|
|
goto out;
|
|
}
|
|
|
|
nid = of_node_to_nid_single(cpu);
|
|
|
|
out_present:
|
|
if (nid < 0 || !node_online(nid))
|
|
nid = first_online_node;
|
|
|
|
map_cpu_to_node(lcpu, nid);
|
|
of_node_put(cpu);
|
|
out:
|
|
return nid;
|
|
}
|
|
|
|
static void verify_cpu_node_mapping(int cpu, int node)
|
|
{
|
|
int base, sibling, i;
|
|
|
|
/* Verify that all the threads in the core belong to the same node */
|
|
base = cpu_first_thread_sibling(cpu);
|
|
|
|
for (i = 0; i < threads_per_core; i++) {
|
|
sibling = base + i;
|
|
|
|
if (sibling == cpu || cpu_is_offline(sibling))
|
|
continue;
|
|
|
|
if (cpu_to_node(sibling) != node) {
|
|
WARN(1, "CPU thread siblings %d and %d don't belong"
|
|
" to the same node!\n", cpu, sibling);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
|
|
void *hcpu)
|
|
{
|
|
unsigned long lcpu = (unsigned long)hcpu;
|
|
int ret = NOTIFY_DONE, nid;
|
|
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
case CPU_UP_PREPARE_FROZEN:
|
|
nid = numa_setup_cpu(lcpu);
|
|
verify_cpu_node_mapping((int)lcpu, nid);
|
|
ret = NOTIFY_OK;
|
|
break;
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
case CPU_UP_CANCELED:
|
|
case CPU_UP_CANCELED_FROZEN:
|
|
unmap_cpu_from_node(lcpu);
|
|
ret = NOTIFY_OK;
|
|
break;
|
|
#endif
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check and possibly modify a memory region to enforce the memory limit.
|
|
*
|
|
* Returns the size the region should have to enforce the memory limit.
|
|
* This will either be the original value of size, a truncated value,
|
|
* or zero. If the returned value of size is 0 the region should be
|
|
* discarded as it lies wholly above the memory limit.
|
|
*/
|
|
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
|
|
unsigned long size)
|
|
{
|
|
/*
|
|
* We use memblock_end_of_DRAM() in here instead of memory_limit because
|
|
* we've already adjusted it for the limit and it takes care of
|
|
* having memory holes below the limit. Also, in the case of
|
|
* iommu_is_off, memory_limit is not set but is implicitly enforced.
|
|
*/
|
|
|
|
if (start + size <= memblock_end_of_DRAM())
|
|
return size;
|
|
|
|
if (start >= memblock_end_of_DRAM())
|
|
return 0;
|
|
|
|
return memblock_end_of_DRAM() - start;
|
|
}
|
|
|
|
/*
|
|
* Reads the counter for a given entry in
|
|
* linux,drconf-usable-memory property
|
|
*/
|
|
static inline int __init read_usm_ranges(const __be32 **usm)
|
|
{
|
|
/*
|
|
* For each lmb in ibm,dynamic-memory a corresponding
|
|
* entry in linux,drconf-usable-memory property contains
|
|
* a counter followed by that many (base, size) duple.
|
|
* read the counter from linux,drconf-usable-memory
|
|
*/
|
|
return read_n_cells(n_mem_size_cells, usm);
|
|
}
|
|
|
|
/*
|
|
* Extract NUMA information from the ibm,dynamic-reconfiguration-memory
|
|
* node. This assumes n_mem_{addr,size}_cells have been set.
