mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 22:21:40 +00:00
8c86fb68ff
As indicated in the added comment, the algorithm works better if b is big. As multiplication is commutative, a and b can be swapped. Do this if a is bigger than b. Link: https://lkml.kernel.org/r/20240303092408.662449-2-u.kleine-koenig@pengutronix.de Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Tested-by: Biju Das <biju.das.jz@bp.renesas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
241 lines
5.4 KiB
C
241 lines
5.4 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
|
|
*
|
|
* Based on former do_div() implementation from asm-parisc/div64.h:
|
|
* Copyright (C) 1999 Hewlett-Packard Co
|
|
* Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*
|
|
*
|
|
* Generic C version of 64bit/32bit division and modulo, with
|
|
* 64bit result and 32bit remainder.
|
|
*
|
|
* The fast case for (n>>32 == 0) is handled inline by do_div().
|
|
*
|
|
* Code generated for this function might be very inefficient
|
|
* for some CPUs. __div64_32() can be overridden by linking arch-specific
|
|
* assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
|
|
* or by defining a preprocessor macro in arch/include/asm/div64.h.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/export.h>
|
|
#include <linux/math.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/minmax.h>
|
|
#include <linux/log2.h>
|
|
|
|
/* Not needed on 64bit architectures */
|
|
#if BITS_PER_LONG == 32
|
|
|
|
#ifndef __div64_32
|
|
uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
|
|
{
|
|
uint64_t rem = *n;
|
|
uint64_t b = base;
|
|
uint64_t res, d = 1;
|
|
uint32_t high = rem >> 32;
|
|
|
|
/* Reduce the thing a bit first */
|
|
res = 0;
|
|
if (high >= base) {
|
|
high /= base;
|
|
res = (uint64_t) high << 32;
|
|
rem -= (uint64_t) (high*base) << 32;
|
|
}
|
|
|
|
while ((int64_t)b > 0 && b < rem) {
|
|
b = b+b;
|
|
d = d+d;
|
|
}
|
|
|
|
do {
|
|
if (rem >= b) {
|
|
rem -= b;
|
|
res += d;
|
|
}
|
|
b >>= 1;
|
|
d >>= 1;
|
|
} while (d);
|
|
|
|
*n = res;
|
|
return rem;
|
|
}
|
|
EXPORT_SYMBOL(__div64_32);
|
|
#endif
|
|
|
|
#ifndef div_s64_rem
|
|
s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
|
|
{
|
|
u64 quotient;
|
|
|
|
if (dividend < 0) {
|
|
quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
|
|
*remainder = -*remainder;
|
|
if (divisor > 0)
|
|
quotient = -quotient;
|
|
} else {
|
|
quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
|
|
if (divisor < 0)
|
|
quotient = -quotient;
|
|
}
|
|
return quotient;
|
|
}
|
|
EXPORT_SYMBOL(div_s64_rem);
|
|
#endif
|
|
|
|
/*
|
|
* div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
|
|
* @dividend: 64bit dividend
|
|
* @divisor: 64bit divisor
|
|
* @remainder: 64bit remainder
|
|
*
|
|
* This implementation is a comparable to algorithm used by div64_u64.
|
|
* But this operation, which includes math for calculating the remainder,
|
|
* is kept distinct to avoid slowing down the div64_u64 operation on 32bit
|
|
* systems.
|
|
*/
|
|
#ifndef div64_u64_rem
|
|
u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
|
|
{
|
|
u32 high = divisor >> 32;
|
|
u64 quot;
|
|
|
|
if (high == 0) {
|
|
u32 rem32;
|
|
quot = div_u64_rem(dividend, divisor, &rem32);
|
|
*remainder = rem32;
|
|
} else {
|
|
int n = fls(high);
|
|
quot = div_u64(dividend >> n, divisor >> n);
|
|
|
|
if (quot != 0)
|
|
quot--;
|
|
|
|
*remainder = dividend - quot * divisor;
|
|
if (*remainder >= divisor) {
|
|
quot++;
|
|
*remainder -= divisor;
|
|
}
|
|
}
|
|
|
|
return quot;
|
|
}
|
|
EXPORT_SYMBOL(div64_u64_rem);
|
|
#endif
|
|
|
|
/*
|
|
* div64_u64 - unsigned 64bit divide with 64bit divisor
|
|
* @dividend: 64bit dividend
|
|
* @divisor: 64bit divisor
|
|
*
|
|
* This implementation is a modified version of the algorithm proposed
|
|
* by the book 'Hacker's Delight'. The original source and full proof
|
|
* can be found here and is available for use without restriction.
