mirror of
https://github.com/torvalds/linux.git
synced 2024-11-18 01:51:53 +00:00
3cd86a58f7
- In-kernel Pointer Authentication support (previously only offered to user space). - ARM Activity Monitors (AMU) extension support allowing better CPU utilisation numbers for the scheduler (frequency invariance). - Memory hot-remove support for arm64. - Lots of asm annotations (SYM_*) in preparation for the in-kernel Branch Target Identification (BTI) support. - arm64 perf updates: ARMv8.5-PMU 64-bit counters, refactoring the PMU init callbacks, support for new DT compatibles. - IPv6 header checksum optimisation. - Fixes: SDEI (software delegated exception interface) double-lock on hibernate with shared events. - Minor clean-ups and refactoring: cpu_ops accessor, cpu_do_switch_mm() converted to C, cpufeature finalisation helper. - sys_mremap() comment explaining the asymmetric address untagging behaviour. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl6DVyIACgkQa9axLQDI XvHkqRAAiZA2EYKiQL4M1DJ1cNTADjT7xKX9+UtYBXj7GMVhgVWdunpHVE6qtfgk cT6avmKrS/6PDqizJgr+Z1yX8x3Kvs57G4BvmIUKIw97mkdewvFQ9JKv6VA1vb86 7Qrl1WzqsGg5Kj9uUfI4h+ZoT1H4C/9PQeFxJwgZRtF9DxRh8O7VeZI+JCu8Aub2 lIkjI8rh+EpTsGT9h/PMGWUcawnKQloZ1/F+GfMAuYBvIv2RNN2xVreJtTmm4NyJ VcpL0KCNyAI2lGdaJg5nBLRDyGuXDm5i+PLsCSXMquI4fie00txXeD8sjbeuO0ks YTJ0EhmUUhbSE17go+SxYiEFE0v09i+lD5ud+B4Vmojp0KTczTta9VSgURlbb2/9 n9biq5G3PPDNIrZqiTT2Tf4AMz1350nkbzL2gzKecM5aIzR/u3y5yII5CgfZtFnj 7bGbyFpFpcqI7UaISPsNCxmknbTt/7ff0WM3+7SbecxI3AD2mnxsOdN9JTLyhDp+ owjyiaWxl5zMWF9DhplLG/9BKpNWSxh3skazdOdELd8GTq2MbJlXrVG2XgXTAOh3 y1s6RQrfw8zXh8TSqdmmzauComXIRWTum/sbVB3U8Z3AUsIeq/NTSbN5X9JyIbOP HOabhlVhhkI6omN1grqPX4jwUiZLZoNfn7Ez4q71549KVK/uBtA= =LJVX -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "The bulk is in-kernel pointer authentication, activity monitors and lots of asm symbol annotations. I also queued the sys_mremap() patch commenting the asymmetry in the address untagging. Summary: - In-kernel Pointer Authentication support (previously only offered to user space). - ARM Activity Monitors (AMU) extension support allowing better CPU utilisation numbers for the scheduler (frequency invariance). - Memory hot-remove support for arm64. - Lots of asm annotations (SYM_*) in preparation for the in-kernel Branch Target Identification (BTI) support. - arm64 perf updates: ARMv8.5-PMU 64-bit counters, refactoring the PMU init callbacks, support for new DT compatibles. - IPv6 header checksum optimisation. - Fixes: SDEI (software delegated exception interface) double-lock on hibernate with shared events. - Minor clean-ups and refactoring: cpu_ops accessor, cpu_do_switch_mm() converted to C, cpufeature finalisation helper. - sys_mremap() comment explaining the asymmetric address untagging behaviour" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (81 commits) mm/mremap: Add comment explaining the untagging behaviour of mremap() arm64: head: Convert install_el2_stub to SYM_INNER_LABEL arm64: Introduce get_cpu_ops() helper function arm64: Rename cpu_read_ops() to init_cpu_ops() arm64: Declare ACPI parking protocol CPU operation if needed arm64: move kimage_vaddr to .rodata arm64: use mov_q instead of literal ldr arm64: Kconfig: verify binutils support for ARM64_PTR_AUTH lkdtm: arm64: test kernel pointer authentication arm64: compile the kernel with ptrauth return address signing kconfig: Add support for 'as-option' arm64: suspend: restore the kernel ptrauth keys arm64: __show_regs: strip PAC from lr in printk arm64: unwind: strip PAC from kernel addresses arm64: mask PAC bits of __builtin_return_address arm64: initialize ptrauth keys for kernel booting task arm64: initialize and switch ptrauth kernel keys arm64: enable ptrauth earlier arm64: cpufeature: handle conflicts based on capability arm64: cpufeature: Move cpu capability helpers inside C file ...
1642 lines
42 KiB
C
1642 lines
42 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/drivers/clocksource/arm_arch_timer.c
|
|
*
|
|
* Copyright (C) 2011 ARM Ltd.
|
|
* All Rights Reserved
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "arch_timer: " fmt
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/device.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpu_pm.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/sched_clock.h>
|
|
#include <linux/acpi.h>
|
|
|
|
#include <asm/arch_timer.h>
|
|
#include <asm/virt.h>
|
|
|
|
#include <clocksource/arm_arch_timer.h>
|
|
|
|
#define CNTTIDR 0x08
|
|
#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
|
|
|
|
#define CNTACR(n) (0x40 + ((n) * 4))
|
|
#define CNTACR_RPCT BIT(0)
|
|
#define CNTACR_RVCT BIT(1)
|
|
#define CNTACR_RFRQ BIT(2)
|
|
#define CNTACR_RVOFF BIT(3)
|
|
#define CNTACR_RWVT BIT(4)
|
|
#define CNTACR_RWPT BIT(5)
|
|
|
|
#define CNTVCT_LO 0x08
|
|
#define CNTVCT_HI 0x0c
|
|
#define CNTFRQ 0x10
|
|
#define CNTP_TVAL 0x28
|
|
#define CNTP_CTL 0x2c
|
|
#define CNTV_TVAL 0x38
|
|
#define CNTV_CTL 0x3c
|
|
|
|
static unsigned arch_timers_present __initdata;
|
|
|
|
static void __iomem *arch_counter_base;
|
|
|
|
struct arch_timer {
|
|
void __iomem *base;
|
|
struct clock_event_device evt;
|
|
};
|
|
|
|
#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
|
|
|
|
static u32 arch_timer_rate;
|
|
static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
|
|
|
|
static struct clock_event_device __percpu *arch_timer_evt;
|
|
|
|
static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
|
|
static bool arch_timer_c3stop;
|
|
static bool arch_timer_mem_use_virtual;
|
|
static bool arch_counter_suspend_stop;
|
|
#ifdef CONFIG_GENERIC_GETTIMEOFDAY
|
|
static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
|
|
#else
|
|
static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
|
|
#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
|
|
|
|
static cpumask_t evtstrm_available = CPU_MASK_NONE;
|
|
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
|
|
|
|
static int __init early_evtstrm_cfg(char *buf)
|
|
{
|
|
return strtobool(buf, &evtstrm_enable);
|
|
}
|
|
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
|
|
|
|
/*
|
|
* Architected system timer support.