|
|
*/
|
|
static void __init parse_drconf_memory(struct device_node *memory)
|
|
{
|
|
const __be32 *uninitialized_var(dm), *usm;
|
|
unsigned int n, rc, ranges, is_kexec_kdump = 0;
|
|
unsigned long lmb_size, base, size, sz;
|
|
int nid;
|
|
struct assoc_arrays aa = { .arrays = NULL };
|
|
|
|
n = of_get_drconf_memory(memory, &dm);
|
|
if (!n)
|
|
return;
|
|
|
|
lmb_size = of_get_lmb_size(memory);
|
|
if (!lmb_size)
|
|
return;
|
|
|
|
rc = of_get_assoc_arrays(memory, &aa);
|
|
if (rc)
|
|
return;
|
|
|
|
/* check if this is a kexec/kdump kernel */
|
|
usm = of_get_usable_memory(memory);
|
|
if (usm != NULL)
|
|
is_kexec_kdump = 1;
|
|
|
|
for (; n != 0; --n) {
|
|
struct of_drconf_cell drmem;
|
|
|
|
read_drconf_cell(&drmem, &dm);
|
|
|
|
/* skip this block if the reserved bit is set in flags (0x80)
|
|
or if the block is not assigned to this partition (0x8) */
|
|
if ((drmem.flags & DRCONF_MEM_RESERVED)
|
|
|| !(drmem.flags & DRCONF_MEM_ASSIGNED))
|
|
continue;
|
|
|
|
base = drmem.base_addr;
|
|
size = lmb_size;
|
|
ranges = 1;
|
|
|
|
if (is_kexec_kdump) {
|
|
ranges = read_usm_ranges(&usm);
|
|
if (!ranges) /* there are no (base, size) duple */
|
|
continue;
|
|
}
|
|
do {
|
|
if (is_kexec_kdump) {
|
|
base = read_n_cells(n_mem_addr_cells, &usm);
|
|
size = read_n_cells(n_mem_size_cells, &usm);
|
|
}
|
|
nid = of_drconf_to_nid_single(&drmem, &aa);
|
|
fake_numa_create_new_node(
|
|
((base + size) >> PAGE_SHIFT),
|
|
&nid);
|
|
node_set_online(nid);
|
|
sz = numa_enforce_memory_limit(base, size);
|
|
if (sz)
|
|
memblock_set_node(base, sz,
|
|
&memblock.memory, nid);
|
|
} while (--ranges);
|
|
}
|
|
}
|
|
|
|
static int __init parse_numa_properties(void)
|
|
{
|
|
struct device_node *memory;
|
|
int default_nid = 0;
|
|
unsigned long i;
|
|
|
|
if (numa_enabled == 0) {
|
|
printk(KERN_WARNING "NUMA disabled by user\n");
|
|
return -1;
|
|
}
|
|
|
|
min_common_depth = find_min_common_depth();
|
|
|
|
if (min_common_depth < 0)
|
|
return min_common_depth;
|
|
|
|
dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
|
|
|
|
/*
|
|
* Even though we connect cpus to numa domains later in SMP
|
|
* init, we need to know the node ids now. This is because
|
|
* each node to be onlined must have NODE_DATA etc backing it.
|
|
*/
|
|
for_each_present_cpu(i) {
|
|
struct device_node *cpu;
|
|
int nid;
|
|
|
|
cpu = of_get_cpu_node(i, NULL);
|
|
BUG_ON(!cpu);
|
|
nid = of_node_to_nid_single(cpu);
|
|
of_node_put(cpu);
|
|
|
|
/*
|
|
* Don't fall back to default_nid yet -- we will plug
|
|
* cpus into nodes once the memory scan has discovered
|
|
* the topology.
|
|
*/
|
|
if (nid < 0)
|
|
continue;
|
|
node_set_online(nid);
|
|
}
|
|
|
|
get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
|
|
|
|
for_each_node_by_type(memory, "memory") {
|
|
unsigned long start;
|
|
unsigned long size;
|
|
int nid;
|
|
int ranges;
|
|
const __be32 *memcell_buf;
|
|
unsigned int len;
|
|
|
|
memcell_buf = of_get_property(memory,
|
|
"linux,usable-memory", &len);
|
|
if (!memcell_buf || len <= 0)
|
|
memcell_buf = of_get_property(memory, "reg", &len);
|
|
if (!memcell_buf || len <= 0)
|
|
continue;
|
|
|
|
/* ranges in cell */
|
|
ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
|
|
new_range:
|
|
/* these are order-sensitive, and modify the buffer pointer */
|
|
start = read_n_cells(n_mem_addr_cells, &memcell_buf);
|
|
size = read_n_cells(n_mem_size_cells, &memcell_buf);
|
|
|
|
/*
|
|
* Assumption: either all memory nodes or none will
|
|
* have associativity properties. If none, then
|
|
* everything goes to default_nid.
|
|
*/
|
|
nid = of_node_to_nid_single(memory);
|
|
if (nid < 0)
|
|
nid = default_nid;
|
|
|
|
fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
|
|
node_set_online(nid);
|
|
|
|
if (!(size = numa_enforce_memory_limit(start, size))) {
|
|
if (--ranges)
|
|
goto new_range;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
memblock_set_node(start, size, &memblock.memory, nid);
|
|
|
|
if (--ranges)
|
|
goto new_range;
|
|
}
|
|
|
|
/*
|
|
* Now do the same thing for each MEMBLOCK listed in the
|
|
* ibm,dynamic-memory property in the
|
|
* ibm,dynamic-reconfiguration-memory node.
