mirror of
https://github.com/torvalds/linux.git
synced 2024-11-15 16:41:58 +00:00
b96a3e9142
- Peter Xu has a series (mm/gup: Unify hugetlb, speed up thp") which reduces the special-case code for handling hugetlb pages in GUP. It also speeds up GUP handling of transparent hugepages. - Peng Zhang provides some maple tree speedups ("Optimize the fast path of mas_store()"). - Sergey Senozhatsky has improved te performance of zsmalloc during compaction (zsmalloc: small compaction improvements"). - Domenico Cerasuolo has developed additional selftest code for zswap ("selftests: cgroup: add zswap test program"). - xu xin has doe some work on KSM's handling of zero pages. These changes are mainly to enable the user to better understand the effectiveness of KSM's treatment of zero pages ("ksm: support tracking KSM-placed zero-pages"). - Jeff Xu has fixes the behaviour of memfd's MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED sysctl ("mm/memfd: fix sysctl MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED"). - David Howells has fixed an fscache optimization ("mm, netfs, fscache: Stop read optimisation when folio removed from pagecache"). - Axel Rasmussen has given userfaultfd the ability to simulate memory poisoning ("add UFFDIO_POISON to simulate memory poisoning with UFFD"). - Miaohe Lin has contributed some routine maintenance work on the memory-failure code ("mm: memory-failure: remove unneeded PageHuge() check"). - Peng Zhang has contributed some maintenance work on the maple tree code ("Improve the validation for maple tree and some cleanup"). - Hugh Dickins has optimized the collapsing of shmem or file pages into THPs ("mm: free retracted page table by RCU"). - Jiaqi Yan has a patch series which permits us to use the healthy subpages within a hardware poisoned huge page for general purposes ("Improve hugetlbfs read on HWPOISON hugepages"). - Kemeng Shi has done some maintenance work on the pagetable-check code ("Remove unused parameters in page_table_check"). - More folioification work from Matthew Wilcox ("More filesystem folio conversions for 6.6"), ("Followup folio conversions for zswap"). And from ZhangPeng ("Convert several functions in page_io.c to use a folio"). - page_ext cleanups from Kemeng Shi ("minor cleanups for page_ext"). - Baoquan He has converted some architectures to use the GENERIC_IOREMAP ioremap()/iounmap() code ("mm: ioremap: Convert architectures to take GENERIC_IOREMAP way"). - Anshuman Khandual has optimized arm64 tlb shootdown ("arm64: support batched/deferred tlb shootdown during page reclamation/migration"). - Better maple tree lockdep checking from Liam Howlett ("More strict maple tree lockdep"). Liam also developed some efficiency improvements ("Reduce preallocations for maple tree"). - Cleanup and optimization to the secondary IOMMU TLB invalidation, from Alistair Popple ("Invalidate secondary IOMMU TLB on permission upgrade"). - Ryan Roberts fixes some arm64 MM selftest issues ("selftests/mm fixes for arm64"). - Kemeng Shi provides some maintenance work on the compaction code ("Two minor cleanups for compaction"). - Some reduction in mmap_lock pressure from Matthew Wilcox ("Handle most file-backed faults under the VMA lock"). - Aneesh Kumar contributes code to use the vmemmap optimization for DAX on ppc64, under some circumstances ("Add support for DAX vmemmap optimization for ppc64"). - page-ext cleanups from Kemeng Shi ("add page_ext_data to get client data in page_ext"), ("minor cleanups to page_ext header"). - Some zswap cleanups from Johannes Weiner ("mm: zswap: three cleanups"). - kmsan cleanups from ZhangPeng ("minor cleanups for kmsan"). - VMA handling cleanups from Kefeng Wang ("mm: convert to vma_is_initial_heap/stack()"). - DAMON feature work from SeongJae Park ("mm/damon/sysfs-schemes: implement DAMOS tried total bytes file"), ("Extend DAMOS filters for address ranges and DAMON monitoring targets"). - Compaction work from Kemeng Shi ("Fixes and cleanups to compaction"). - Liam Howlett has improved the maple tree node replacement code ("maple_tree: Change replacement strategy"). - ZhangPeng has a general code cleanup - use the K() macro more widely ("cleanup with helper macro K()"). - Aneesh Kumar brings memmap-on-memory to ppc64 ("Add support for memmap on memory feature on ppc64"). - pagealloc cleanups from Kemeng Shi ("Two minor cleanups for pcp list in page_alloc"), ("Two minor cleanups for get pageblock migratetype"). - Vishal Moola introduces a memory descriptor for page table tracking, "struct ptdesc" ("Split ptdesc from struct page"). - memfd selftest maintenance work from Aleksa Sarai ("memfd: cleanups for vm.memfd_noexec"). - MM include file rationalization from Hugh Dickins ("arch: include asm/cacheflush.h in asm/hugetlb.h"). - THP debug output fixes from Hugh Dickins ("mm,thp: fix sloppy text output"). - kmemleak improvements from Xiaolei Wang ("mm/kmemleak: use object_cache instead of kmemleak_initialized"). - More folio-related cleanups from Matthew Wilcox ("Remove _folio_dtor and _folio_order"). - A VMA locking scalability improvement from Suren Baghdasaryan ("Per-VMA lock support for swap and userfaults"). - pagetable handling cleanups from Matthew Wilcox ("New page table range API"). - A batch of swap/thp cleanups from David Hildenbrand ("mm/swap: stop using page->private on tail pages for THP_SWAP + cleanups"). - Cleanups and speedups to the hugetlb fault handling from Matthew Wilcox ("Change calling convention for ->huge_fault"). - Matthew Wilcox has also done some maintenance work on the MM subsystem documentation ("Improve mm documentation"). -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZO1JUQAKCRDdBJ7gKXxA jrMwAP47r/fS8vAVT3zp/7fXmxaJYTK27CTAM881Gw1SDhFM/wEAv8o84mDenCg6 Nfio7afS1ncD+hPYT8947UnLxTgn+ww= =Afws -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Some swap cleanups from Ma Wupeng ("fix WARN_ON in add_to_avail_list") - Peter Xu has a series (mm/gup: Unify hugetlb, speed up thp") which reduces the special-case code for handling hugetlb pages in GUP. It also speeds up GUP handling of transparent hugepages. - Peng Zhang provides some maple tree speedups ("Optimize the fast path of mas_store()"). - Sergey Senozhatsky has improved te performance of zsmalloc during compaction (zsmalloc: small compaction improvements"). - Domenico Cerasuolo has developed additional selftest code for zswap ("selftests: cgroup: add zswap test program"). - xu xin has doe some work on KSM's handling of zero pages. These changes are mainly to enable the user to better understand the effectiveness of KSM's treatment of zero pages ("ksm: support tracking KSM-placed zero-pages"). - Jeff Xu has fixes the behaviour of memfd's MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED sysctl ("mm/memfd: fix sysctl MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED"). - David Howells has fixed an fscache optimization ("mm, netfs, fscache: Stop read optimisation when folio removed from pagecache"). - Axel Rasmussen has given userfaultfd the ability to simulate memory poisoning ("add UFFDIO_POISON to simulate memory poisoning with UFFD"). - Miaohe Lin has contributed some routine maintenance work on the memory-failure code ("mm: memory-failure: remove unneeded PageHuge() check"). - Peng Zhang has contributed some maintenance work on the maple tree code ("Improve the validation for maple tree and some cleanup"). - Hugh Dickins has optimized the collapsing of shmem or file pages into THPs ("mm: free retracted page table by RCU"). - Jiaqi Yan has a patch series which permits us to use the healthy subpages within a hardware poisoned huge page for general purposes ("Improve hugetlbfs read on HWPOISON hugepages"). - Kemeng Shi has done some maintenance work on the pagetable-check code ("Remove unused parameters in page_table_check"). - More folioification work from Matthew Wilcox ("More filesystem folio conversions for 6.6"), ("Followup folio conversions for zswap"). And from ZhangPeng ("Convert several functions in page_io.c to use a folio"). - page_ext cleanups from Kemeng Shi ("minor cleanups for page_ext"). - Baoquan He has converted some architectures to use the GENERIC_IOREMAP ioremap()/iounmap() code ("mm: ioremap: Convert architectures to take GENERIC_IOREMAP way"). - Anshuman Khandual has optimized arm64 tlb shootdown ("arm64: support batched/deferred tlb shootdown during page reclamation/migration"). - Better maple tree lockdep checking from Liam Howlett ("More strict maple tree lockdep"). Liam also developed some efficiency improvements ("Reduce preallocations for maple tree"). - Cleanup and optimization to the secondary