|
|
*/
|
|
|
|
static __always_inline
|
|
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
|
|
struct clock_event_device *clk)
|
|
{
|
|
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
|
|
struct arch_timer *timer = to_arch_timer(clk);
|
|
switch (reg) {
|
|
case ARCH_TIMER_REG_CTRL:
|
|
writel_relaxed(val, timer->base + CNTP_CTL);
|
|
break;
|
|
case ARCH_TIMER_REG_TVAL:
|
|
writel_relaxed(val, timer->base + CNTP_TVAL);
|
|
break;
|
|
}
|
|
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
|
|
struct arch_timer *timer = to_arch_timer(clk);
|
|
switch (reg) {
|
|
case ARCH_TIMER_REG_CTRL:
|
|
writel_relaxed(val, timer->base + CNTV_CTL);
|
|
break;
|
|
case ARCH_TIMER_REG_TVAL:
|
|
writel_relaxed(val, timer->base + CNTV_TVAL);
|
|
break;
|
|
}
|
|
} else {
|
|
arch_timer_reg_write_cp15(access, reg, val);
|
|
}
|
|
}
|
|
|
|
static __always_inline
|
|
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
|
|
struct clock_event_device *clk)
|
|
{
|
|
u32 val;
|
|
|
|
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
|
|
struct arch_timer *timer = to_arch_timer(clk);
|
|
switch (reg) {
|
|
case ARCH_TIMER_REG_CTRL:
|
|
val = readl_relaxed(timer->base + CNTP_CTL);
|
|
break;
|
|
case ARCH_TIMER_REG_TVAL:
|
|
val = readl_relaxed(timer->base + CNTP_TVAL);
|
|
break;
|
|
}
|
|
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
|
|
struct arch_timer *timer = to_arch_timer(clk);
|
|
switch (reg) {
|
|
case ARCH_TIMER_REG_CTRL:
|
|
val = readl_relaxed(timer->base + CNTV_CTL);
|
|
break;
|
|
case ARCH_TIMER_REG_TVAL:
|
|
val = readl_relaxed(timer->base + CNTV_TVAL);
|
|
break;
|
|
}
|
|
} else {
|
|
val = arch_timer_reg_read_cp15(access, reg);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static notrace u64 arch_counter_get_cntpct_stable(void)
|
|
{
|
|
return __arch_counter_get_cntpct_stable();
|
|
}
|
|
|
|
static notrace u64 arch_counter_get_cntpct(void)
|
|
{
|
|
return __arch_counter_get_cntpct();
|
|
}
|
|
|
|
static notrace u64 arch_counter_get_cntvct_stable(void)
|
|
{
|
|
return __arch_counter_get_cntvct_stable();
|
|
}
|
|
|
|
static notrace u64 arch_counter_get_cntvct(void)
|
|
{
|
|
return __arch_counter_get_cntvct();
|
|
}
|
|
|
|
/*
|
|
* Default to cp15 based access because arm64 uses this function for
|
|
* sched_clock() before DT is probed and the cp15 method is guaranteed
|
|
* to exist on arm64. arm doesn't use this before DT is probed so even
|
|
* if we don't have the cp15 accessors we won't have a problem.
|
|
*/
|
|
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
|
|
EXPORT_SYMBOL_GPL(arch_timer_read_counter);
|
|
|
|
static u64 arch_counter_read(struct clocksource *cs)
|
|
{
|
|
return arch_timer_read_counter();
|
|
}
|
|
|
|
static u64 arch_counter_read_cc(const struct cyclecounter *cc)
|
|
{
|
|
return arch_timer_read_counter();
|
|
}
|
|
|
|
static struct clocksource clocksource_counter = {
|
|
.name = "arch_sys_counter",
|
|
.rating = 400,
|
|
.read = arch_counter_read,
|
|
.mask = CLOCKSOURCE_MASK(56),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
static struct cyclecounter cyclecounter __ro_after_init = {
|
|
.read = arch_counter_read_cc,
|
|
.mask = CLOCKSOURCE_MASK(56),
|
|
};
|
|
|
|
struct ate_acpi_oem_info {
|
|
char oem_id[ACPI_OEM_ID_SIZE + 1];
|
|
char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
|
|
u32 oem_revision;
|
|
};
|
|
|
|
#ifdef CONFIG_FSL_ERRATUM_A008585
|
|
/*
|
|
* The number of retries is an arbitrary value well beyond the highest number
|
|
* of iterations the loop has been observed to take.
|
|
*/
|
|
#define __fsl_a008585_read_reg(reg) ({ \
|
|
u64 _old, _new; \
|
|
int _retries = 200; \
|
|
\
|
|
do { \
|
|
_old = read_sysreg(reg); \
|
|
_new = read_sysreg(reg); \
|
|
_retries--; \
|
|
} while (unlikely(_old != _new) && _retries); \
|
|
\
|
|
WARN_ON_ONCE(!_retries); \
|
|
_new; \
|
|
})
|
|
|
|
static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
|
|
{
|
|
return __fsl_a008585_read_reg(cntp_tval_el0);
|
|
}
|
|
|
|
static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
|
|
{
|
|
return __fsl_a008585_read_reg(cntv_tval_el0);
|
|
}
|
|
|
|
static u64 notrace fsl_a008585_read_cntpct_el0(void)
|
|
{
|
|
return __fsl_a008585_read_reg(cntpct_el0);
|
|
}
|
|
|
|
static u64 notrace fsl_a008585_read_cntvct_el0(void)
|
|
{
|
|
return __fsl_a008585_read_reg(cntvct_el0);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_HISILICON_ERRATUM_161010101
|
|
/*
|
|
* Verify whether the value of the second read is larger than the first by
|
|
* less than 32 is the only way to confirm the value is correct, so clear the
|
|
* lower 5 bits to check whether the difference is greater than 32 or not.
|
|
* Theoretically the erratum should not occur more than twice in succession
|
|
* when reading the system counter, but it is possible that some interrupts
|
|
* may lead to more than twice read errors, triggering the warning, so setting
|
|
* the number of retries far beyond the number of iterations the loop has been
|
|
* observed to take.
