mirror of
https://github.com/torvalds/linux.git
synced 2024-11-17 17:41:44 +00:00
5ae8aabeae
The generic sched_clock registration function was previously done lockless, due to the fact that it was expected to be called only once. However, now there are systems that may register multiple sched_clock sources, for which the lack of locking has casued problems: If two sched_clock sources are registered we may end up in a situation where a call to sched_clock() may be accessing the epoch cycle count for the old counter and the cycle count for the new counter. This can lead to confusing results where sched_clock() values jump and then are reset to 0 (due to the way the registration function forces the epoch_ns to be 0). Fix this by reorganizing the registration function to hold the seqlock for as short a time as possible while we update the clock_data structure for a new counter. We also put any accumulated time into epoch_ns instead of resetting the time to 0 so that the clock doesn't reset after each successful registration. [jstultz: Added extra context to the commit message] Reported-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Stephen Boyd <sboyd@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Josh Cartwright <joshc@codeaurora.org> Link: http://lkml.kernel.org/r/1392662736-7803-2-git-send-email-john.stultz@linaro.org Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
229 lines
5.3 KiB
C
229 lines
5.3 KiB
C
/*
|
|
* sched_clock.c: support for extending counters to full 64-bit ns counter
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/clocksource.h>
|
|
#include <linux/init.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/sched_clock.h>
|
|
#include <linux/seqlock.h>
|
|
#include <linux/bitops.h>
|
|
|
|
struct clock_data {
|
|
ktime_t wrap_kt;
|
|
u64 epoch_ns;
|
|
u64 epoch_cyc;
|
|
seqcount_t seq;
|
|
unsigned long rate;
|
|
u32 mult;
|
|
u32 shift;
|
|
bool suspended;
|
|
};
|
|
|
|
static struct hrtimer sched_clock_timer;
|
|
static int irqtime = -1;
|
|
|
|
core_param(irqtime, irqtime, int, 0400);
|
|
|
|
static struct clock_data cd = {
|
|
.mult = NSEC_PER_SEC / HZ,
|
|
};
|
|
|
|
static u64 __read_mostly sched_clock_mask;
|
|
|
|
static u64 notrace jiffy_sched_clock_read(void)
|
|
{
|
|
/*
|
|
* We don't need to use get_jiffies_64 on 32-bit arches here
|
|
* because we register with BITS_PER_LONG
|
|
*/
|
|
return (u64)(jiffies - INITIAL_JIFFIES);
|
|
}
|
|
|
|
static u32 __read_mostly (*read_sched_clock_32)(void);
|
|
|
|
static u64 notrace read_sched_clock_32_wrapper(void)
|
|
{
|
|
return read_sched_clock_32();
|
|
}
|
|
|
|
static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
|
|
|
|
static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
|
|
{
|
|
return (cyc * mult) >> shift;
|
|
}
|
|
|
|
unsigned long long notrace sched_clock(void)
|
|
{
|
|
u64 epoch_ns;
|
|
u64 epoch_cyc;
|
|
u64 cyc;
|
|
unsigned long seq;
|
|
|
|
if (cd.suspended)
|
|
return cd.epoch_ns;
|
|
|
|
do {
|
|
seq = raw_read_seqcount_begin(&cd.seq);
|
|
epoch_cyc = cd.epoch_cyc;
|
|
epoch_ns = cd.epoch_ns;
|
|
} while (read_seqcount_retry(&cd.seq, seq));
|
|
|
|
cyc = read_sched_clock();
|
|
cyc = (cyc - epoch_cyc) & sched_clock_mask;
|
|
return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
|
|
}
|
|
|
|
/*
|
|
* Atomically update the sched_clock epoch.