IOMMU TLB invalidation, from Alistair Popple ("Invalidate secondary IOMMU TLB on permission upgrade"). - Ryan Roberts fixes some arm64 MM selftest issues ("selftests/mm fixes for arm64"). - Kemeng Shi provides some maintenance work on the compaction code ("Two minor cleanups for compaction"). - Some reduction in mmap_lock pressure from Matthew Wilcox ("Handle most file-backed faults under the VMA lock"). - Aneesh Kumar contributes code to use the vmemmap optimization for DAX on ppc64, under some circumstances ("Add support for DAX vmemmap optimization for ppc64"). - page-ext cleanups from Kemeng Shi ("add page_ext_data to get client data in page_ext"), ("minor cleanups to page_ext header"). - Some zswap cleanups from Johannes Weiner ("mm: zswap: three cleanups"). - kmsan cleanups from ZhangPeng ("minor cleanups for kmsan"). - VMA handling cleanups from Kefeng Wang ("mm: convert to vma_is_initial_heap/stack()"). - DAMON feature work from SeongJae Park ("mm/damon/sysfs-schemes: implement DAMOS tried total bytes file"), ("Extend DAMOS filters for address ranges and DAMON monitoring targets"). - Compaction work from Kemeng Shi ("Fixes and cleanups to compaction"). - Liam Howlett has improved the maple tree node replacement code ("maple_tree: Change replacement strategy"). - ZhangPeng has a general code cleanup - use the K() macro more widely ("cleanup with helper macro K()"). - Aneesh Kumar brings memmap-on-memory to ppc64 ("Add support for memmap on memory feature on ppc64"). - pagealloc cleanups from Kemeng Shi ("Two minor cleanups for pcp list in page_alloc"), ("Two minor cleanups for get pageblock migratetype"). - Vishal Moola introduces a memory descriptor for page table tracking, "struct ptdesc" ("Split ptdesc from struct page"). - memfd selftest maintenance work from Aleksa Sarai ("memfd: cleanups for vm.memfd_noexec"). - MM include file rationalization from Hugh Dickins ("arch: include asm/cacheflush.h in asm/hugetlb.h"). - THP debug output fixes from Hugh Dickins ("mm,thp: fix sloppy text output"). - kmemleak improvements from Xiaolei Wang ("mm/kmemleak: use object_cache instead of kmemleak_initialized"). - More folio-related cleanups from Matthew Wilcox ("Remove _folio_dtor and _folio_order"). - A VMA locking scalability improvement from Suren Baghdasaryan ("Per-VMA lock support for swap and userfaults"). - pagetable handling cleanups from Matthew Wilcox ("New page table range API"). - A batch of swap/thp cleanups from David Hildenbrand ("mm/swap: stop using page->private on tail pages for THP_SWAP + cleanups"). - Cleanups and speedups to the hugetlb fault handling from Matthew Wilcox ("Change calling convention for ->huge_fault"). - Matthew Wilcox has also done some maintenance work on the MM subsystem documentation ("Improve mm documentation"). * tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (489 commits) maple_tree: shrink struct maple_tree maple_tree: clean up mas_wr_append() secretmem: convert page_is_secretmem() to folio_is_secretmem() nios2: fix flush_dcache_page() for usage from irq context hugetlb: add documentation for vma_kernel_pagesize() mm: add orphaned kernel-doc to the rst files. mm: fix clean_record_shared_mapping_range kernel-doc mm: fix get_mctgt_type() kernel-doc mm: fix kernel-doc warning from tlb_flush_rmaps() mm: remove enum page_entry_size mm: allow ->huge_fault() to be called without the mmap_lock held mm: move PMD_ORDER to pgtable.h mm: remove checks for pte_index memcg: remove duplication detection for mem_cgroup_uncharge_swap mm/huge_memory: work on folio->swap instead of page->private when splitting folio mm/swap: inline folio_set_swap_entry() and folio_swap_entry() mm/swap: use dedicated entry for swap in folio mm/swap: stop using page->private on tail pages for THP_SWAP selftests/mm: fix WARNING comparing pointer to 0 selftests: cgroup: fix test_kmem_memcg_deletion kernel mem check ...
1746 lines
45 KiB
C
1746 lines
45 KiB
C
/*
|
|
* hugetlbpage-backed filesystem. Based on ramfs.
|
|
*
|
|
* Nadia Yvette Chambers, 2002
|
|
*
|
|
* Copyright (C) 2002 Linus Torvalds.
|
|
* License: GPL
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/thread_info.h>
|
|
#include <asm/current.h>
|
|
#include <linux/falloc.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/file.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/init.h>
|
|
#include <linux/string.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/fs_parser.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/dnotify.h>
|
|
#include <linux/statfs.h>
|
|
#include <linux/security.h>
|
|
#include <linux/magic.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/uio.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
static const struct address_space_operations hugetlbfs_aops;
|
|
const struct file_operations hugetlbfs_file_operations;
|
|
static const struct inode_operations hugetlbfs_dir_inode_operations;
|
|
static const struct inode_operations hugetlbfs_inode_operations;
|
|
|
|
enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
|
|
|
|
struct hugetlbfs_fs_context {
|
|
struct hstate *hstate;
|
|
unsigned long long max_size_opt;
|
|
unsigned long long min_size_opt;
|
|
long max_hpages;
|
|
long nr_inodes;
|
|
long min_hpages;
|
|
enum hugetlbfs_size_type max_val_type;
|
|
enum hugetlbfs_size_type min_val_type;
|
|
kuid_t uid;
|
|
kgid_t gid;
|
|
umode_t mode;
|
|
};
|
|
|
|
int sysctl_hugetlb_shm_group;
|
|
|
|
enum hugetlb_param {
|
|
Opt_gid,
|
|
Opt_min_size,
|
|
Opt_mode,
|
|
Opt_nr_inodes,
|
|
Opt_pagesize,
|
|
Opt_size,
|
|
Opt_uid,
|
|
};
|
|
|
|
static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
|
|
fsparam_u32 ("gid", Opt_gid),
|
|
fsparam_string("min_size", Opt_min_size),
|
|
fsparam_u32oct("mode", Opt_mode),
|
|
fsparam_string("nr_inodes", Opt_nr_inodes),
|
|
fsparam_string("pagesize", Opt_pagesize),
|
|
fsparam_string("size", Opt_size),
|
|
fsparam_u32 ("uid", Opt_uid),
|
|
{}
|
|
};
|
|
|
|
#ifdef CONFIG_NUMA
|
|
static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
|
|
struct inode *inode, pgoff_t index)
|
|
{
|
|
vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
|
|
index);
|
|
}
|
|
|
|
static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
|
|
{
|
|
mpol_cond_put(vma->vm_policy);
|
|
}
|
|
#else
|
|
static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
|
|
struct inode *inode, pgoff_t index)
|
|
{
|
|
}
|
|
|
|
static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Mask used when checking the page offset value passed in via system
|
|
* calls. This value will be converted to a loff_t which is signed.
|
|
* Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
|
|
* value. The extra bit (- 1 in the shift value) is to take the sign
|
|
* bit into account.
|
|
*/
|
|
#define PGOFF_LOFFT_MAX \
|
|
(((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
|
|
|
|
static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
|
|
loff_t len, vma_len;
|
|
int ret;
|
|
struct hstate *h = hstate_file(file);
|
|
|
|
/*
|
|
* vma address alignment (but not the pgoff alignment) has
|
|
* already been checked by prepare_hugepage_range. If you add
|
|
* any error returns here, do so after setting VM_HUGETLB, so
|
|
* is_vm_hugetlb_page tests below unmap_region go the right
|
|
* way when do_mmap unwinds (may be important on powerpc
|
|
* and ia64).
|
|
*/
|
|
vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
|
|
vma->vm_ops = &hugetlb_vm_ops;
|
|
|
|
ret = seal_check_future_write(info->seals, vma);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* page based offset in vm_pgoff could be sufficiently large to
|
|
* overflow a loff_t when converted to byte offset. This can
|
|
* only happen on architectures where sizeof(loff_t) ==
|
|
* sizeof(unsigned long). So, only check in those instances.
|
|
*/
|
|
if (sizeof(unsigned long) == sizeof(loff_t)) {
|
|
if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* must be huge page aligned */
|
|
if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
|
|
return -EINVAL;
|
|
|
|
vma_len = (loff_t)(vma->vm_end - vma->vm_start);
|
|
len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
|
|
/* check for overflow */
|
|
if (len < vma_len)
|
|
return -EINVAL;
|
|
|
|
inode_lock(inode);
|
|
file_accessed(file);
|
|
|
|
ret = -ENOMEM;
|
|
if (!hugetlb_reserve_pages(inode,
|
|
vma->vm_pgoff >> huge_page_order(h),
|
|
len >> huge_page_shift(h), vma,
|
|
vma->vm_flags))
|
|
goto out;
|
|
|
|
ret = 0;
|
|
if (vma->vm_flags & VM_WRITE && inode->i_size < len)
|
|
i_size_write(inode, len);
|
|
out:
|
|
inode_unlock(inode);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Called under mmap_write_lock(mm).