|
|
*/
|
|
#define __hisi_161010101_read_reg(reg) ({ \
|
|
u64 _old, _new; \
|
|
int _retries = 50; \
|
|
\
|
|
do { \
|
|
_old = read_sysreg(reg); \
|
|
_new = read_sysreg(reg); \
|
|
_retries--; \
|
|
} while (unlikely((_new - _old) >> 5) && _retries); \
|
|
\
|
|
WARN_ON_ONCE(!_retries); \
|
|
_new; \
|
|
})
|
|
|
|
static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
|
|
{
|
|
return __hisi_161010101_read_reg(cntp_tval_el0);
|
|
}
|
|
|
|
static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
|
|
{
|
|
return __hisi_161010101_read_reg(cntv_tval_el0);
|
|
}
|
|
|
|
static u64 notrace hisi_161010101_read_cntpct_el0(void)
|
|
{
|
|
return __hisi_161010101_read_reg(cntpct_el0);
|
|
}
|
|
|
|
static u64 notrace hisi_161010101_read_cntvct_el0(void)
|
|
{
|
|
return __hisi_161010101_read_reg(cntvct_el0);
|
|
}
|
|
|
|
static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
|
|
/*
|
|
* Note that trailing spaces are required to properly match
|
|
* the OEM table information.
|
|
*/
|
|
{
|
|
.oem_id = "HISI ",
|
|
.oem_table_id = "HIP05 ",
|
|
.oem_revision = 0,
|
|
},
|
|
{
|
|
.oem_id = "HISI ",
|
|
.oem_table_id = "HIP06 ",
|
|
.oem_revision = 0,
|
|
},
|
|
{
|
|
.oem_id = "HISI ",
|
|
.oem_table_id = "HIP07 ",
|
|
.oem_revision = 0,
|
|
},
|
|
{ /* Sentinel indicating the end of the OEM array */ },
|
|
};
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARM64_ERRATUM_858921
|
|
static u64 notrace arm64_858921_read_cntpct_el0(void)
|
|
{
|
|
u64 old, new;
|
|
|
|
old = read_sysreg(cntpct_el0);
|
|
new = read_sysreg(cntpct_el0);
|
|
return (((old ^ new) >> 32) & 1) ? old : new;
|
|
}
|
|
|
|
static u64 notrace arm64_858921_read_cntvct_el0(void)
|
|
{
|
|
u64 old, new;
|
|
|
|
old = read_sysreg(cntvct_el0);
|
|
new = read_sysreg(cntvct_el0);
|
|
return (((old ^ new) >> 32) & 1) ? old : new;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
|
|
/*
|
|
* The low bits of the counter registers are indeterminate while bit 10 or
|
|
* greater is rolling over. Since the counter value can jump both backward
|
|
* (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
|
|
* with all ones or all zeros in the low bits. Bound the loop by the maximum
|
|
* number of CPU cycles in 3 consecutive 24 MHz counter periods.
|
|
*/
|
|
#define __sun50i_a64_read_reg(reg) ({ \
|
|
u64 _val; \
|
|
int _retries = 150; \
|
|
\
|
|
do { \
|
|
_val = read_sysreg(reg); \
|
|
_retries--; \
|
|
} while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \
|
|
\
|
|
WARN_ON_ONCE(!_retries); \
|
|
_val; \
|
|
})
|
|
|
|
static u64 notrace sun50i_a64_read_cntpct_el0(void)
|
|
{
|
|
return __sun50i_a64_read_reg(cntpct_el0);
|
|
}
|
|
|
|
static u64 notrace sun50i_a64_read_cntvct_el0(void)
|
|
{
|
|
return __sun50i_a64_read_reg(cntvct_el0);
|
|
}
|
|
|
|
static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
|
|
{
|
|
return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
|
|
}
|
|
|
|
static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
|
|
{
|
|
return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
|
|
DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
|
|
EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
|
|
|
|
static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
|
|
|
|
static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
|
|
struct clock_event_device *clk)
|
|
{
|
|
unsigned long ctrl;
|
|
u64 cval;
|
|
|
|
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
|
|
ctrl |= ARCH_TIMER_CTRL_ENABLE;
|
|
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
|
|
|
|
if (access == ARCH_TIMER_PHYS_ACCESS) {
|
|
cval = evt + arch_counter_get_cntpct();
|
|
write_sysreg(cval, cntp_cval_el0);
|
|
} else {
|
|
cval = evt + arch_counter_get_cntvct();
|
|
write_sysreg(cval, cntv_cval_el0);
|
|
}
|
|
|
|
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
|
|
}
|
|
|
|
static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
|
|
struct clock_event_device *clk)
|
|
{
|
|
erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
|
|
return 0;
|
|
}
|
|
|
|
static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
|
|
struct clock_event_device *clk)
|
|
{
|
|
erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
|
|
return 0;
|
|
}
|
|
|
|
static const struct arch_timer_erratum_workaround ool_workarounds[] = {
|
|
#ifdef CONFIG_FSL_ERRATUM_A008585
|
|
{
|
|
.match_type = ate_match_dt,
|
|
.id = "fsl,erratum-a008585",
|
|
.desc = "Freescale erratum a005858",
|
|
.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
|
|
.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
|
|
.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
|
|
.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
|
|
.set_next_event_phys = erratum_set_next_event_tval_phys,
|
|
.set_next_event_virt = erratum_set_next_event_tval_virt,
|
|
},
|
|
#endif
|
|
#ifdef CONFIG_HISILICON_ERRATUM_161010101
|
|
{
|
|
.match_type = ate_match_dt,
|
|
.id = "hisilicon,erratum-161010101",
|
|
.desc = "HiSilicon erratum 161010101",
|
|
.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
|
|
.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
|
|
.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
|
|
.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
|
|
.set_next_event_phys = erratum_set_next_event_tval_phys,
|
|
.set_next_event_virt = erratum_set_next_event_tval_virt,
|
|
},
|
|
{
|
|
.match_type = ate_match_acpi_oem_info,
|
|
.id = hisi_161010101_oem_info,
|
|
.desc = "HiSilicon erratum 161010101",
|
|
.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
|
|
.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
|
|
.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
|
|
.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
|
|
.set_next_event_phys = erratum_set_next_event_tval_phys,
|
|
.set_next_event_virt = erratum_set_next_event_tval_virt,
|
|
},
|
|
#endif
|
|
#ifdef CONFIG_ARM64_ERRATUM_858921
|
|
{
|
|
.match_type = ate_match_local_cap_id,
|
|
.id = (void *)ARM64_WORKAROUND_858921,
|
|
.desc = "ARM erratum 858921",
|
|
.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
|
|
.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
|
|
},
|
|
#endif
|
|
#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
|
|
{
|
|
.match_type = ate_match_dt,
|
|
.id = "allwinner,erratum-unknown1",
|
|
.desc = "Allwinner erratum UNKNOWN1",
|
|
.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
|
|
.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
|
|
.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
|
|
.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
|
|
.set_next_event_phys = erratum_set_next_event_tval_phys,
|
|
.set_next_event_virt = erratum_set_next_event_tval_virt,
|
|
},
|
|
#endif
|
|
};
|
|
|
|
typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
|
|
const void *);
|
|
|
|
static
|
|
bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
|
|
const void *arg)
|
|
{
|
|
const struct device_node *np = arg;
|
|
|
|
return of_property_read_bool(np, wa->id);
|
|
}
|
|
|
|
static
|
|
bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
|
|
const void *arg)
|
|
{
|
|
return this_cpu_has_cap((uintptr_t)wa->id);
|
|
}
|
|
|
|
|
|
static
|
|
bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
|
|
const void *arg)
|
|
{
|
|
static const struct ate_acpi_oem_info empty_oem_info = {};
|
|
const struct ate_acpi_oem_info *info = wa->id;
|
|
const struct acpi_table_header *table = arg;
|
|
|
|
/* Iterate over the ACPI OEM info array, looking for a match */
|
|
while (memcmp(info, &empty_oem_info, sizeof(*info))) {
|
|
if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
|
|
!memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
|
|
info->oem_revision == table->oem_revision)
|
|
return true;
|
|
|
|
info++;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static const struct arch_timer_erratum_workaround *
|
|
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
|
|
ate_match_fn_t match_fn,
|
|
void *arg)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
|
|
if (ool_workarounds[i].match_type != type)
|
|
continue;
|
|
|
|
if (match_fn(&ool_workarounds[i], arg))
|
|
return &ool_workarounds[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static
|
|
void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
|
|
bool local)
|
|
{
|
|
int i;
|
|
|
|
if (local) {
|
|
__this_cpu_write(timer_unstable_counter_workaround, wa);
|
|
} else {
|
|
for_each_possible_cpu(i)
|
|
per_cpu(timer_unstable_counter_workaround, i) = wa;
|
|
}
|
|
|
|
if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
|
|
atomic_set(&timer_unstable_counter_workaround_in_use, 1);
|
|
|
|
/*
|
|
* Don't use the vdso fastpath if errata require using the
|
|
* out-of-line counter accessor. We may change our mind pretty
|
|
* late in the game (with a per-CPU erratum, for example), so
|
|
* change both the default value and the vdso itself.