|
|
*/
|
|
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
|
|
if (memory)
|
|
parse_drconf_memory(memory);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init setup_nonnuma(void)
|
|
{
|
|
unsigned long top_of_ram = memblock_end_of_DRAM();
|
|
unsigned long total_ram = memblock_phys_mem_size();
|
|
unsigned long start_pfn, end_pfn;
|
|
unsigned int nid = 0;
|
|
struct memblock_region *reg;
|
|
|
|
printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
|
|
top_of_ram, total_ram);
|
|
printk(KERN_DEBUG "Memory hole size: %ldMB\n",
|
|
(top_of_ram - total_ram) >> 20);
|
|
|
|
for_each_memblock(memory, reg) {
|
|
start_pfn = memblock_region_memory_base_pfn(reg);
|
|
end_pfn = memblock_region_memory_end_pfn(reg);
|
|
|
|
fake_numa_create_new_node(end_pfn, &nid);
|
|
memblock_set_node(PFN_PHYS(start_pfn),
|
|
PFN_PHYS(end_pfn - start_pfn),
|
|
&memblock.memory, nid);
|
|
node_set_online(nid);
|
|
}
|
|
}
|
|
|
|
void __init dump_numa_cpu_topology(void)
|
|
{
|
|
unsigned int node;
|
|
unsigned int cpu, count;
|
|
|
|
if (min_common_depth == -1 || !numa_enabled)
|
|
return;
|
|
|
|
for_each_online_node(node) {
|
|
printk(KERN_DEBUG "Node %d CPUs:", node);
|
|
|
|
count = 0;
|
|
/*
|
|
* If we used a CPU iterator here we would miss printing
|
|
* the holes in the cpumap.
|
|
*/
|
|
for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
|
|
if (cpumask_test_cpu(cpu,
|
|
node_to_cpumask_map[node])) {
|
|
if (count == 0)
|
|
printk(" %u", cpu);
|
|
++count;
|
|
} else {
|
|
if (count > 1)
|
|
printk("-%u", cpu - 1);
|
|
count = 0;
|
|
}
|
|
}
|
|
|
|
if (count > 1)
|
|
printk("-%u", nr_cpu_ids - 1);
|
|
printk("\n");
|
|
}
|
|
}
|
|
|
|
static void __init dump_numa_memory_topology(void)
|
|
{
|
|
unsigned int node;
|
|
unsigned int count;
|
|
|
|
if (min_common_depth == -1 || !numa_enabled)
|
|
return;
|
|
|
|
for_each_online_node(node) {
|
|
unsigned long i;
|
|
|
|
printk(KERN_DEBUG "Node %d Memory:", node);
|
|
|
|
count = 0;
|
|
|
|
for (i = 0; i < memblock_end_of_DRAM();
|
|
i += (1 << SECTION_SIZE_BITS)) {
|
|
if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
|
|
if (count == 0)
|
|
printk(" 0x%lx", i);
|
|
++count;
|
|
} else {
|
|
if (count > 0)
|
|
printk("-0x%lx", i);
|
|
count = 0;
|
|
}
|
|
}
|
|
|
|
if (count > 0)
|
|
printk("-0x%lx", i);
|
|
printk("\n");
|
|
}
|
|
}
|
|
|
|
static struct notifier_block ppc64_numa_nb = {
|
|
.notifier_call = cpu_numa_callback,
|
|
.priority = 1 /* Must run before sched domains notifier. */
|
|
};
|
|
|
|
/* Initialize NODE_DATA for a node on the local memory */
|
|
static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
|
|
{
|
|
u64 spanned_pages = end_pfn - start_pfn;
|
|
const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
|
|
u64 nd_pa;
|
|
void *nd;
|
|
int tnid;
|
|
|
|
if (spanned_pages)
|
|
pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
|
|
nid, start_pfn << PAGE_SHIFT,
|
|
(end_pfn << PAGE_SHIFT) - 1);
|
|
else
|
|
pr_info("Initmem setup node %d\n", nid);
|
|
|
|
nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
|
|
nd = __va(nd_pa);
|
|
|
|
/* report and initialize */
|
|
pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
|
|
nd_pa, nd_pa + nd_size - 1);
|
|
tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
|
|
if (tnid != nid)
|
|
pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
|
|
|
|
node_data[nid] = nd;
|
|
memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
|
|
NODE_DATA(nid)->node_id = nid;
|
|
NODE_DATA(nid)->node_start_pfn = start_pfn;
|
|
NODE_DATA(nid)->node_spanned_pages = spanned_pages;
|
|
}
|
|
|
|
void __init initmem_init(void)
|
|
{
|
|
int nid, cpu;
|
|
|
|
max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
|
|
max_pfn = max_low_pfn;
|
|
|
|
if (parse_numa_properties())
|
|
setup_nonnuma();
|
|
else
|
|
dump_numa_memory_topology();
|
|
|
|
memblock_dump_all();
|
|
|
|
/*
|
|
* Reduce the possible NUMA nodes to the online NUMA nodes,
|
|
* since we do not support node hotplug. This ensures that we
|
|
* lower the maximum NUMA node ID to what is actually present.