|
|
*/
|
|
|
|
static unsigned long
|
|
hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff, unsigned long flags)
|
|
{
|
|
struct hstate *h = hstate_file(file);
|
|
struct vm_unmapped_area_info info;
|
|
|
|
info.flags = 0;
|
|
info.length = len;
|
|
info.low_limit = current->mm->mmap_base;
|
|
info.high_limit = arch_get_mmap_end(addr, len, flags);
|
|
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
|
|
info.align_offset = 0;
|
|
return vm_unmapped_area(&info);
|
|
}
|
|
|
|
static unsigned long
|
|
hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff, unsigned long flags)
|
|
{
|
|
struct hstate *h = hstate_file(file);
|
|
struct vm_unmapped_area_info info;
|
|
|
|
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
|
|
info.length = len;
|
|
info.low_limit = PAGE_SIZE;
|
|
info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
|
|
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
|
|
info.align_offset = 0;
|
|
addr = vm_unmapped_area(&info);
|
|
|
|
/*
|
|
* A failed mmap() very likely causes application failure,
|
|
* so fall back to the bottom-up function here. This scenario
|
|
* can happen with large stack limits and large mmap()
|
|
* allocations.
|
|
*/
|
|
if (unlikely(offset_in_page(addr))) {
|
|
VM_BUG_ON(addr != -ENOMEM);
|
|
info.flags = 0;
|
|
info.low_limit = current->mm->mmap_base;
|
|
info.high_limit = arch_get_mmap_end(addr, len, flags);
|
|
addr = vm_unmapped_area(&info);
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
unsigned long
|
|
generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
struct hstate *h = hstate_file(file);
|
|
const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
|
|
|
|
if (len & ~huge_page_mask(h))
|
|
return -EINVAL;
|
|
if (len > TASK_SIZE)
|
|
return -ENOMEM;
|
|
|
|
if (flags & MAP_FIXED) {
|
|
if (prepare_hugepage_range(file, addr, len))
|
|
return -EINVAL;
|
|
return addr;
|
|
}
|
|
|
|
if (addr) {
|
|
addr = ALIGN(addr, huge_page_size(h));
|
|
vma = find_vma(mm, addr);
|
|
if (mmap_end - len >= addr &&
|
|
(!vma || addr + len <= vm_start_gap(vma)))
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
* Use mm->get_unmapped_area value as a hint to use topdown routine.
|
|
* If architectures have special needs, they should define their own
|
|
* version of hugetlb_get_unmapped_area.
|
|
*/
|
|
if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
|
|
return hugetlb_get_unmapped_area_topdown(file, addr, len,
|
|
pgoff, flags);
|
|
return hugetlb_get_unmapped_area_bottomup(file, addr, len,
|
|
pgoff, flags);
|
|
}
|
|
|
|
#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
|
|
static unsigned long
|
|
hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
|
|
* Returns the maximum number of bytes one can read without touching the 1st raw
|
|
* HWPOISON subpage.
|
|
*
|
|
* The implementation borrows the iteration logic from copy_page_to_iter*.
|
|
*/
|
|
static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
|
|
{
|
|
size_t n = 0;
|
|
size_t res = 0;
|
|
|
|
/* First subpage to start the loop. */
|
|
page += offset / PAGE_SIZE;
|
|
offset %= PAGE_SIZE;
|
|
while (1) {
|
|
if (is_raw_hwpoison_page_in_hugepage(page))
|
|
break;
|
|
|
|
/* Safe to read n bytes without touching HWPOISON subpage. */
|
|
n = min(bytes, (size_t)PAGE_SIZE - offset);
|
|
res += n;
|
|
bytes -= n;
|
|
if (!bytes || !n)
|
|
break;
|
|
offset += n;
|
|
if (offset == PAGE_SIZE) {
|
|
page++;
|
|
offset = 0;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Support for read() - Find the page attached to f_mapping and copy out the
|
|
* data. This provides functionality similar to filemap_read().
|
|
*/
|
|
static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct hstate *h = hstate_file(file);
|
|
struct address_space *mapping = file->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
unsigned long index = iocb->ki_pos >> huge_page_shift(h);
|
|
unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
|
|
unsigned long end_index;
|
|
loff_t isize;
|
|
ssize_t retval = 0;
|
|
|
|
while (iov_iter_count(to)) {
|
|
struct page *page;
|
|
size_t nr, copied, want;
|
|
|
|
/* nr is the maximum number of bytes to copy from this page */
|
|
nr = huge_page_size(h);
|
|
isize = i_size_read(inode);
|
|
if (!isize)
|
|
break;
|
|
end_index = (isize - 1) >> huge_page_shift(h);
|
|
if (index > end_index)
|
|
break;
|
|
if (index == end_index) {
|
|
nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
|
|
if (nr <= offset)
|
|
break;
|
|
}
|
|
nr = nr - offset;
|
|
|
|
/* Find the page */
|
|
page = find_lock_page(mapping, index);
|
|
if (unlikely(page == NULL)) {
|
|
/*
|
|
* We have a HOLE, zero out the user-buffer for the
|
|
* length of the hole or request.
|
|
*/
|
|
copied = iov_iter_zero(nr, to);
|
|
} else {
|
|
unlock_page(page);
|
|
|
|
if (!PageHWPoison(page))
|
|
want = nr;
|
|
else {
|
|
/*
|
|
* Adjust how many bytes safe to read without
|
|
* touching the 1st raw HWPOISON subpage after
|
|
* offset.
|
|
*/
|
|
want = adjust_range_hwpoison(page, offset, nr);
|
|
if (want == 0) {
|
|
put_page(page);
|
|
retval = -EIO;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We have the page, copy it to user space buffer.
|
|
*/
|
|
copied = copy_page_to_iter(page, offset, want, to);
|
|
put_page(page);
|
|
}
|
|
offset += copied;
|
|
retval += copied;
|
|
if (copied != nr && iov_iter_count(to)) {
|
|
if (!retval)
|
|
retval = -EFAULT;
|
|
break;
|
|
}
|
|
index += offset >> huge_page_shift(h);
|
|
offset &= ~huge_page_mask(h);
|
|
}
|
|
iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
|
|
return retval;
|
|
}
|
|
|
|
static int hugetlbfs_write_begin(struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos, unsigned len,
|
|
struct page **pagep, void **fsdata)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata)
|
|
{
|
|
BUG();
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void hugetlb_delete_from_page_cache(struct folio *folio)
|
|
{
|
|
folio_clear_dirty(folio);
|
|
folio_clear_uptodate(folio);
|
|
filemap_remove_folio(folio);
|
|
}
|
|
|
|
/*
|
|
* Called with i_mmap_rwsem held for inode based vma maps. This makes
|
|
* sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
|
|
* mutex for the page in the mapping. So, we can not race with page being
|
|
* faulted into the vma.
|
|
*/
|
|
static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
|
|
unsigned long addr, struct page *page)
|
|
{
|
|
pte_t *ptep, pte;
|
|
|
|
ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
|
|
if (!ptep)
|
|
return false;
|
|
|
|
pte = huge_ptep_get(ptep);
|
|
if (huge_pte_none(pte) || !pte_present(pte))
|
|
return false;
|
|
|
|
if (pte_page(pte) == page)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
|
|
* No, because the interval tree returns us only those vmas
|
|
* which overlap the truncated area starting at pgoff,
|
|
* and no vma on a 32-bit arch can span beyond the 4GB.
|
|
*/
|
|
static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
|
|
{
|
|
unsigned long offset = 0;
|
|
|
|
if (vma->vm_pgoff < start)
|
|
offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
|
|
|
|
return vma->vm_start + offset;
|
|
}
|
|
|
|
static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
|
|
{
|
|
unsigned long t_end;
|
|
|
|
if (!end)
|
|
return vma->vm_end;
|
|
|
|
t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
|
|
if (t_end > vma->vm_end)
|
|
t_end = vma->vm_end;
|
|
return t_end;
|
|
}
|
|
|
|
/*
|
|
* Called with hugetlb fault mutex held. Therefore, no more mappings to
|
|
* this folio can be created while executing the routine.