|
|
*/
|
|
if (wa->read_cntvct_el0) {
|
|
clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
|
|
vdso_default = VDSO_CLOCKMODE_NONE;
|
|
}
|
|
}
|
|
|
|
static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
|
|
void *arg)
|
|
{
|
|
const struct arch_timer_erratum_workaround *wa, *__wa;
|
|
ate_match_fn_t match_fn = NULL;
|
|
bool local = false;
|
|
|
|
switch (type) {
|
|
case ate_match_dt:
|
|
match_fn = arch_timer_check_dt_erratum;
|
|
break;
|
|
case ate_match_local_cap_id:
|
|
match_fn = arch_timer_check_local_cap_erratum;
|
|
local = true;
|
|
break;
|
|
case ate_match_acpi_oem_info:
|
|
match_fn = arch_timer_check_acpi_oem_erratum;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
wa = arch_timer_iterate_errata(type, match_fn, arg);
|
|
if (!wa)
|
|
return;
|
|
|
|
__wa = __this_cpu_read(timer_unstable_counter_workaround);
|
|
if (__wa && wa != __wa)
|
|
pr_warn("Can't enable workaround for %s (clashes with %s\n)",
|
|
wa->desc, __wa->desc);
|
|
|
|
if (__wa)
|
|
return;
|
|
|
|
arch_timer_enable_workaround(wa, local);
|
|
pr_info("Enabling %s workaround for %s\n",
|
|
local ? "local" : "global", wa->desc);
|
|
}
|
|
|
|
static bool arch_timer_this_cpu_has_cntvct_wa(void)
|
|
{
|
|
return has_erratum_handler(read_cntvct_el0);
|
|
}
|
|
|
|
static bool arch_timer_counter_has_wa(void)
|
|
{
|
|
return atomic_read(&timer_unstable_counter_workaround_in_use);
|
|
}
|
|
#else
|
|
#define arch_timer_check_ool_workaround(t,a) do { } while(0)
|
|
#define arch_timer_this_cpu_has_cntvct_wa() ({false;})
|
|
#define arch_timer_counter_has_wa() ({false;})
|
|
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
|
|
|
|
static __always_inline irqreturn_t timer_handler(const int access,
|
|
struct clock_event_device *evt)
|
|
{
|
|
unsigned long ctrl;
|
|
|
|
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
|
|
if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
|
|
ctrl |= ARCH_TIMER_CTRL_IT_MASK;
|
|
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
|
|
evt->event_handler(evt);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
|
|
{
|
|
struct clock_event_device *evt = dev_id;
|
|
|
|
return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
|
|
}
|
|
|
|
static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
|
|
{
|
|
struct clock_event_device *evt = dev_id;
|
|
|
|
return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
|
|
}
|
|
|
|
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
|
|
{
|
|
struct clock_event_device *evt = dev_id;
|
|
|
|
return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
|
|
}
|
|
|
|
static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
|
|
{
|
|
struct clock_event_device *evt = dev_id;
|
|
|
|
return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
|
|
}
|
|
|
|
static __always_inline int timer_shutdown(const int access,
|
|
struct clock_event_device *clk)
|
|
{
|
|
unsigned long ctrl;
|
|
|
|
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
|
|
ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
|
|
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
|
|
{
|
|
return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
|
|
}
|
|
|
|
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
|
|
{
|
|
return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
|
|
}
|
|
|
|
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
|
|
{
|
|
return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
|
|
}
|
|
|
|
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
|
|
{
|
|
return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
|
|
}
|
|
|
|
static __always_inline void set_next_event(const int access, unsigned long evt,
|
|
struct clock_event_device *clk)
|
|
{
|
|
unsigned long ctrl;
|
|
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
|
|
ctrl |= ARCH_TIMER_CTRL_ENABLE;
|
|
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
|
|
arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
|
|
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
|
|
}
|
|
|
|
static int arch_timer_set_next_event_virt(unsigned long evt,
|
|
struct clock_event_device *clk)
|
|
{
|
|
set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
|
|
return 0;
|
|
}
|
|
|
|
static int arch_timer_set_next_event_phys(unsigned long evt,
|
|
struct clock_event_device *clk)
|
|
{
|
|
set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
|
|
return 0;
|
|
}
|
|
|
|
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
|
|
struct clock_event_device *clk)
|
|
{
|
|
set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
|
|
return 0;
|
|
}
|
|
|
|
static int arch_timer_set_next_event_phys_mem(unsigned long evt,
|
|
struct clock_event_device *clk)
|
|
{
|
|
set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
|
|
return 0;
|
|
}
|
|
|
|
static void __arch_timer_setup(unsigned type,
|
|
struct clock_event_device *clk)
|
|
{
|
|
clk->features = CLOCK_EVT_FEAT_ONESHOT;
|
|
|
|
if (type == ARCH_TIMER_TYPE_CP15) {
|
|
typeof(clk->set_next_event) sne;
|
|
|
|
arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
|
|
|
|
if (arch_timer_c3stop)
|
|
clk->features |= CLOCK_EVT_FEAT_C3STOP;
|
|
clk->name = "arch_sys_timer";
|
|
clk->rating = 450;
|
|
clk->cpumask = cpumask_of(smp_processor_id());
|
|
clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
|
|
switch (arch_timer_uses_ppi) {
|
|
case ARCH_TIMER_VIRT_PPI:
|
|
clk->set_state_shutdown = arch_timer_shutdown_virt;
|
|
clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
|
|
sne = erratum_handler(set_next_event_virt);
|
|
break;
|
|
case ARCH_TIMER_PHYS_SECURE_PPI:
|
|
case ARCH_TIMER_PHYS_NONSECURE_PPI:
|
|
case ARCH_TIMER_HYP_PPI:
|
|