|
|
*/
|
|
nodes_and(node_possible_map, node_possible_map, node_online_map);
|
|
|
|
for_each_online_node(nid) {
|
|
unsigned long start_pfn, end_pfn;
|
|
|
|
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
|
|
setup_node_data(nid, start_pfn, end_pfn);
|
|
sparse_memory_present_with_active_regions(nid);
|
|
}
|
|
|
|
sparse_init();
|
|
|
|
setup_node_to_cpumask_map();
|
|
|
|
reset_numa_cpu_lookup_table();
|
|
register_cpu_notifier(&ppc64_numa_nb);
|
|
/*
|
|
* We need the numa_cpu_lookup_table to be accurate for all CPUs,
|
|
* even before we online them, so that we can use cpu_to_{node,mem}
|
|
* early in boot, cf. smp_prepare_cpus().
|
|
*/
|
|
for_each_present_cpu(cpu) {
|
|
numa_setup_cpu((unsigned long)cpu);
|
|
}
|
|
}
|
|
|
|
static int __init early_numa(char *p)
|
|
{
|
|
if (!p)
|
|
return 0;
|
|
|
|
if (strstr(p, "off"))
|
|
numa_enabled = 0;
|
|
|
|
if (strstr(p, "debug"))
|
|
numa_debug = 1;
|
|
|
|
p = strstr(p, "fake=");
|
|
if (p)
|
|
cmdline = p + strlen("fake=");
|
|
|
|
return 0;
|
|
}
|
|
early_param("numa", early_numa);
|
|
|
|
static bool topology_updates_enabled = true;
|
|
|
|
static int __init early_topology_updates(char *p)
|
|
{
|
|
if (!p)
|
|
return 0;
|
|
|
|
if (!strcmp(p, "off")) {
|
|
pr_info("Disabling topology updates\n");
|
|
topology_updates_enabled = false;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
early_param("topology_updates", early_topology_updates);
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
/*
|
|
* Find the node associated with a hot added memory section for
|
|
* memory represented in the device tree by the property
|
|
* ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
|
|
*/
|
|
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
|
|
unsigned long scn_addr)
|
|
{
|
|
const __be32 *dm;
|
|
unsigned int drconf_cell_cnt, rc;
|
|
unsigned long lmb_size;
|
|
struct assoc_arrays aa;
|
|
int nid = -1;
|
|
|
|
drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
|
|
if (!drconf_cell_cnt)
|
|
return -1;
|
|
|
|
lmb_size = of_get_lmb_size(memory);
|
|
if (!lmb_size)
|
|
return -1;
|
|
|
|
rc = of_get_assoc_arrays(memory, &aa);
|
|
if (rc)
|
|
return -1;
|
|
|
|
for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
|
|
struct of_drconf_cell drmem;
|
|
|
|
read_drconf_cell(&drmem, &dm);
|
|
|
|
/* skip this block if it is reserved or not assigned to
|
|
* this partition */
|
|
if ((drmem.flags & DRCONF_MEM_RESERVED)
|
|
|| !(drmem.flags & DRCONF_MEM_ASSIGNED))
|
|
continue;
|
|
|
|
if ((scn_addr < drmem.base_addr)
|
|
|| (scn_addr >= (drmem.base_addr + lmb_size)))
|
|
continue;
|
|
|
|
nid = of_drconf_to_nid_single(&drmem, &aa);
|
|
break;
|
|
}
|
|
|
|
return nid;
|
|
}
|
|
|
|
/*
|
|
* Find the node associated with a hot added memory section for memory
|
|
* represented in the device tree as a node (i.e. memory@XXXX) for
|
|
* each memblock.