|
|
*/
|
|
static void hugetlb_unmap_file_folio(struct hstate *h,
|
|
struct address_space *mapping,
|
|
struct folio *folio, pgoff_t index)
|
|
{
|
|
struct rb_root_cached *root = &mapping->i_mmap;
|
|
struct hugetlb_vma_lock *vma_lock;
|
|
struct page *page = &folio->page;
|
|
struct vm_area_struct *vma;
|
|
unsigned long v_start;
|
|
unsigned long v_end;
|
|
pgoff_t start, end;
|
|
|
|
start = index * pages_per_huge_page(h);
|
|
end = (index + 1) * pages_per_huge_page(h);
|
|
|
|
i_mmap_lock_write(mapping);
|
|
retry:
|
|
vma_lock = NULL;
|
|
vma_interval_tree_foreach(vma, root, start, end - 1) {
|
|
v_start = vma_offset_start(vma, start);
|
|
v_end = vma_offset_end(vma, end);
|
|
|
|
if (!hugetlb_vma_maps_page(vma, v_start, page))
|
|
continue;
|
|
|
|
if (!hugetlb_vma_trylock_write(vma)) {
|
|
vma_lock = vma->vm_private_data;
|
|
/*
|
|
* If we can not get vma lock, we need to drop
|
|
* immap_sema and take locks in order. First,
|
|
* take a ref on the vma_lock structure so that
|
|
* we can be guaranteed it will not go away when
|
|
* dropping immap_sema.
|
|
*/
|
|
kref_get(&vma_lock->refs);
|
|
break;
|
|
}
|
|
|
|
unmap_hugepage_range(vma, v_start, v_end, NULL,
|
|
ZAP_FLAG_DROP_MARKER);
|
|
hugetlb_vma_unlock_write(vma);
|
|
}
|
|
|
|
i_mmap_unlock_write(mapping);
|
|
|
|
if (vma_lock) {
|
|
/*
|
|
* Wait on vma_lock. We know it is still valid as we have
|
|
* a reference. We must 'open code' vma locking as we do
|
|
* not know if vma_lock is still attached to vma.
|
|
*/
|
|
down_write(&vma_lock->rw_sema);
|
|
i_mmap_lock_write(mapping);
|
|
|
|
vma = vma_lock->vma;
|
|
if (!vma) {
|
|
/*
|
|
* If lock is no longer attached to vma, then just
|
|
* unlock, drop our reference and retry looking for
|
|
* other vmas.
|
|
*/
|
|
up_write(&vma_lock->rw_sema);
|
|
kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* vma_lock is still attached to vma. Check to see if vma
|
|
* still maps page and if so, unmap.
|
|
*/
|
|
v_start = vma_offset_start(vma, start);
|
|
v_end = vma_offset_end(vma, end);
|
|
if (hugetlb_vma_maps_page(vma, v_start, page))
|
|
unmap_hugepage_range(vma, v_start, v_end, NULL,
|
|
ZAP_FLAG_DROP_MARKER);
|
|
|
|
kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
|
|
hugetlb_vma_unlock_write(vma);
|
|
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
static void
|
|
hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
|
|
zap_flags_t zap_flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
/*
|
|
* end == 0 indicates that the entire range after start should be
|
|
* unmapped. Note, end is exclusive, whereas the interval tree takes
|
|
* an inclusive "last".
|
|
*/
|
|
vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
|
|
unsigned long v_start;
|
|
unsigned long v_end;
|
|
|
|
if (!hugetlb_vma_trylock_write(vma))
|
|
continue;
|
|
|
|
v_start = vma_offset_start(vma, start);
|
|
v_end = vma_offset_end(vma, end);
|
|
|
|
unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
|
|
|
|
/*
|
|
* Note that vma lock only exists for shared/non-private
|
|
* vmas. Therefore, lock is not held when calling
|
|
* unmap_hugepage_range for private vmas.
|
|
*/
|
|
hugetlb_vma_unlock_write(vma);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called with hugetlb fault mutex held.
|
|
* Returns true if page was actually removed, false otherwise.
|
|
*/
|
|
static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
|
|
struct address_space *mapping,
|
|
struct folio *folio, pgoff_t index,
|
|
bool truncate_op)
|
|
{
|
|
bool ret = false;
|
|
|
|
/*
|
|
* If folio is mapped, it was faulted in after being
|
|
* unmapped in caller. Unmap (again) while holding
|
|
* the fault mutex. The mutex will prevent faults
|
|
* until we finish removing the folio.
|
|
*/
|
|
if (unlikely(folio_mapped(folio)))
|
|
hugetlb_unmap_file_folio(h, mapping, folio, index);
|
|
|
|
folio_lock(folio);
|
|
/*
|
|
* We must remove the folio from page cache before removing
|
|
* the region/ reserve map (hugetlb_unreserve_pages). In
|
|
* rare out of memory conditions, removal of the region/reserve
|
|
* map could fail. Correspondingly, the subpool and global
|
|
* reserve usage count can need to be adjusted.
|
|
*/
|
|
VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
|
|
hugetlb_delete_from_page_cache(folio);
|
|
ret = true;
|
|
if (!truncate_op) {
|
|
if (unlikely(hugetlb_unreserve_pages(inode, index,
|
|
index + 1, 1)))
|
|
hugetlb_fix_reserve_counts(inode);
|
|
}
|
|
|
|
folio_unlock(folio);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* remove_inode_hugepages handles two distinct cases: truncation and hole
|
|
* punch. There are subtle differences in operation for each case.
|
|
*
|
|
* truncation is indicated by end of range being LLONG_MAX
|
|
* In this case, we first scan the range and release found pages.
|
|
* After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
|
|
* maps and global counts. Page faults can race with truncation.
|
|
* During faults, hugetlb_no_page() checks i_size before page allocation,
|
|
* and again after obtaining page table lock. It will 'back out'
|
|
* allocations in the truncated range.
|
|
* hole punch is indicated if end is not LLONG_MAX
|
|
* In the hole punch case we scan the range and release found pages.
|
|
* Only when releasing a page is the associated region/reserve map
|
|
* deleted. The region/reserve map for ranges without associated
|
|
* pages are not modified. Page faults can race with hole punch.
|
|
* This is indicated if we find a mapped page.
|
|
* Note: If the passed end of range value is beyond the end of file, but
|
|
* not LLONG_MAX this routine still performs a hole punch operation.
|
|
*/
|
|
static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
|
|
loff_t lend)
|
|
{
|
|
struct hstate *h = hstate_inode(inode);
|
|
struct address_space *mapping = &inode->i_data;
|
|
const pgoff_t start = lstart >> huge_page_shift(h);
|
|
const pgoff_t end = lend >> huge_page_shift(h);
|
|
struct folio_batch fbatch;
|
|
pgoff_t next, index;
|
|
int i, freed = 0;
|
|
bool truncate_op = (lend == LLONG_MAX);
|
|
|
|
folio_batch_init(&fbatch);
|
|
next = start;
|
|
while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
|
|
for (i = 0; i < folio_batch_count(&fbatch); ++i) {
|
|
struct folio *folio = fbatch.folios[i];
|
|
u32 hash = 0;
|
|
|
|
index = folio->index;
|
|
hash = hugetlb_fault_mutex_hash(mapping, index);
|
|
mutex_lock(&hugetlb_fault_mutex_table[hash]);
|
|
|
|
/*
|
|
* Remove folio that was part of folio_batch.
|
|
*/
|
|
if (remove_inode_single_folio(h, inode, mapping, folio,
|
|
index, truncate_op))
|
|
freed++;
|
|
|
|
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
|
|
}
|
|
folio_batch_release(&fbatch);
|
|
cond_resched();
|
|
}
|
|
|
|
if (truncate_op)
|
|
(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
|
|
}
|
|
|
|
static void hugetlbfs_evict_inode(struct inode *inode)
|
|
{
|
|
struct resv_map *resv_map;
|
|
|
|
remove_inode_hugepages(inode, 0, LLONG_MAX);
|
|
|
|
/*
|
|
* Get the resv_map from the address space embedded in the inode.
|
|
* This is the address space which points to any resv_map allocated
|
|
* at inode creation time. If this is a device special inode,
|
|
* i_mapping may not point to the original address space.