|
|
*/
|
|
static void notrace update_sched_clock(void)
|
|
{
|
|
unsigned long flags;
|
|
u64 cyc;
|
|
u64 ns;
|
|
|
|
cyc = read_sched_clock();
|
|
ns = cd.epoch_ns +
|
|
cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
|
|
cd.mult, cd.shift);
|
|
|
|
raw_local_irq_save(flags);
|
|
raw_write_seqcount_begin(&cd.seq);
|
|
cd.epoch_ns = ns;
|
|
cd.epoch_cyc = cyc;
|
|
raw_write_seqcount_end(&cd.seq);
|
|
raw_local_irq_restore(flags);
|
|
}
|
|
|
|
static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
|
|
{
|
|
update_sched_clock();
|
|
hrtimer_forward_now(hrt, cd.wrap_kt);
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
void __init sched_clock_register(u64 (*read)(void), int bits,
|
|
unsigned long rate)
|
|
{
|
|
u64 res, wrap, new_mask, new_epoch, cyc, ns;
|
|
u32 new_mult, new_shift;
|
|
ktime_t new_wrap_kt;
|
|
unsigned long r;
|
|
char r_unit;
|
|
|
|
if (cd.rate > rate)
|
|
return;
|
|
|
|
WARN_ON(!irqs_disabled());
|
|
|
|
/* calculate the mult/shift to convert counter ticks to ns. */
|
|
clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
|
|
|
|
new_mask = CLOCKSOURCE_MASK(bits);
|
|
|
|
/* calculate how many ns until we wrap */
|
|
wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask);
|
|
new_wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
|
|
|
|
/* update epoch for new counter and update epoch_ns from old counter*/
|
|
new_epoch = read();
|
|
cyc = read_sched_clock();
|
|
ns = cd.epoch_ns + cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
|
|
cd.mult, cd.shift);
|
|
|
|
raw_write_seqcount_begin(&cd.seq);
|
|
read_sched_clock = read;
|
|
sched_clock_mask = new_mask;
|
|
cd.rate = rate;
|
|
cd.wrap_kt = new_wrap_kt;
|
|
cd.mult = new_mult;
|
|
cd.shift = new_shift;
|
|
cd.epoch_cyc = new_epoch;
|
|
cd.epoch_ns = ns;
|
|
raw_write_seqcount_end(&cd.seq);
|
|
|
|
r = rate;
|
|
if (r >= 4000000) {
|
|
r /= 1000000;
|
|
r_unit = 'M';
|
|
} else if (r >= 1000) {
|
|
r /= 1000;
|
|
r_unit = 'k';
|
|
} else
|
|
r_unit = ' ';
|
|
|
|
/* calculate the ns resolution of this counter */
|
|
res = cyc_to_ns(1ULL, new_mult, new_shift);
|
|
|
|
pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
|
|
bits, r, r_unit, res, wrap);
|
|
|
|
/* Enable IRQ time accounting if we have a fast enough sched_clock */
|
|
if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
|
|
enable_sched_clock_irqtime();
|
|
|
|
pr_debug("Registered %pF as sched_clock source\n", read);
|
|
}
|
|
|
|
void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
|
|
{
|
|
read_sched_clock_32 = read;
|
|
sched_clock_register(read_sched_clock_32_wrapper, bits, rate);
|
|
}
|
|
|
|
void __init sched_clock_postinit(void)
|
|
{
|
|
/*
|
|
* If no sched_clock function has been provided at that point,
|
|
* make it the final one one.
|
|
*/
|
|
if (read_sched_clock == jiffy_sched_clock_read)
|
|
sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
|
|
|
|
update_sched_clock();
|
|
|
|
/*
|
|
* Start the timer to keep sched_clock() properly updated and
|
|
* sets the initial epoch.
|
|
*/
|
|
hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
sched_clock_timer.function = sched_clock_poll;
|
|
hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
|
|
}
|
|
|
|
static int sched_clock_suspend(void)
|
|
{
|
|
sched_clock_poll(&sched_clock_timer);
|
|
cd.suspended = true;
|
|
return 0;
|
|
}
|
|
|
|
static void sched_clock_resume(void)
|
|
{
|
|
cd.epoch_cyc = read_sched_clock();
|
|
cd.suspended = false;
|
|
}
|
|
|
|
static struct syscore_ops sched_clock_ops = {
|
|
.suspend = sched_clock_suspend,
|
|
.resume = sched_clock_resume,
|
|
};
|
|
|
|
static int __init sched_clock_syscore_init(void)
|
|
{
|
|
register_syscore_ops(&sched_clock_ops);
|
|
return 0;
|
|
}
|
|
device_initcall(sched_clock_syscore_init);
|