|
|
*
|
|
* 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
|
|
*/
|
|
#ifndef div64_u64
|
|
u64 div64_u64(u64 dividend, u64 divisor)
|
|
{
|
|
u32 high = divisor >> 32;
|
|
u64 quot;
|
|
|
|
if (high == 0) {
|
|
quot = div_u64(dividend, divisor);
|
|
} else {
|
|
int n = fls(high);
|
|
quot = div_u64(dividend >> n, divisor >> n);
|
|
|
|
if (quot != 0)
|
|
quot--;
|
|
if ((dividend - quot * divisor) >= divisor)
|
|
quot++;
|
|
}
|
|
|
|
return quot;
|
|
}
|
|
EXPORT_SYMBOL(div64_u64);
|
|
#endif
|
|
|
|
#ifndef div64_s64
|
|
s64 div64_s64(s64 dividend, s64 divisor)
|
|
{
|
|
s64 quot, t;
|
|
|
|
quot = div64_u64(abs(dividend), abs(divisor));
|
|
t = (dividend ^ divisor) >> 63;
|
|
|
|
return (quot ^ t) - t;
|
|
}
|
|
EXPORT_SYMBOL(div64_s64);
|
|
#endif
|
|
|
|
#endif /* BITS_PER_LONG == 32 */
|
|
|
|
/*
|
|
* Iterative div/mod for use when dividend is not expected to be much
|
|
* bigger than divisor.
|
|
*/
|
|
u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
|
|
{
|
|
return __iter_div_u64_rem(dividend, divisor, remainder);
|
|
}
|
|
EXPORT_SYMBOL(iter_div_u64_rem);
|
|
|
|
#ifndef mul_u64_u64_div_u64
|
|
u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
|
|
{
|
|
u64 res = 0, div, rem;
|
|
int shift;
|
|
|
|
/* can a * b overflow ? */
|
|
if (ilog2(a) + ilog2(b) > 62) {
|
|
/*
|
|
* Note that the algorithm after the if block below might lose
|
|
* some precision and the result is more exact for b > a. So
|
|
* exchange a and b if a is bigger than b.
|
|
*
|
|
* For example with a = 43980465100800, b = 100000000, c = 1000000000
|
|
* the below calculation doesn't modify b at all because div == 0
|
|
* and then shift becomes 45 + 26 - 62 = 9 and so the result
|
|
* becomes 4398035251080. However with a and b swapped the exact
|
|
* result is calculated (i.e. 4398046510080).
|
|
*/
|
|
if (a > b)
|
|
swap(a, b);
|
|
|
|
/*
|
|
* (b * a) / c is equal to
|
|
*
|
|
* (b / c) * a +
|
|
* (b % c) * a / c
|
|
*
|
|
* if nothing overflows. Can the 1st multiplication
|
|
* overflow? Yes, but we do not care: this can only
|
|
* happen if the end result can't fit in u64 anyway.
|
|
*
|
|
* So the code below does
|
|
*
|
|
* res = (b / c) * a;
|
|
* b = b % c;
|
|
*/
|
|
div = div64_u64_rem(b, c, &rem);
|
|
res = div * a;
|
|
b = rem;
|
|
|
|
shift = ilog2(a) + ilog2(b) - 62;
|
|
if (shift > 0) {
|
|
/* drop precision */
|
|
b >>= shift;
|
|
c >>= shift;
|
|
if (!c)
|
|
return res;
|
|
}
|
|
}
|
|
|
|
return res + div64_u64(a * b, c);
|
|
}
|
|
EXPORT_SYMBOL(mul_u64_u64_div_u64);
|
|
#endif
|