|
|
*/
|
|
resv_map = (struct resv_map *)(&inode->i_data)->private_data;
|
|
/* Only regular and link inodes have associated reserve maps */
|
|
if (resv_map)
|
|
resv_map_release(&resv_map->refs);
|
|
clear_inode(inode);
|
|
}
|
|
|
|
static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
|
|
{
|
|
pgoff_t pgoff;
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct hstate *h = hstate_inode(inode);
|
|
|
|
BUG_ON(offset & ~huge_page_mask(h));
|
|
pgoff = offset >> PAGE_SHIFT;
|
|
|
|
i_size_write(inode, offset);
|
|
i_mmap_lock_write(mapping);
|
|
if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
|
|
hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
|
|
ZAP_FLAG_DROP_MARKER);
|
|
i_mmap_unlock_write(mapping);
|
|
remove_inode_hugepages(inode, offset, LLONG_MAX);
|
|
}
|
|
|
|
static void hugetlbfs_zero_partial_page(struct hstate *h,
|
|
struct address_space *mapping,
|
|
loff_t start,
|
|
loff_t end)
|
|
{
|
|
pgoff_t idx = start >> huge_page_shift(h);
|
|
struct folio *folio;
|
|
|
|
folio = filemap_lock_folio(mapping, idx);
|
|
if (IS_ERR(folio))
|
|
return;
|
|
|
|
start = start & ~huge_page_mask(h);
|
|
end = end & ~huge_page_mask(h);
|
|
if (!end)
|
|
end = huge_page_size(h);
|
|
|
|
folio_zero_segment(folio, (size_t)start, (size_t)end);
|
|
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
|
|
static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
|
|
{
|
|
struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct hstate *h = hstate_inode(inode);
|
|
loff_t hpage_size = huge_page_size(h);
|
|
loff_t hole_start, hole_end;
|
|
|
|
/*
|
|
* hole_start and hole_end indicate the full pages within the hole.
|
|
*/
|
|
hole_start = round_up(offset, hpage_size);
|
|
hole_end = round_down(offset + len, hpage_size);
|
|
|
|
inode_lock(inode);
|
|
|
|
/* protected by i_rwsem */
|
|
if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
|
|
inode_unlock(inode);
|
|
return -EPERM;
|
|
}
|
|
|
|
i_mmap_lock_write(mapping);
|
|
|
|
/* If range starts before first full page, zero partial page. */
|
|
if (offset < hole_start)
|
|
hugetlbfs_zero_partial_page(h, mapping,
|
|
offset, min(offset + len, hole_start));
|
|
|
|
/* Unmap users of full pages in the hole. */
|
|
if (hole_end > hole_start) {
|
|
if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
|
|
hugetlb_vmdelete_list(&mapping->i_mmap,
|
|
hole_start >> PAGE_SHIFT,
|
|
hole_end >> PAGE_SHIFT, 0);
|
|
}
|
|
|
|
/* If range extends beyond last full page, zero partial page. */
|
|
if ((offset + len) > hole_end && (offset + len) > hole_start)
|
|
hugetlbfs_zero_partial_page(h, mapping,
|
|
hole_end, offset + len);
|
|
|
|
i_mmap_unlock_write(mapping);
|
|
|
|
/* Remove full pages from the file. */
|
|
if (hole_end > hole_start)
|
|
remove_inode_hugepages(inode, hole_start, hole_end);
|
|
|
|
inode_unlock(inode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
|
|
loff_t len)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct hstate *h = hstate_inode(inode);
|
|
struct vm_area_struct pseudo_vma;
|
|
struct mm_struct *mm = current->mm;
|
|
loff_t hpage_size = huge_page_size(h);
|
|
unsigned long hpage_shift = huge_page_shift(h);
|
|
pgoff_t start, index, end;
|
|
int error;
|
|
u32 hash;
|
|
|
|
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (mode & FALLOC_FL_PUNCH_HOLE)
|
|
return hugetlbfs_punch_hole(inode, offset, len);
|
|
|
|
/*
|
|
* Default preallocate case.
|
|
* For this range, start is rounded down and end is rounded up
|
|
* as well as being converted to page offsets.
|
|
*/
|
|
start = offset >> hpage_shift;
|
|
end = (offset + len + hpage_size - 1) >> hpage_shift;
|
|
|
|
inode_lock(inode);
|
|
|
|
/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
|
|
error = inode_newsize_ok(inode, offset + len);
|
|
if (error)
|
|
goto out;
|
|
|
|
if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
|
|
error = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Initialize a pseudo vma as this is required by the huge page
|
|
* allocation routines. If NUMA is configured, use page index
|
|
* as input to create an allocation policy.
|
|
*/
|
|
vma_init(&pseudo_vma, mm);
|
|
vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
|
|
pseudo_vma.vm_file = file;
|
|
|
|
for (index = start; index < end; index++) {
|
|
/*
|
|
* This is supposed to be the vaddr where the page is being
|
|
* faulted in, but we have no vaddr here.
|
|
*/
|
|
struct folio *folio;
|
|
unsigned long addr;
|
|
|
|
cond_resched();
|
|
|
|
/*
|
|
* fallocate(2) manpage permits EINTR; we may have been
|
|
* interrupted because we are using up too much memory.
|
|
*/
|
|
if (signal_pending(current)) {
|
|
error = -EINTR;
|
|
break;
|
|
}
|
|
|
|
/* addr is the offset within the file (zero based) */
|
|
addr = index * hpage_size;
|
|
|
|
/* mutex taken here, fault path and hole punch */
|
|
hash = hugetlb_fault_mutex_hash(mapping, index);
|
|
mutex_lock(&hugetlb_fault_mutex_table[hash]);
|
|
|
|
/* See if already present in mapping to avoid alloc/free */
|
|
folio = filemap_get_folio(mapping, index);
|
|
if (!IS_ERR(folio)) {
|
|
folio_put(folio);
|
|
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Allocate folio without setting the avoid_reserve argument.
|
|
* There certainly are no reserves associated with the
|
|
* pseudo_vma. However, there could be shared mappings with
|
|
* reserves for the file at the inode level. If we fallocate
|
|
* folios in these areas, we need to consume the reserves
|
|
* to keep reservation accounting consistent.
|
|
*/
|
|
hugetlb_set_vma_policy(&pseudo_vma, inode, index);
|
|
folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
|
|
hugetlb_drop_vma_policy(&pseudo_vma);
|
|
if (IS_ERR(folio)) {
|
|
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
|
|
error = PTR_ERR(folio);
|
|
goto out;
|
|
}
|
|
clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
|
|
__folio_mark_uptodate(folio);
|
|
error = hugetlb_add_to_page_cache(folio, mapping, index);
|
|
if (unlikely(error)) {
|
|
restore_reserve_on_error(h, &pseudo_vma, addr, folio);
|
|
folio_put(folio);
|
|
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
|
|
goto out;
|
|
}
|
|
|
|
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
|
|
|
|
folio_set_hugetlb_migratable(folio);
|
|
/*
|
|
* folio_unlock because locked by hugetlb_add_to_page_cache()
|
|
* folio_put() due to reference from alloc_hugetlb_folio()
|
|
*/
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
|
|
i_size_write(inode, offset + len);
|
|
inode_set_ctime_current(inode);
|
|
out:
|
|
inode_unlock(inode);
|
|
return error;
|
|
}
|
|
|
|
static int hugetlbfs_setattr(struct mnt_idmap *idmap,
|
|
struct dentry *dentry, struct iattr *attr)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
struct hstate *h = hstate_inode(inode);
|
|
int error;
|
|
unsigned int ia_valid = attr->ia_valid;
|
|
struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
|
|
|
|
error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
|
|
if (error)
|
|
return error;
|
|
|
|
if (ia_valid & ATTR_SIZE) {
|
|
loff_t oldsize = inode->i_size;
|
|
loff_t newsize = attr->ia_size;
|
|
|
|
if (newsize & ~huge_page_mask(h))
|
|
return -EINVAL;
|
|
/* protected by i_rwsem */
|
|
if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
|
|
(newsize > oldsize && (info->seals & F_SEAL_GROW)))
|
|
return -EPERM;
|
|
hugetlb_vmtruncate(inode, newsize);
|
|
}
|
|
|
|
setattr_copy(&nop_mnt_idmap, inode, attr);
|
|
mark_inode_dirty(inode);
|
|
return 0;
|
|
}
|
|
|
|
static struct inode *hugetlbfs_get_root(struct super_block *sb,
|
|
struct hugetlbfs_fs_context *ctx)
|
|
{
|
|
struct inode *inode;
|
|
|
|
inode = new_inode(sb);
|
|
if (inode) {
|
|
inode->i_ino = get_next_ino();
|
|
inode->i_mode = S_IFDIR | ctx->mode;
|
|
inode->i_uid = ctx->uid;
|
|
inode->i_gid = ctx->gid;
|
|
inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
|
|
inode->i_op = &hugetlbfs_dir_inode_operations;
|
|
inode->i_fop = &simple_dir_operations;
|
|
/* directory inodes start off with i_nlink == 2 (for "." entry) */
|
|
inc_nlink(inode);
|
|
lockdep_annotate_inode_mutex_key(inode);
|
|
}
|
|
return inode;
|
|
}
|
|
|
|
/*
|
|
* Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
|
|
* be taken from reclaim -- unlike regular filesystems. This needs an
|
|
* annotation because huge_pmd_share() does an allocation under hugetlb's
|
|
* i_mmap_rwsem.