clk->set_state_shutdown = arch_timer_shutdown_phys;
|
|
clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
|
|
sne = erratum_handler(set_next_event_phys);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
clk->set_next_event = sne;
|
|
} else {
|
|
clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
|
|
clk->name = "arch_mem_timer";
|
|
clk->rating = 400;
|
|
clk->cpumask = cpu_possible_mask;
|
|
if (arch_timer_mem_use_virtual) {
|
|
clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
|
|
clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
|
|
clk->set_next_event =
|
|
arch_timer_set_next_event_virt_mem;
|
|
} else {
|
|
clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
|
|
clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
|
|
clk->set_next_event =
|
|
arch_timer_set_next_event_phys_mem;
|
|
}
|
|
}
|
|
|
|
clk->set_state_shutdown(clk);
|
|
|
|
clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
|
|
}
|
|
|
|
static void arch_timer_evtstrm_enable(int divider)
|
|
{
|
|
u32 cntkctl = arch_timer_get_cntkctl();
|
|
|
|
cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
|
|
/* Set the divider and enable virtual event stream */
|
|
cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
|
|
| ARCH_TIMER_VIRT_EVT_EN;
|
|
arch_timer_set_cntkctl(cntkctl);
|
|
arch_timer_set_evtstrm_feature();
|
|
cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
|
|
}
|
|
|
|
static void arch_timer_configure_evtstream(void)
|
|
{
|
|
int evt_stream_div, pos;
|
|
|
|
/* Find the closest power of two to the divisor */
|
|
evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
|
|
pos = fls(evt_stream_div);
|
|
if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
|
|
pos--;
|
|
/* enable event stream */
|
|
arch_timer_evtstrm_enable(min(pos, 15));
|
|
}
|
|
|
|
static void arch_counter_set_user_access(void)
|
|
{
|
|
u32 cntkctl = arch_timer_get_cntkctl();
|
|
|
|
/* Disable user access to the timers and both counters */
|
|
/* Also disable virtual event stream */
|
|
cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
|
|
| ARCH_TIMER_USR_VT_ACCESS_EN
|
|
| ARCH_TIMER_USR_VCT_ACCESS_EN
|
|
| ARCH_TIMER_VIRT_EVT_EN
|
|
| ARCH_TIMER_USR_PCT_ACCESS_EN);
|
|
|
|
/*
|
|
* Enable user access to the virtual counter if it doesn't
|
|
* need to be workaround. The vdso may have been already
|
|
* disabled though.
|
|
*/
|
|
if (arch_timer_this_cpu_has_cntvct_wa())
|
|
pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
|
|
else
|
|
cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
|
|
|
|
arch_timer_set_cntkctl(cntkctl);
|
|
}
|
|
|
|
static bool arch_timer_has_nonsecure_ppi(void)
|
|
{
|
|
return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
|
|
arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
|
|
}
|
|
|
|
static u32 check_ppi_trigger(int irq)
|
|
{
|
|
u32 flags = irq_get_trigger_type(irq);
|
|
|
|
if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
|
|
pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
|
|
pr_warn("WARNING: Please fix your firmware\n");
|
|
flags = IRQF_TRIGGER_LOW;
|
|
}
|
|
|
|
return flags;
|
|
}
|
|
|
|
static int arch_timer_starting_cpu(unsigned int cpu)
|
|
{
|
|
struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
|
|
u32 flags;
|
|
|
|
__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
|
|
|
|
flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
|
|
enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
|
|
|
|
if (arch_timer_has_nonsecure_ppi()) {
|
|
flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
|
|
enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
|
|
flags);
|
|
}
|
|
|
|
arch_counter_set_user_access();
|
|
if (evtstrm_enable)
|
|
arch_timer_configure_evtstream();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int validate_timer_rate(void)
|
|
{
|
|
if (!arch_timer_rate)
|
|
return -EINVAL;
|
|
|
|
/* Arch timer frequency < 1MHz can cause trouble */
|
|
WARN_ON(arch_timer_rate < 1000000);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For historical reasons, when probing with DT we use whichever (non-zero)
|
|
* rate was probed first, and don't verify that others match. If the first node
|
|
* probed has a clock-frequency property, this overrides the HW register.
|
|
*/
|
|
static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
|
|
{
|
|
/* Who has more than one independent system counter? */
|
|
if (arch_timer_rate)
|
|
return;
|
|
|
|
if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
|
|
arch_timer_rate = rate;
|
|
|
|
/* Check the timer frequency. */
|
|
if (validate_timer_rate())
|
|
pr_warn("frequency not available\n");
|
|
}
|
|
|
|
static void arch_timer_banner(unsigned type)
|
|
{
|
|
pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
|
|
type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
|
|
type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
|
|
" and " : "",
|
|
type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
|
|
(unsigned long)arch_timer_rate / 1000000,
|
|
(unsigned long)(arch_timer_rate / 10000) % 100,
|
|
type & ARCH_TIMER_TYPE_CP15 ?
|
|
(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
|
|
"",
|
|
type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
|
|
type & ARCH_TIMER_TYPE_MEM ?
|
|
arch_timer_mem_use_virtual ? "virt" : "phys" :
|
|
"");
|
|
}
|
|
|
|
u32 arch_timer_get_rate(void)
|
|
{
|
|
return arch_timer_rate;
|
|
}
|
|
|
|
bool arch_timer_evtstrm_available(void)
|
|
{
|
|
/*
|
|
* We might get called from a preemptible context. This is fine
|
|
* because availability of the event stream should be always the same
|
|
* for a preemptible context and context where we might resume a task.