|
|
*/
|
|
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
|
|
{
|
|
struct device_node *memory;
|
|
int nid = -1;
|
|
|
|
for_each_node_by_type(memory, "memory") {
|
|
unsigned long start, size;
|
|
int ranges;
|
|
const __be32 *memcell_buf;
|
|
unsigned int len;
|
|
|
|
memcell_buf = of_get_property(memory, "reg", &len);
|
|
if (!memcell_buf || len <= 0)
|
|
continue;
|
|
|
|
/* ranges in cell */
|
|
ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
|
|
|
|
while (ranges--) {
|
|
start = read_n_cells(n_mem_addr_cells, &memcell_buf);
|
|
size = read_n_cells(n_mem_size_cells, &memcell_buf);
|
|
|
|
if ((scn_addr < start) || (scn_addr >= (start + size)))
|
|
continue;
|
|
|
|
nid = of_node_to_nid_single(memory);
|
|
break;
|
|
}
|
|
|
|
if (nid >= 0)
|
|
break;
|
|
}
|
|
|
|
of_node_put(memory);
|
|
|
|
return nid;
|
|
}
|
|
|
|
/*
|
|
* Find the node associated with a hot added memory section. Section
|
|
* corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
|
|
* sections are fully contained within a single MEMBLOCK.
|
|
*/
|
|
int hot_add_scn_to_nid(unsigned long scn_addr)
|
|
{
|
|
struct device_node *memory = NULL;
|
|
int nid, found = 0;
|
|
|
|
if (!numa_enabled || (min_common_depth < 0))
|
|
return first_online_node;
|
|
|
|
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
|
|
if (memory) {
|
|
nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
|
|
of_node_put(memory);
|
|
} else {
|
|
nid = hot_add_node_scn_to_nid(scn_addr);
|
|
}
|
|
|
|
if (nid < 0 || !node_online(nid))
|
|
nid = first_online_node;
|
|
|
|
if (NODE_DATA(nid)->node_spanned_pages)
|
|
return nid;
|
|
|
|
for_each_online_node(nid) {
|
|
if (NODE_DATA(nid)->node_spanned_pages) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
BUG_ON(!found);
|
|
return nid;
|
|
}
|
|
|
|
static u64 hot_add_drconf_memory_max(void)
|
|
{
|
|
struct device_node *memory = NULL;
|
|
unsigned int drconf_cell_cnt = 0;
|
|
u64 lmb_size = 0;
|
|
const __be32 *dm = NULL;
|
|
|
|
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
|
|
if (memory) {
|
|
drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
|
|
lmb_size = of_get_lmb_size(memory);
|
|
of_node_put(memory);
|
|
}
|
|
return lmb_size * drconf_cell_cnt;
|
|
}
|
|
|
|
/*
|
|
* memory_hotplug_max - return max address of memory that may be added
|
|
*
|
|
* This is currently only used on systems that support drconfig memory
|
|
* hotplug.
|
|
*/
|
|
u64 memory_hotplug_max(void)
|
|
{
|
|
return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
/* Virtual Processor Home Node (VPHN) support */
|
|
#ifdef CONFIG_PPC_SPLPAR
|
|
|
|
#include "vphn.h"
|
|
|
|
struct topology_update_data {
|
|
struct topology_update_data *next;
|
|
unsigned int cpu;
|
|
int old_nid;
|
|
int new_nid;
|
|
};
|
|
|
|
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
|
|
static cpumask_t cpu_associativity_changes_mask;
|
|
static int vphn_enabled;
|
|
static int prrn_enabled;
|
|
static void reset_topology_timer(void);
|
|
|
|
/*
|
|
* Store the current values of the associativity change counters in the
|
|
* hypervisor.
|
|
*/
|
|
static void setup_cpu_associativity_change_counters(void)
|
|
{
|
|
int cpu;
|
|
|
|
/* The VPHN feature supports a maximum of 8 reference points */
|
|
BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
int i;
|
|
u8 *counts = vphn_cpu_change_counts[cpu];
|
|
volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
|
|
|
|
for (i = 0; i < distance_ref_points_depth; i++)
|
|
counts[i] = hypervisor_counts[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The hypervisor maintains a set of 8 associativity change counters in
|
|
* the VPA of each cpu that correspond to the associativity levels in the
|
|
* ibm,associativity-reference-points property. When an associativity
|
|
* level changes, the corresponding counter is incremented.