|
|
*/
|
|
static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
|
|
|
|
static struct inode *hugetlbfs_get_inode(struct super_block *sb,
|
|
struct inode *dir,
|
|
umode_t mode, dev_t dev)
|
|
{
|
|
struct inode *inode;
|
|
struct resv_map *resv_map = NULL;
|
|
|
|
/*
|
|
* Reserve maps are only needed for inodes that can have associated
|
|
* page allocations.
|
|
*/
|
|
if (S_ISREG(mode) || S_ISLNK(mode)) {
|
|
resv_map = resv_map_alloc();
|
|
if (!resv_map)
|
|
return NULL;
|
|
}
|
|
|
|
inode = new_inode(sb);
|
|
if (inode) {
|
|
struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
|
|
|
|
inode->i_ino = get_next_ino();
|
|
inode_init_owner(&nop_mnt_idmap, inode, dir, mode);
|
|
lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
|
|
&hugetlbfs_i_mmap_rwsem_key);
|
|
inode->i_mapping->a_ops = &hugetlbfs_aops;
|
|
inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
|
|
inode->i_mapping->private_data = resv_map;
|
|
info->seals = F_SEAL_SEAL;
|
|
switch (mode & S_IFMT) {
|
|
default:
|
|
init_special_inode(inode, mode, dev);
|
|
break;
|
|
case S_IFREG:
|
|
inode->i_op = &hugetlbfs_inode_operations;
|
|
inode->i_fop = &hugetlbfs_file_operations;
|
|
break;
|
|
case S_IFDIR:
|
|
inode->i_op = &hugetlbfs_dir_inode_operations;
|
|
inode->i_fop = &simple_dir_operations;
|
|
|
|
/* directory inodes start off with i_nlink == 2 (for "." entry) */
|
|
inc_nlink(inode);
|
|
break;
|
|
case S_IFLNK:
|
|
inode->i_op = &page_symlink_inode_operations;
|
|
inode_nohighmem(inode);
|
|
break;
|
|
}
|
|
lockdep_annotate_inode_mutex_key(inode);
|
|
} else {
|
|
if (resv_map)
|
|
kref_put(&resv_map->refs, resv_map_release);
|
|
}
|
|
|
|
return inode;
|
|
}
|
|
|
|
/*
|
|
* File creation. Allocate an inode, and we're done..
|
|
*/
|
|
static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
|
|
struct dentry *dentry, umode_t mode, dev_t dev)
|
|
{
|
|
struct inode *inode;
|
|
|
|
inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
|
|
if (!inode)
|
|
return -ENOSPC;
|
|
dir->i_mtime = inode_set_ctime_current(dir);
|
|
d_instantiate(dentry, inode);
|
|
dget(dentry);/* Extra count - pin the dentry in core */
|
|
return 0;
|
|
}
|
|
|
|
static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
|
|
struct dentry *dentry, umode_t mode)
|
|
{
|
|
int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry,
|
|
mode | S_IFDIR, 0);
|
|
if (!retval)
|
|
inc_nlink(dir);
|
|
return retval;
|
|
}
|
|
|
|
static int hugetlbfs_create(struct mnt_idmap *idmap,
|
|
struct inode *dir, struct dentry *dentry,
|
|
umode_t mode, bool excl)
|
|
{
|
|
return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0);
|
|
}
|
|
|
|
static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
|
|
struct inode *dir, struct file *file,
|
|
umode_t mode)
|
|
{
|
|
struct inode *inode;
|
|
|
|
inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
|
|
if (!inode)
|
|
return -ENOSPC;
|
|
dir->i_mtime = inode_set_ctime_current(dir);
|
|
d_tmpfile(file, inode);
|
|
return finish_open_simple(file, 0);
|
|
}
|
|
|
|
static int hugetlbfs_symlink(struct mnt_idmap *idmap,
|
|
struct inode *dir, struct dentry *dentry,
|
|
const char *symname)
|
|
{
|
|
struct inode *inode;
|
|
int error = -ENOSPC;
|
|
|
|
inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
|
|
if (inode) {
|
|
int l = strlen(symname)+1;
|
|
error = page_symlink(inode, symname, l);
|
|
if (!error) {
|
|
d_instantiate(dentry, inode);
|
|
dget(dentry);
|
|
} else
|
|
iput(inode);
|
|
}
|
|
dir->i_mtime = inode_set_ctime_current(dir);
|
|
|
|
return error;
|
|
}
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
static int hugetlbfs_migrate_folio(struct address_space *mapping,
|
|
struct folio *dst, struct folio *src,
|
|
enum migrate_mode mode)
|
|
{
|
|
int rc;
|
|
|
|
rc = migrate_huge_page_move_mapping(mapping, dst, src);
|
|
if (rc != MIGRATEPAGE_SUCCESS)
|
|
return rc;
|
|
|
|
if (hugetlb_folio_subpool(src)) {
|
|
hugetlb_set_folio_subpool(dst,
|
|
hugetlb_folio_subpool(src));
|
|
hugetlb_set_folio_subpool(src, NULL);
|
|
}
|
|
|
|
if (mode != MIGRATE_SYNC_NO_COPY)
|
|
folio_migrate_copy(dst, src);
|
|
else
|
|
folio_migrate_flags(dst, src);
|
|
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
#else
|
|
#define hugetlbfs_migrate_folio NULL
|
|
#endif
|
|
|
|
static int hugetlbfs_error_remove_page(struct address_space *mapping,
|
|
struct page *page)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Display the mount options in /proc/mounts.
|
|
*/
|
|
static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
|
|
{
|
|
struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
|
|
struct hugepage_subpool *spool = sbinfo->spool;
|
|
unsigned long hpage_size = huge_page_size(sbinfo->hstate);
|
|
unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
|
|
char mod;
|
|
|
|
if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
|
|
seq_printf(m, ",uid=%u",
|
|
from_kuid_munged(&init_user_ns, sbinfo->uid));
|
|
if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
|
|
seq_printf(m, ",gid=%u",
|
|
from_kgid_munged(&init_user_ns, sbinfo->gid));
|
|
if (sbinfo->mode != 0755)
|
|
seq_printf(m, ",mode=%o", sbinfo->mode);
|
|
if (sbinfo->max_inodes != -1)
|
|
seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
|
|
|
|
hpage_size /= 1024;
|
|
mod = 'K';
|
|
if (hpage_size >= 1024) {
|
|
hpage_size /= 1024;
|
|
mod = 'M';
|
|
}
|
|
seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
|
|
if (spool) {
|
|
if (spool->max_hpages != -1)
|
|
seq_printf(m, ",size=%llu",
|
|
(unsigned long long)spool->max_hpages << hpage_shift);
|
|
if (spool->min_hpages != -1)
|
|
seq_printf(m, ",min_size=%llu",
|
|
(unsigned long long)spool->min_hpages << hpage_shift);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
|
|
{
|
|
struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
|
|
struct hstate *h = hstate_inode(d_inode(dentry));
|
|
|
|
buf->f_type = HUGETLBFS_MAGIC;
|
|
buf->f_bsize = huge_page_size(h);
|
|
if (sbinfo) {
|
|
spin_lock(&sbinfo->stat_lock);
|
|
/* If no limits set, just report 0 or -1 for max/free/used
|
|
* blocks, like simple_statfs() */
|
|
if (sbinfo->spool) {
|
|
long free_pages;
|
|
|
|
spin_lock_irq(&sbinfo->spool->lock);
|
|
buf->f_blocks = sbinfo->spool->max_hpages;
|
|
free_pages = sbinfo->spool->max_hpages
|
|
- sbinfo->spool->used_hpages;
|
|
buf->f_bavail = buf->f_bfree = free_pages;
|
|
spin_unlock_irq(&sbinfo->spool->lock);
|
|
buf->f_files = sbinfo->max_inodes;
|
|
buf->f_ffree = sbinfo->free_inodes;
|
|
}
|
|
spin_unlock(&sbinfo->stat_lock);
|
|
}
|
|
buf->f_namelen = NAME_MAX;
|
|
return 0;
|
|
}
|
|
|
|
static void hugetlbfs_put_super(struct super_block *sb)
|
|
{
|
|
struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
|
|
|
|
if (sbi) {
|
|
sb->s_fs_info = NULL;
|
|
|
|
if (sbi->spool)
|
|
hugepage_put_subpool(sbi->spool);
|
|
|
|
kfree(sbi);
|
|
}
|
|
}
|
|
|
|
static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
|
|
{
|
|
if (sbinfo->free_inodes >= 0) {
|
|
spin_lock(&sbinfo->stat_lock);
|
|
if (unlikely(!sbinfo->free_inodes)) {
|
|
spin_unlock(&sbinfo->stat_lock);
|
|
return 0;
|
|
}
|
|
sbinfo->free_inodes--;
|
|
spin_unlock(&sbinfo->stat_lock);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
|
|
{
|
|
if (sbinfo->free_inodes >= 0) {
|
|
spin_lock(&sbinfo->stat_lock);
|
|
sbinfo->free_inodes++;
|
|
spin_unlock(&sbinfo->stat_lock);
|
|
}
|
|
}
|
|
|
|
|
|
static struct kmem_cache *hugetlbfs_inode_cachep;
|
|
|
|
static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
|
|
{
|
|
struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
|
|
struct hugetlbfs_inode_info *p;
|
|
|
|
if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
|
|
return NULL;
|
|
p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
|
|
if (unlikely(!p)) {
|
|
hugetlbfs_inc_free_inodes(sbinfo);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Any time after allocation, hugetlbfs_destroy_inode can be called
|
|
* for the inode. mpol_free_shared_policy is unconditionally called
|
|
* as part of hugetlbfs_destroy_inode. So, initialize policy here
|
|
* in case of a quick call to destroy.