|
|
*/
|
|
return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
|
|
}
|
|
|
|
static u64 arch_counter_get_cntvct_mem(void)
|
|
{
|
|
u32 vct_lo, vct_hi, tmp_hi;
|
|
|
|
do {
|
|
vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
|
|
vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
|
|
tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
|
|
} while (vct_hi != tmp_hi);
|
|
|
|
return ((u64) vct_hi << 32) | vct_lo;
|
|
}
|
|
|
|
static struct arch_timer_kvm_info arch_timer_kvm_info;
|
|
|
|
struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
|
|
{
|
|
return &arch_timer_kvm_info;
|
|
}
|
|
|
|
static void __init arch_counter_register(unsigned type)
|
|
{
|
|
u64 start_count;
|
|
|
|
/* Register the CP15 based counter if we have one */
|
|
if (type & ARCH_TIMER_TYPE_CP15) {
|
|
u64 (*rd)(void);
|
|
|
|
if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
|
|
arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
|
|
if (arch_timer_counter_has_wa())
|
|
rd = arch_counter_get_cntvct_stable;
|
|
else
|
|
rd = arch_counter_get_cntvct;
|
|
} else {
|
|
if (arch_timer_counter_has_wa())
|
|
rd = arch_counter_get_cntpct_stable;
|
|
else
|
|
rd = arch_counter_get_cntpct;
|
|
}
|
|
|
|
arch_timer_read_counter = rd;
|
|
clocksource_counter.vdso_clock_mode = vdso_default;
|
|
} else {
|
|
arch_timer_read_counter = arch_counter_get_cntvct_mem;
|
|
}
|
|
|
|
if (!arch_counter_suspend_stop)
|
|
clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
|
|
start_count = arch_timer_read_counter();
|
|
clocksource_register_hz(&clocksource_counter, arch_timer_rate);
|
|
cyclecounter.mult = clocksource_counter.mult;
|
|
cyclecounter.shift = clocksource_counter.shift;
|
|
timecounter_init(&arch_timer_kvm_info.timecounter,
|
|
&cyclecounter, start_count);
|
|
|
|
/* 56 bits minimum, so we assume worst case rollover */
|
|
sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
|
|
}
|
|
|
|
static void arch_timer_stop(struct clock_event_device *clk)
|
|
{
|
|
pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
|
|
|
|
disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
|
|
if (arch_timer_has_nonsecure_ppi())
|
|
disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
|
|
|
|
clk->set_state_shutdown(clk);
|
|
}
|
|
|
|
static int arch_timer_dying_cpu(unsigned int cpu)
|
|
{
|
|
struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
|
|
|
|
cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
|
|
|
|
arch_timer_stop(clk);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_PM
|
|
static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
|
|
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
if (action == CPU_PM_ENTER) {
|
|
__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
|
|
|
|
cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
|
|
} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
|
|
arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
|
|
|
|
if (arch_timer_have_evtstrm_feature())
|
|
cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block arch_timer_cpu_pm_notifier = {
|
|
.notifier_call = arch_timer_cpu_pm_notify,
|
|
};
|
|
|
|
static int __init arch_timer_cpu_pm_init(void)
|
|
{
|
|
return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
|
|
}
|
|
|
|
static void __init arch_timer_cpu_pm_deinit(void)
|
|
{
|
|
WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
|
|
}
|
|
|
|
#else
|
|
static int __init arch_timer_cpu_pm_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void __init arch_timer_cpu_pm_deinit(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static int __init arch_timer_register(void)
|
|
{
|
|
int err;
|
|
int ppi;
|
|
|
|
arch_timer_evt = alloc_percpu(struct clock_event_device);
|
|
if (!arch_timer_evt) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ppi = arch_timer_ppi[arch_timer_uses_ppi];
|
|
switch (arch_timer_uses_ppi) {
|
|
case ARCH_TIMER_VIRT_PPI:
|
|
err = request_percpu_irq(ppi, arch_timer_handler_virt,
|
|
"arch_timer", arch_timer_evt);
|
|
break;
|
|
case ARCH_TIMER_PHYS_SECURE_PPI:
|
|
case ARCH_TIMER_PHYS_NONSECURE_PPI:
|
|
err = request_percpu_irq(ppi, arch_timer_handler_phys,
|
|
"arch_timer", arch_timer_evt);
|
|
if (!err && arch_timer_has_nonsecure_ppi()) {
|
|
ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
|
|
err = request_percpu_irq(ppi, arch_timer_handler_phys,
|
|
"arch_timer", arch_timer_evt);
|
|
if (err)
|
|
free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
|
|
arch_timer_evt);
|
|
}
|
|
break;
|
|
case ARCH_TIMER_HYP_PPI:
|
|
err = request_percpu_irq(ppi, arch_timer_handler_phys,
|
|
"arch_timer", arch_timer_evt);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (err) {
|
|
pr_err("can't register interrupt %d (%d)\n", ppi, err);
|
|
goto out_free;
|
|
}
|
|
|
|
err = arch_timer_cpu_pm_init();
|
|
if (err)
|
|
goto out_unreg_notify;
|
|
|
|
/* Register and immediately configure the timer on the boot CPU */
|
|
err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
|
|
"clockevents/arm/arch_timer:starting",
|
|
arch_timer_starting_cpu, arch_timer_dying_cpu);
|
|
if (err)
|
|
goto out_unreg_cpupm;
|
|
return 0;
|
|
|
|
out_unreg_cpupm:
|
|
arch_timer_cpu_pm_deinit();
|
|
|
|
out_unreg_notify:
|
|
free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
|
|
if (arch_timer_has_nonsecure_ppi())
|
|
free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
|
|
arch_timer_evt);
|
|
|
|
out_free:
|
|
free_percpu(arch_timer_evt);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
|
|
{
|
|
int ret;
|
|
irq_handler_t func;
|
|
struct arch_timer *t;
|
|
|
|
t = kzalloc(sizeof(*t), GFP_KERNEL);
|
|
if (!t)
|
|
return -ENOMEM;
|
|
|
|
t->base = base;
|
|
t->evt.irq = irq;
|
|
__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
|
|
|
|
if (arch_timer_mem_use_virtual)
|
|
func = arch_timer_handler_virt_mem;
|
|
else
|
|
func = arch_timer_handler_phys_mem;
|
|
|
|
ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
|
|
if (ret) {
|
|
pr_err("Failed to request mem timer irq\n");
|
|
kfree(t);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct of_device_id arch_timer_of_match[] __initconst = {
|
|
{ .compatible = "arm,armv7-timer", },
|
|
{ .compatible = "arm,armv8-timer", },
|
|
{},
|
|
};
|
|
|
|
static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
|
|
{ .compatible = "arm,armv7-timer-mem", },
|
|
{},
|
|
};
|
|
|
|
static bool __init arch_timer_needs_of_probing(void)
|
|
{
|
|
struct device_node *dn;
|
|
bool needs_probing = false;
|
|
unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
|
|
|
|
/* We have two timers, and both device-tree nodes are probed. */
|
|
if ((arch_timers_present & mask) == mask)
|
|
return false;
|
|
|
|
/*
|
|
* Only one type of timer is probed,
|
|
* check if we have another type of timer node in device-tree.