|
|
*
|
|
* Set a bit in cpu_associativity_changes_mask for each cpu whose home
|
|
* node associativity levels have changed.
|
|
*
|
|
* Returns the number of cpus with unhandled associativity changes.
|
|
*/
|
|
static int update_cpu_associativity_changes_mask(void)
|
|
{
|
|
int cpu;
|
|
cpumask_t *changes = &cpu_associativity_changes_mask;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
int i, changed = 0;
|
|
u8 *counts = vphn_cpu_change_counts[cpu];
|
|
volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
|
|
|
|
for (i = 0; i < distance_ref_points_depth; i++) {
|
|
if (hypervisor_counts[i] != counts[i]) {
|
|
counts[i] = hypervisor_counts[i];
|
|
changed = 1;
|
|
}
|
|
}
|
|
if (changed) {
|
|
cpumask_or(changes, changes, cpu_sibling_mask(cpu));
|
|
cpu = cpu_last_thread_sibling(cpu);
|
|
}
|
|
}
|
|
|
|
return cpumask_weight(changes);
|
|
}
|
|
|
|
/*
|
|
* Retrieve the new associativity information for a virtual processor's
|
|
* home node.
|
|
*/
|
|
static long hcall_vphn(unsigned long cpu, __be32 *associativity)
|
|
{
|
|
long rc;
|
|
long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
|
|
u64 flags = 1;
|
|
int hwcpu = get_hard_smp_processor_id(cpu);
|
|
|
|
rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
|
|
vphn_unpack_associativity(retbuf, associativity);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static long vphn_get_associativity(unsigned long cpu,
|
|
__be32 *associativity)
|
|
{
|
|
long rc;
|
|
|
|
rc = hcall_vphn(cpu, associativity);
|
|
|
|
switch (rc) {
|
|
case H_FUNCTION:
|
|
printk(KERN_INFO
|
|
"VPHN is not supported. Disabling polling...\n");
|
|
stop_topology_update();
|
|
break;
|
|
case H_HARDWARE:
|
|
printk(KERN_ERR
|
|
"hcall_vphn() experienced a hardware fault "
|
|
"preventing VPHN. Disabling polling...\n");
|
|
stop_topology_update();
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Update the CPU maps and sysfs entries for a single CPU when its NUMA
|
|
* characteristics change. This function doesn't perform any locking and is
|
|
* only safe to call from stop_machine().
|
|
*/
|
|
static int update_cpu_topology(void *data)
|
|
{
|
|
struct topology_update_data *update;
|
|
unsigned long cpu;
|
|
|
|
if (!data)
|
|
return -EINVAL;
|
|
|
|
cpu = smp_processor_id();
|
|
|
|
for (update = data; update; update = update->next) {
|
|
int new_nid = update->new_nid;
|
|
if (cpu != update->cpu)
|
|
continue;
|
|
|
|
unmap_cpu_from_node(cpu);
|
|
map_cpu_to_node(cpu, new_nid);
|
|
set_cpu_numa_node(cpu, new_nid);
|
|
set_cpu_numa_mem(cpu, local_memory_node(new_nid));
|
|
vdso_getcpu_init();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int update_lookup_table(void *data)
|
|
{
|
|
struct topology_update_data *update;
|
|
|
|
if (!data)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Upon topology update, the numa-cpu lookup table needs to be updated
|
|
* for all threads in the core, including offline CPUs, to ensure that
|
|
* future hotplug operations respect the cpu-to-node associativity
|
|
* properly.
|
|
*/
|
|
for (update = data; update; update = update->next) {
|
|
int nid, base, j;
|
|
|
|
nid = update->new_nid;
|
|
base = cpu_first_thread_sibling(update->cpu);
|
|
|
|
for (j = 0; j < threads_per_core; j++) {
|
|
update_numa_cpu_lookup_table(base + j, nid);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update the node maps and sysfs entries for each cpu whose home node
|
|
* has changed. Returns 1 when the topology has changed, and 0 otherwise.