|
|
*
|
|
* Note that the policy is initialized even if we are creating a
|
|
* private inode. This simplifies hugetlbfs_destroy_inode.
|
|
*/
|
|
mpol_shared_policy_init(&p->policy, NULL);
|
|
|
|
return &p->vfs_inode;
|
|
}
|
|
|
|
static void hugetlbfs_free_inode(struct inode *inode)
|
|
{
|
|
kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
|
|
}
|
|
|
|
static void hugetlbfs_destroy_inode(struct inode *inode)
|
|
{
|
|
hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
|
|
mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
|
|
}
|
|
|
|
static const struct address_space_operations hugetlbfs_aops = {
|
|
.write_begin = hugetlbfs_write_begin,
|
|
.write_end = hugetlbfs_write_end,
|
|
.dirty_folio = noop_dirty_folio,
|
|
.migrate_folio = hugetlbfs_migrate_folio,
|
|
.error_remove_page = hugetlbfs_error_remove_page,
|
|
};
|
|
|
|
|
|
static void init_once(void *foo)
|
|
{
|
|
struct hugetlbfs_inode_info *ei = foo;
|
|
|
|
inode_init_once(&ei->vfs_inode);
|
|
}
|
|
|
|
const struct file_operations hugetlbfs_file_operations = {
|
|
.read_iter = hugetlbfs_read_iter,
|
|
.mmap = hugetlbfs_file_mmap,
|
|
.fsync = noop_fsync,
|
|
.get_unmapped_area = hugetlb_get_unmapped_area,
|
|
.llseek = default_llseek,
|
|
.fallocate = hugetlbfs_fallocate,
|
|
};
|
|
|
|
static const struct inode_operations hugetlbfs_dir_inode_operations = {
|
|
.create = hugetlbfs_create,
|
|
.lookup = simple_lookup,
|
|
.link = simple_link,
|
|
.unlink = simple_unlink,
|
|
.symlink = hugetlbfs_symlink,
|
|
.mkdir = hugetlbfs_mkdir,
|
|
.rmdir = simple_rmdir,
|
|
.mknod = hugetlbfs_mknod,
|
|
.rename = simple_rename,
|
|
.setattr = hugetlbfs_setattr,
|
|
.tmpfile = hugetlbfs_tmpfile,
|
|
};
|
|
|
|
static const struct inode_operations hugetlbfs_inode_operations = {
|
|
.setattr = hugetlbfs_setattr,
|
|
};
|
|
|
|
static const struct super_operations hugetlbfs_ops = {
|
|
.alloc_inode = hugetlbfs_alloc_inode,
|
|
.free_inode = hugetlbfs_free_inode,
|
|
.destroy_inode = hugetlbfs_destroy_inode,
|
|
.evict_inode = hugetlbfs_evict_inode,
|
|
.statfs = hugetlbfs_statfs,
|
|
.put_super = hugetlbfs_put_super,
|
|
.show_options = hugetlbfs_show_options,
|
|
};
|
|
|
|
/*
|
|
* Convert size option passed from command line to number of huge pages
|
|
* in the pool specified by hstate. Size option could be in bytes
|
|
* (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
|
|
*/
|
|
static long
|
|
hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
|
|
enum hugetlbfs_size_type val_type)
|
|
{
|
|
if (val_type == NO_SIZE)
|
|
return -1;
|
|
|
|
if (val_type == SIZE_PERCENT) {
|
|
size_opt <<= huge_page_shift(h);
|
|
size_opt *= h->max_huge_pages;
|
|
do_div(size_opt, 100);
|
|
}
|
|
|
|
size_opt >>= huge_page_shift(h);
|
|
return size_opt;
|
|
}
|
|
|
|
/*
|
|
* Parse one mount parameter.
|
|
*/
|
|
static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
|
|
{
|
|
struct hugetlbfs_fs_context *ctx = fc->fs_private;
|
|
struct fs_parse_result result;
|
|
char *rest;
|
|
unsigned long ps;
|
|
int opt;
|
|
|
|
opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
|
|
if (opt < 0)
|
|
return opt;
|
|
|
|
switch (opt) {
|
|
case Opt_uid:
|
|
ctx->uid = make_kuid(current_user_ns(), result.uint_32);
|
|
if (!uid_valid(ctx->uid))
|
|
goto bad_val;
|
|
return 0;
|
|
|
|
case Opt_gid:
|
|
ctx->gid = make_kgid(current_user_ns(), result.uint_32);
|
|
if (!gid_valid(ctx->gid))
|
|
goto bad_val;
|
|
return 0;
|
|
|
|
case Opt_mode:
|
|
ctx->mode = result.uint_32 & 01777U;
|
|
return 0;
|
|
|
|
case Opt_size:
|
|
/* memparse() will accept a K/M/G without a digit */
|
|
if (!param->string || !isdigit(param->string[0]))
|
|
goto bad_val;
|
|
ctx->max_size_opt = memparse(param->string, &rest);
|
|
ctx->max_val_type = SIZE_STD;
|
|
if (*rest == '%')
|
|
ctx->max_val_type = SIZE_PERCENT;
|
|
return 0;
|
|
|
|
case Opt_nr_inodes:
|
|
/* memparse() will accept a K/M/G without a digit */
|
|
if (!param->string || !isdigit(param->string[0]))
|
|
goto bad_val;
|
|
ctx->nr_inodes = memparse(param->string, &rest);
|
|
return 0;
|
|
|
|
case Opt_pagesize:
|
|
ps = memparse(param->string, &rest);
|
|
ctx->hstate = size_to_hstate(ps);
|
|
if (!ctx->hstate) {
|
|
pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
|
|
case Opt_min_size:
|
|
/* memparse() will accept a K/M/G without a digit */
|
|
if (!param->string || !isdigit(param->string[0]))
|
|
goto bad_val;
|
|
ctx->min_size_opt = memparse(param->string, &rest);
|
|
ctx->min_val_type = SIZE_STD;
|
|
if (*rest == '%')
|
|
ctx->min_val_type = SIZE_PERCENT;
|
|
return 0;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
bad_val:
|
|
return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
|
|
param->string, param->key);
|
|
}
|
|
|
|
/*
|
|
* Validate the parsed options.
|
|
*/
|
|
static int hugetlbfs_validate(struct fs_context *fc)
|
|
{
|
|
struct hugetlbfs_fs_context *ctx = fc->fs_private;
|
|
|
|
/*
|
|
* Use huge page pool size (in hstate) to convert the size
|
|
* options to number of huge pages. If NO_SIZE, -1 is returned.