|
|
*/
|
|
if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
|
|
dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
|
|
else
|
|
dn = of_find_matching_node(NULL, arch_timer_of_match);
|
|
|
|
if (dn && of_device_is_available(dn))
|
|
needs_probing = true;
|
|
|
|
of_node_put(dn);
|
|
|
|
return needs_probing;
|
|
}
|
|
|
|
static int __init arch_timer_common_init(void)
|
|
{
|
|
arch_timer_banner(arch_timers_present);
|
|
arch_counter_register(arch_timers_present);
|
|
return arch_timer_arch_init();
|
|
}
|
|
|
|
/**
|
|
* arch_timer_select_ppi() - Select suitable PPI for the current system.
|
|
*
|
|
* If HYP mode is available, we know that the physical timer
|
|
* has been configured to be accessible from PL1. Use it, so
|
|
* that a guest can use the virtual timer instead.
|
|
*
|
|
* On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
|
|
* accesses to CNTP_*_EL1 registers are silently redirected to
|
|
* their CNTHP_*_EL2 counterparts, and use a different PPI
|
|
* number.
|
|
*
|
|
* If no interrupt provided for virtual timer, we'll have to
|
|
* stick to the physical timer. It'd better be accessible...
|
|
* For arm64 we never use the secure interrupt.
|
|
*
|
|
* Return: a suitable PPI type for the current system.
|
|
*/
|
|
static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
|
|
{
|
|
if (is_kernel_in_hyp_mode())
|
|
return ARCH_TIMER_HYP_PPI;
|
|
|
|
if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
|
|
return ARCH_TIMER_VIRT_PPI;
|
|
|
|
if (IS_ENABLED(CONFIG_ARM64))
|
|
return ARCH_TIMER_PHYS_NONSECURE_PPI;
|
|
|
|
return ARCH_TIMER_PHYS_SECURE_PPI;
|
|
}
|
|
|
|
static void __init arch_timer_populate_kvm_info(void)
|
|
{
|
|
arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
|
|
if (is_kernel_in_hyp_mode())
|
|
arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
|
|
}
|
|
|
|
static int __init arch_timer_of_init(struct device_node *np)
|
|
{
|
|
int i, ret;
|
|
u32 rate;
|
|
|
|
if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
|
|
pr_warn("multiple nodes in dt, skipping\n");
|
|
return 0;
|
|
}
|
|
|
|
arch_timers_present |= ARCH_TIMER_TYPE_CP15;
|
|
for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
|
|
arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
|
|
|
|
arch_timer_populate_kvm_info();
|
|
|
|
rate = arch_timer_get_cntfrq();
|
|
arch_timer_of_configure_rate(rate, np);
|
|
|
|
arch_timer_c3stop = !of_property_read_bool(np, "always-on");
|
|
|
|
/* Check for globally applicable workarounds */
|
|
arch_timer_check_ool_workaround(ate_match_dt, np);
|
|
|
|
/*
|
|
* If we cannot rely on firmware initializing the timer registers then
|
|
* we should use the physical timers instead.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_ARM) &&
|
|
of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
|
|
arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
|
|
else
|
|
arch_timer_uses_ppi = arch_timer_select_ppi();
|
|
|
|
if (!arch_timer_ppi[arch_timer_uses_ppi]) {
|
|
pr_err("No interrupt available, giving up\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* On some systems, the counter stops ticking when in suspend. */
|
|
arch_counter_suspend_stop = of_property_read_bool(np,
|
|
"arm,no-tick-in-suspend");
|
|
|
|
ret = arch_timer_register();
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (arch_timer_needs_of_probing())
|
|
return 0;
|
|
|
|
return arch_timer_common_init();
|
|
}
|
|
TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
|
|
TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
|
|
|
|
static u32 __init
|
|
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
|
|
{
|
|
void __iomem *base;
|
|
u32 rate;
|
|
|
|
base = ioremap(frame->cntbase, frame->size);
|
|
if (!base) {
|
|
pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
|
|
return 0;
|
|
}
|
|
|
|
rate = readl_relaxed(base + CNTFRQ);
|
|
|
|
iounmap(base);
|
|
|
|
return rate;
|
|
}
|
|
|
|
static struct arch_timer_mem_frame * __init
|
|
arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
|
|
{
|
|
struct arch_timer_mem_frame *frame, *best_frame = NULL;
|
|
void __iomem *cntctlbase;
|
|
u32 cnttidr;
|
|
int i;
|
|
|
|
cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
|
|
if (!cntctlbase) {
|
|
pr_err("Can't map CNTCTLBase @ %pa\n",
|
|
&timer_mem->cntctlbase);
|
|
return NULL;
|
|
}
|
|
|
|
cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
|
|
|
|
/*
|
|
* Try to find a virtual capable frame. Otherwise fall back to a
|
|
* physical capable frame.