|
|
*/
|
|
int arch_update_cpu_topology(void)
|
|
{
|
|
unsigned int cpu, sibling, changed = 0;
|
|
struct topology_update_data *updates, *ud;
|
|
__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
|
|
cpumask_t updated_cpus;
|
|
struct device *dev;
|
|
int weight, new_nid, i = 0;
|
|
|
|
if (!prrn_enabled && !vphn_enabled)
|
|
return 0;
|
|
|
|
weight = cpumask_weight(&cpu_associativity_changes_mask);
|
|
if (!weight)
|
|
return 0;
|
|
|
|
updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
|
|
if (!updates)
|
|
return 0;
|
|
|
|
cpumask_clear(&updated_cpus);
|
|
|
|
for_each_cpu(cpu, &cpu_associativity_changes_mask) {
|
|
/*
|
|
* If siblings aren't flagged for changes, updates list
|
|
* will be too short. Skip on this update and set for next
|
|
* update.
|
|
*/
|
|
if (!cpumask_subset(cpu_sibling_mask(cpu),
|
|
&cpu_associativity_changes_mask)) {
|
|
pr_info("Sibling bits not set for associativity "
|
|
"change, cpu%d\n", cpu);
|
|
cpumask_or(&cpu_associativity_changes_mask,
|
|
&cpu_associativity_changes_mask,
|
|
cpu_sibling_mask(cpu));
|
|
cpu = cpu_last_thread_sibling(cpu);
|
|
continue;
|
|
}
|
|
|
|
/* Use associativity from first thread for all siblings */
|
|
vphn_get_associativity(cpu, associativity);
|
|
new_nid = associativity_to_nid(associativity);
|
|
if (new_nid < 0 || !node_online(new_nid))
|
|
new_nid = first_online_node;
|
|
|
|
if (new_nid == numa_cpu_lookup_table[cpu]) {
|
|
cpumask_andnot(&cpu_associativity_changes_mask,
|
|
&cpu_associativity_changes_mask,
|
|
cpu_sibling_mask(cpu));
|
|
cpu = cpu_last_thread_sibling(cpu);
|
|
continue;
|
|
}
|
|
|
|
for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
|
|
ud = &updates[i++];
|
|
ud->cpu = sibling;
|
|
ud->new_nid = new_nid;
|
|
ud->old_nid = numa_cpu_lookup_table[sibling];
|
|
cpumask_set_cpu(sibling, &updated_cpus);
|
|
if (i < weight)
|
|
ud->next = &updates[i];
|
|
}
|
|
cpu = cpu_last_thread_sibling(cpu);
|
|
}
|
|
|
|
pr_debug("Topology update for the following CPUs:\n");
|
|
if (cpumask_weight(&updated_cpus)) {
|
|
for (ud = &updates[0]; ud; ud = ud->next) {
|
|
pr_debug("cpu %d moving from node %d "
|
|
"to %d\n", ud->cpu,
|
|
ud->old_nid, ud->new_nid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In cases where we have nothing to update (because the updates list
|
|
* is too short or because the new topology is same as the old one),
|
|
* skip invoking update_cpu_topology() via stop-machine(). This is
|
|
* necessary (and not just a fast-path optimization) since stop-machine
|
|
* can end up electing a random CPU to run update_cpu_topology(), and
|
|
* thus trick us into setting up incorrect cpu-node mappings (since
|
|
* 'updates' is kzalloc()'ed).
|
|
*
|
|
* And for the similar reason, we will skip all the following updating.
|
|
*/
|
|
if (!cpumask_weight(&updated_cpus))
|
|
goto out;
|
|
|
|
stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
|
|
|
|
/*
|
|
* Update the numa-cpu lookup table with the new mappings, even for
|
|
* offline CPUs. It is best to perform this update from the stop-
|
|
* machine context.