|
|
*/
|
|
ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
|
|
ctx->max_size_opt,
|
|
ctx->max_val_type);
|
|
ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
|
|
ctx->min_size_opt,
|
|
ctx->min_val_type);
|
|
|
|
/*
|
|
* If max_size was specified, then min_size must be smaller
|
|
*/
|
|
if (ctx->max_val_type > NO_SIZE &&
|
|
ctx->min_hpages > ctx->max_hpages) {
|
|
pr_err("Minimum size can not be greater than maximum size\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
|
|
{
|
|
struct hugetlbfs_fs_context *ctx = fc->fs_private;
|
|
struct hugetlbfs_sb_info *sbinfo;
|
|
|
|
sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
|
|
if (!sbinfo)
|
|
return -ENOMEM;
|
|
sb->s_fs_info = sbinfo;
|
|
spin_lock_init(&sbinfo->stat_lock);
|
|
sbinfo->hstate = ctx->hstate;
|
|
sbinfo->max_inodes = ctx->nr_inodes;
|
|
sbinfo->free_inodes = ctx->nr_inodes;
|
|
sbinfo->spool = NULL;
|
|
sbinfo->uid = ctx->uid;
|
|
sbinfo->gid = ctx->gid;
|
|
sbinfo->mode = ctx->mode;
|
|
|
|
/*
|
|
* Allocate and initialize subpool if maximum or minimum size is
|
|
* specified. Any needed reservations (for minimum size) are taken
|
|
* when the subpool is created.
|
|
*/
|
|
if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
|
|
sbinfo->spool = hugepage_new_subpool(ctx->hstate,
|
|
ctx->max_hpages,
|
|
ctx->min_hpages);
|
|
if (!sbinfo->spool)
|
|
goto out_free;
|
|
}
|
|
sb->s_maxbytes = MAX_LFS_FILESIZE;
|
|
sb->s_blocksize = huge_page_size(ctx->hstate);
|
|
sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
|
|
sb->s_magic = HUGETLBFS_MAGIC;
|
|
sb->s_op = &hugetlbfs_ops;
|
|
sb->s_time_gran = 1;
|
|
|
|
/*
|
|
* Due to the special and limited functionality of hugetlbfs, it does
|
|
* not work well as a stacking filesystem.
|
|
*/
|
|
sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
|
|
sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
|
|
if (!sb->s_root)
|
|
goto out_free;
|
|
return 0;
|
|
out_free:
|
|
kfree(sbinfo->spool);
|
|
kfree(sbinfo);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int hugetlbfs_get_tree(struct fs_context *fc)
|
|
{
|
|
int err = hugetlbfs_validate(fc);
|
|
if (err)
|
|
return err;
|
|
return get_tree_nodev(fc, hugetlbfs_fill_super);
|
|
}
|
|
|
|
static void hugetlbfs_fs_context_free(struct fs_context *fc)
|
|
{
|
|
kfree(fc->fs_private);
|
|
}
|
|
|
|
static const struct fs_context_operations hugetlbfs_fs_context_ops = {
|
|
.free = hugetlbfs_fs_context_free,
|
|
.parse_param = hugetlbfs_parse_param,
|
|
.get_tree = hugetlbfs_get_tree,
|
|
};
|
|
|
|
static int hugetlbfs_init_fs_context(struct fs_context *fc)
|
|
{
|
|
struct hugetlbfs_fs_context *ctx;
|
|
|
|
ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
|
|
ctx->max_hpages = -1; /* No limit on size by default */
|
|
ctx->nr_inodes = -1; /* No limit on number of inodes by default */
|
|
ctx->uid = current_fsuid();
|
|
ctx->gid = current_fsgid();
|
|
ctx->mode = 0755;
|
|
ctx->hstate = &default_hstate;
|
|
ctx->min_hpages = -1; /* No default minimum size */
|
|
ctx->max_val_type = NO_SIZE;
|
|
ctx->min_val_type = NO_SIZE;
|
|
fc->fs_private = ctx;
|
|
fc->ops = &hugetlbfs_fs_context_ops;
|
|
return 0;
|
|
}
|
|
|
|
static struct file_system_type hugetlbfs_fs_type = {
|
|
.name = "hugetlbfs",
|
|
.init_fs_context = hugetlbfs_init_fs_context,
|
|
.parameters = hugetlb_fs_parameters,
|
|
.kill_sb = kill_litter_super,
|
|
};
|
|
|
|
static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
|
|
|
|
static int can_do_hugetlb_shm(void)
|
|
{
|
|
kgid_t shm_group;
|
|
shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
|
|
return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
|
|
}
|
|
|
|
static int get_hstate_idx(int page_size_log)
|
|
{
|
|
struct hstate *h = hstate_sizelog(page_size_log);
|
|
|
|
if (!h)
|
|
return -1;
|
|
return hstate_index(h);
|
|
}
|
|
|
|
/*
|
|
* Note that size should be aligned to proper hugepage size in caller side,
|
|
* otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
|
|
*/
|
|
struct file *hugetlb_file_setup(const char *name, size_t size,
|
|
vm_flags_t acctflag, int creat_flags,
|
|
int page_size_log)
|
|
{
|
|
struct inode *inode;
|
|
struct vfsmount *mnt;
|
|
int hstate_idx;
|
|
struct file *file;
|
|
|
|
hstate_idx = get_hstate_idx(page_size_log);
|
|
if (hstate_idx < 0)
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
mnt = hugetlbfs_vfsmount[hstate_idx];
|
|
if (!mnt)
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
|
|
struct ucounts *ucounts = current_ucounts();
|
|
|
|
if (user_shm_lock(size, ucounts)) {
|
|
pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
|
|
current->comm, current->pid);
|
|
user_shm_unlock(size, ucounts);
|
|
}
|
|
return ERR_PTR(-EPERM);
|
|
}
|
|
|
|
file = ERR_PTR(-ENOSPC);
|
|
inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
|
|
if (!inode)
|
|
goto out;
|
|
if (creat_flags == HUGETLB_SHMFS_INODE)
|
|
inode->i_flags |= S_PRIVATE;
|
|
|
|
inode->i_size = size;
|
|
clear_nlink(inode);
|
|
|
|
if (!hugetlb_reserve_pages(inode, 0,
|
|
size >> huge_page_shift(hstate_inode(inode)), NULL,
|
|
acctflag))
|
|
file = ERR_PTR(-ENOMEM);
|
|
else
|
|
file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
|
|
&hugetlbfs_file_operations);
|
|
if (!IS_ERR(file))
|
|
return file;
|
|
|
|
iput(inode);
|
|
out:
|
|
return file;
|
|
}
|
|
|
|
static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
|
|
{
|
|
struct fs_context *fc;
|
|
struct vfsmount *mnt;
|
|
|
|
fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
|
|
if (IS_ERR(fc)) {
|
|
mnt = ERR_CAST(fc);
|
|
} else {
|
|
struct hugetlbfs_fs_context *ctx = fc->fs_private;
|
|
ctx->hstate = h;
|
|
mnt = fc_mount(fc);
|
|
put_fs_context(fc);
|
|
}
|
|
if (IS_ERR(mnt))
|
|
pr_err("Cannot mount internal hugetlbfs for page size %luK",
|
|
huge_page_size(h) / SZ_1K);
|
|
return mnt;
|
|
}
|
|
|
|
static int __init init_hugetlbfs_fs(void)
|
|
{
|
|
struct vfsmount *mnt;
|
|
struct hstate *h;
|
|
int error;
|
|
int i;
|
|
|
|
if (!hugepages_supported()) {
|
|
pr_info("disabling because there are no supported hugepage sizes\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
error = -ENOMEM;
|
|
hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
|
|
sizeof(struct hugetlbfs_inode_info),
|
|
0, SLAB_ACCOUNT, init_once);
|
|
if (hugetlbfs_inode_cachep == NULL)
|
|
goto out;
|
|
|
|
error = register_filesystem(&hugetlbfs_fs_type);
|
|
if (error)
|
|
goto out_free;
|
|
|
|
/* default hstate mount is required */
|
|
mnt = mount_one_hugetlbfs(&default_hstate);
|
|
if (IS_ERR(mnt)) {
|
|
error = PTR_ERR(mnt);
|
|
goto out_unreg;
|
|
}
|
|
hugetlbfs_vfsmount[default_hstate_idx] = mnt;
|
|
|
|
/* other hstates are optional */
|
|
i = 0;
|
|
for_each_hstate(h) {
|
|
if (i == default_hstate_idx) {
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
mnt = mount_one_hugetlbfs(h);
|
|
if (IS_ERR(mnt))
|
|
hugetlbfs_vfsmount[i] = NULL;
|
|
else
|
|
hugetlbfs_vfsmount[i] = mnt;
|
|
i++;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_unreg:
|
|
(void)unregister_filesystem(&hugetlbfs_fs_type);
|
|
out_free:
|
|
kmem_cache_destroy(hugetlbfs_inode_cachep);
|
|
out:
|
|
return error;
|
|
}
|
|
fs_initcall(init_hugetlbfs_fs)
|