|
|
*/
|
|
for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
|
|
u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
|
|
CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
|
|
|
|
frame = &timer_mem->frame[i];
|
|
if (!frame->valid)
|
|
continue;
|
|
|
|
/* Try enabling everything, and see what sticks */
|
|
writel_relaxed(cntacr, cntctlbase + CNTACR(i));
|
|
cntacr = readl_relaxed(cntctlbase + CNTACR(i));
|
|
|
|
if ((cnttidr & CNTTIDR_VIRT(i)) &&
|
|
!(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
|
|
best_frame = frame;
|
|
arch_timer_mem_use_virtual = true;
|
|
break;
|
|
}
|
|
|
|
if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
|
|
continue;
|
|
|
|
best_frame = frame;
|
|
}
|
|
|
|
iounmap(cntctlbase);
|
|
|
|
return best_frame;
|
|
}
|
|
|
|
static int __init
|
|
arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
|
|
{
|
|
void __iomem *base;
|
|
int ret, irq = 0;
|
|
|
|
if (arch_timer_mem_use_virtual)
|
|
irq = frame->virt_irq;
|
|
else
|
|
irq = frame->phys_irq;
|
|
|
|
if (!irq) {
|
|
pr_err("Frame missing %s irq.\n",
|
|
arch_timer_mem_use_virtual ? "virt" : "phys");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!request_mem_region(frame->cntbase, frame->size,
|
|
"arch_mem_timer"))
|
|
return -EBUSY;
|
|
|
|
base = ioremap(frame->cntbase, frame->size);
|
|
if (!base) {
|
|
pr_err("Can't map frame's registers\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
ret = arch_timer_mem_register(base, irq);
|
|
if (ret) {
|
|
iounmap(base);
|
|
return ret;
|
|
}
|
|
|
|
arch_counter_base = base;
|
|
arch_timers_present |= ARCH_TIMER_TYPE_MEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init arch_timer_mem_of_init(struct device_node *np)
|
|
{
|
|
struct arch_timer_mem *timer_mem;
|
|
struct arch_timer_mem_frame *frame;
|
|
struct device_node *frame_node;
|
|
struct resource res;
|
|
int ret = -EINVAL;
|
|
u32 rate;
|
|
|
|
timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
|
|
if (!timer_mem)
|
|
return -ENOMEM;
|
|
|
|
if (of_address_to_resource(np, 0, &res))
|
|
goto out;
|
|
timer_mem->cntctlbase = res.start;
|
|
timer_mem->size = resource_size(&res);
|
|
|
|
for_each_available_child_of_node(np, frame_node) {
|
|
u32 n;
|
|
struct arch_timer_mem_frame *frame;
|
|
|
|
if (of_property_read_u32(frame_node, "frame-number", &n)) {
|
|
pr_err(FW_BUG "Missing frame-number.\n");
|
|
of_node_put(frame_node);
|
|
goto out;
|
|
}
|
|
if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
|
|
pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
|
|
ARCH_TIMER_MEM_MAX_FRAMES - 1);
|
|
of_node_put(frame_node);
|
|
goto out;
|
|
}
|
|
frame = &timer_mem->frame[n];
|
|
|
|
if (frame->valid) {
|
|
pr_err(FW_BUG "Duplicated frame-number.\n");
|
|
of_node_put(frame_node);
|
|
goto out;
|
|
}
|
|
|
|
if (of_address_to_resource(frame_node, 0, &res)) {
|
|
of_node_put(frame_node);
|
|
goto out;
|
|
}
|
|
frame->cntbase = res.start;
|
|
frame->size = resource_size(&res);
|
|
|
|
frame->virt_irq = irq_of_parse_and_map(frame_node,
|
|
ARCH_TIMER_VIRT_SPI);
|
|
frame->phys_irq = irq_of_parse_and_map(frame_node,
|
|
ARCH_TIMER_PHYS_SPI);
|
|
|
|
frame->valid = true;
|
|
}
|
|
|
|
frame = arch_timer_mem_find_best_frame(timer_mem);
|
|
if (!frame) {
|
|
pr_err("Unable to find a suitable frame in timer @ %pa\n",
|
|
&timer_mem->cntctlbase);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
rate = arch_timer_mem_frame_get_cntfrq(frame);
|
|
arch_timer_of_configure_rate(rate, np);
|
|
|
|
ret = arch_timer_mem_frame_register(frame);
|
|
if (!ret && !arch_timer_needs_of_probing())
|
|
ret = arch_timer_common_init();
|
|
out:
|
|
kfree(timer_mem);
|
|
return ret;
|
|
}
|
|
TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
|
|
arch_timer_mem_of_init);
|
|
|
|
#ifdef CONFIG_ACPI_GTDT
|
|
static int __init
|
|
arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
|
|
{
|
|
struct arch_timer_mem_frame *frame;
|
|
u32 rate;
|
|
int i;
|
|
|
|
for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
|
|
frame = &timer_mem->frame[i];
|
|
|
|
if (!frame->valid)
|
|
continue;
|
|
|
|
rate = arch_timer_mem_frame_get_cntfrq(frame);
|
|
if (rate == arch_timer_rate)
|
|
continue;
|
|
|
|
pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
|
|
&frame->cntbase,
|
|
(unsigned long)rate, (unsigned long)arch_timer_rate);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init arch_timer_mem_acpi_init(int platform_timer_count)
|
|
{
|
|
struct arch_timer_mem *timers, *timer;
|
|
struct arch_timer_mem_frame *frame, *best_frame = NULL;
|
|
int timer_count, i, ret = 0;
|
|
|
|
timers = kcalloc(platform_timer_count, sizeof(*timers),
|
|
GFP_KERNEL);
|
|
if (!timers)
|
|
return -ENOMEM;
|
|
|
|
ret = acpi_arch_timer_mem_init(timers, &timer_count);
|
|
if (ret || !timer_count)
|
|
goto out;
|
|
|
|
/*
|
|
* While unlikely, it's theoretically possible that none of the frames
|
|
* in a timer expose the combination of feature we want.
|
|
*/
|
|
for (i = 0; i < timer_count; i++) {
|
|
timer = &timers[i];
|
|
|
|
frame = arch_timer_mem_find_best_frame(timer);
|
|
if (!best_frame)
|
|
best_frame = frame;
|
|
|
|
ret = arch_timer_mem_verify_cntfrq(timer);
|
|
if (ret) {
|
|
pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
|
|
goto out;
|
|
}
|
|
|
|
if (!best_frame) /* implies !frame */
|
|
/*
|
|
* Only complain about missing suitable frames if we
|
|
* haven't already found one in a previous iteration.
|
|
*/
|
|
pr_err("Unable to find a suitable frame in timer @ %pa\n",
|
|
&timer->cntctlbase);
|
|
}
|
|
|
|
if (best_frame)
|
|
ret = arch_timer_mem_frame_register(best_frame);
|
|
out:
|
|
kfree(timers);
|
|
return ret;
|
|
}
|
|
|
|
/* Initialize per-processor generic timer and memory-mapped timer(if present) */
|
|
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
|
|
{
|
|
int ret, platform_timer_count;
|
|
|
|
if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
|
|
pr_warn("already initialized, skipping\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
arch_timers_present |= ARCH_TIMER_TYPE_CP15;
|
|
|
|
ret = acpi_gtdt_init(table, &platform_timer_count);
|
|
if (ret) {
|
|
pr_err("Failed to init GTDT table.\n");
|
|
return ret;
|
|
}
|
|
|
|
arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
|
|
acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
|
|
|
|
arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
|
|
acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
|
|
|
|
arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
|
|
acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
|
|
|
|
arch_timer_populate_kvm_info();
|
|
|
|
/*
|
|
* When probing via ACPI, we have no mechanism to override the sysreg
|
|
* CNTFRQ value. This *must* be correct.
|
|
*/
|
|
arch_timer_rate = arch_timer_get_cntfrq();
|
|
ret = validate_timer_rate();
|
|
if (ret) {
|
|
pr_err(FW_BUG "frequency not available.\n");
|
|
return ret;
|
|
}
|
|
|
|
arch_timer_uses_ppi = arch_timer_select_ppi();
|
|
if (!arch_timer_ppi[arch_timer_uses_ppi]) {
|
|
pr_err("No interrupt available, giving up\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Always-on capability */
|
|
arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
|
|
|
|
/* Check for globally applicable workarounds */
|
|
arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
|
|
|
|
ret = arch_timer_register();
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (platform_timer_count &&
|
|
arch_timer_mem_acpi_init(platform_timer_count))
|
|
pr_err("Failed to initialize memory-mapped timer.\n");
|
|
|
|
return arch_timer_common_init();
|
|
}
|
|
TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
|
|
#endif
|