|
|
*/
|
|
stop_machine(update_lookup_table, &updates[0],
|
|
cpumask_of(raw_smp_processor_id()));
|
|
|
|
for (ud = &updates[0]; ud; ud = ud->next) {
|
|
unregister_cpu_under_node(ud->cpu, ud->old_nid);
|
|
register_cpu_under_node(ud->cpu, ud->new_nid);
|
|
|
|
dev = get_cpu_device(ud->cpu);
|
|
if (dev)
|
|
kobject_uevent(&dev->kobj, KOBJ_CHANGE);
|
|
cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
|
|
changed = 1;
|
|
}
|
|
|
|
out:
|
|
kfree(updates);
|
|
return changed;
|
|
}
|
|
|
|
static void topology_work_fn(struct work_struct *work)
|
|
{
|
|
rebuild_sched_domains();
|
|
}
|
|
static DECLARE_WORK(topology_work, topology_work_fn);
|
|
|
|
static void topology_schedule_update(void)
|
|
{
|
|
schedule_work(&topology_work);
|
|
}
|
|
|
|
static void topology_timer_fn(unsigned long ignored)
|
|
{
|
|
if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
|
|
topology_schedule_update();
|
|
else if (vphn_enabled) {
|
|
if (update_cpu_associativity_changes_mask() > 0)
|
|
topology_schedule_update();
|
|
reset_topology_timer();
|
|
}
|
|
}
|
|
static struct timer_list topology_timer =
|
|
TIMER_INITIALIZER(topology_timer_fn, 0, 0);
|
|
|
|
static void reset_topology_timer(void)
|
|
{
|
|
topology_timer.data = 0;
|
|
topology_timer.expires = jiffies + 60 * HZ;
|
|
mod_timer(&topology_timer, topology_timer.expires);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static void stage_topology_update(int core_id)
|
|
{
|
|
cpumask_or(&cpu_associativity_changes_mask,
|
|
&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
|
|
reset_topology_timer();
|
|
}
|
|
|
|
static int dt_update_callback(struct notifier_block *nb,
|
|
unsigned long action, void *data)
|
|
{
|
|
struct of_reconfig_data *update = data;
|
|
int rc = NOTIFY_DONE;
|
|
|
|
switch (action) {
|
|
case OF_RECONFIG_UPDATE_PROPERTY:
|
|
if (!of_prop_cmp(update->dn->type, "cpu") &&
|
|
!of_prop_cmp(update->prop->name, "ibm,associativity")) {
|
|
u32 core_id;
|
|
of_property_read_u32(update->dn, "reg", &core_id);
|
|
stage_topology_update(core_id);
|
|
rc = NOTIFY_OK;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static struct notifier_block dt_update_nb = {
|
|
.notifier_call = dt_update_callback,
|
|
};
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Start polling for associativity changes.
|
|
*/
|
|
int start_topology_update(void)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (firmware_has_feature(FW_FEATURE_PRRN)) {
|
|
if (!prrn_enabled) {
|
|
prrn_enabled = 1;
|
|
vphn_enabled = 0;
|
|
#ifdef CONFIG_SMP
|
|
rc = of_reconfig_notifier_register(&dt_update_nb);
|
|
#endif
|
|
}
|
|
} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
|
|
lppaca_shared_proc(get_lppaca())) {
|
|
if (!vphn_enabled) {
|
|
prrn_enabled = 0;
|
|
vphn_enabled = 1;
|
|
setup_cpu_associativity_change_counters();
|
|
init_timer_deferrable(&topology_timer);
|
|
reset_topology_timer();
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Disable polling for VPHN associativity changes.
|
|
*/
|
|
int stop_topology_update(void)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (prrn_enabled) {
|
|
prrn_enabled = 0;
|
|
#ifdef CONFIG_SMP
|
|
rc = of_reconfig_notifier_unregister(&dt_update_nb);
|
|
#endif
|
|
} else if (vphn_enabled) {
|
|
vphn_enabled = 0;
|
|
rc = del_timer_sync(&topology_timer);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int prrn_is_enabled(void)
|
|
{
|
|
return prrn_enabled;
|
|
}
|
|
|
|
static int topology_read(struct seq_file *file, void *v)
|
|
{
|
|
if (vphn_enabled || prrn_enabled)
|
|
seq_puts(file, "on\n");
|
|
else
|
|
seq_puts(file, "off\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int topology_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, topology_read, NULL);
|
|
}
|
|
|
|
static ssize_t topology_write(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *off)
|
|
{
|
|
char kbuf[4]; /* "on" or "off" plus null. */
|
|
int read_len;
|
|
|
|
read_len = count < 3 ? count : 3;
|
|
if (copy_from_user(kbuf, buf, read_len))
|
|
return -EINVAL;
|
|
|
|
kbuf[read_len] = '\0';
|
|
|
|
if (!strncmp(kbuf, "on", 2))
|
|
start_topology_update();
|
|
else if (!strncmp(kbuf, "off", 3))
|
|
stop_topology_update();
|
|
else
|
|
return -EINVAL;
|
|
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations topology_ops = {
|
|
.read = seq_read,
|
|
.write = topology_write,
|
|
.open = topology_open,
|
|
.release = single_release
|
|
};
|
|
|
|
static int topology_update_init(void)
|
|
{
|
|
/* Do not poll for changes if disabled at boot */
|
|
if (topology_updates_enabled)
|
|
start_topology_update();
|
|
|
|
if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
device_initcall(topology_update_init);
|
|
#endif /* CONFIG_PPC_SPLPAR */
|