linux/arch/mips/powertv/memory.c
David VomLehn ca36c36b78 MIPS: PowerTV: Use O(1) algorthm for phys_to_dma/dma_to_phys
Replace phys_to_dma()/dma_to_phys() looping algorithm with an O(1) algorithm
The approach taken is inspired by the sparse memory implementation: take a
certain number of high-order bits off the address them, use this as an
index into a table containing an offset to the desired address and add
it to the original value. There is a table for mapping physical addresses
to DMA addresses and another one for the reverse mapping. The table sizes
depend on how fine-grained the mappings need to be; Coarser granularity
less to smaller tables.  On a processor with 32-bit physical and DMA
addresses, with 4 MIB granularity, memory usage is two 2048-byte arrays.
Each 32-byte cache line thus covers 64 MiB of address space.

Also, renames phys_to_bus() to phys_to_dma() and bus_to_phys() to
dma_to_phys() to align with kernel usage.

[Ralf: Fixed silly build breakage due to stackoverflow warning caused by
huge array on stack.]

Signed-off-by: David VomLehn <dvomlehn@cisco.com>
To: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/1257/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2010-08-05 13:25:40 +01:00

355 lines
9.5 KiB
C

/*
* Carsten Langgaard, carstenl@mips.com
* Copyright (C) 1999,2000 MIPS Technologies, Inc. All rights reserved.
* Portions copyright (C) 2009 Cisco Systems, Inc.
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* Apparently originally from arch/mips/malta-memory.c. Modified to work
* with the PowerTV bootloader.
*/
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/bootmem.h>
#include <linux/pfn.h>
#include <linux/string.h>
#include <asm/bootinfo.h>
#include <asm/page.h>
#include <asm/sections.h>
#include <asm/mips-boards/prom.h>
#include <asm/mach-powertv/asic.h>
#include <asm/mach-powertv/ioremap.h>
#include "init.h"
/* Memory constants */
#define KIBIBYTE(n) ((n) * 1024) /* Number of kibibytes */
#define MEBIBYTE(n) ((n) * KIBIBYTE(1024)) /* Number of mebibytes */
#define DEFAULT_MEMSIZE MEBIBYTE(128) /* If no memsize provided */
#define BLDR_SIZE KIBIBYTE(256) /* Memory reserved for bldr */
#define RV_SIZE MEBIBYTE(4) /* Size of reset vector */
#define LOW_MEM_END 0x20000000 /* Highest low memory address */
#define BLDR_ALIAS 0x10000000 /* Bootloader address */
#define RV_PHYS 0x1fc00000 /* Reset vector address */
#define LOW_RAM_END RV_PHYS /* End of real RAM in low mem */
/*
* Very low-level conversion from processor physical address to device
* DMA address for the first bank of memory.
*/
#define PHYS_TO_DMA(paddr) ((paddr) + (CONFIG_LOW_RAM_DMA - LOW_RAM_ALIAS))
unsigned long ptv_memsize;
/*
* struct low_mem_reserved - Items in low memmory that are reserved
* @start: Physical address of item
* @size: Size, in bytes, of this item
* @is_aliased: True if this is RAM aliased from another location. If false,
* it is something other than aliased RAM and the RAM in the
* unaliased address is still visible outside of low memory.
*/
struct low_mem_reserved {
phys_addr_t start;
phys_addr_t size;
bool is_aliased;
};
/*
* Must be in ascending address order
*/
struct low_mem_reserved low_mem_reserved[] = {
{BLDR_ALIAS, BLDR_SIZE, true}, /* Bootloader RAM */
{RV_PHYS, RV_SIZE, false}, /* Reset vector */
};
/*
* struct mem_layout - layout of a piece of the system RAM
* @phys: Physical address of the start of this piece of RAM. This is the
* address at which both the processor and I/O devices see the
* RAM.
* @alias: Alias of this piece of memory in order to make it appear in
* the low memory part of the processor's address space. I/O
* devices don't see anything here.
* @size: Size, in bytes, of this piece of RAM
*/
struct mem_layout {
phys_addr_t phys;
phys_addr_t alias;
phys_addr_t size;
};
/*
* struct mem_layout_list - list descriptor for layouts of system RAM pieces
* @family: Specifies the family being described
* @n: Number of &struct mem_layout elements
* @layout: Pointer to the list of &mem_layout structures
*/
struct mem_layout_list {
enum family_type family;
size_t n;
struct mem_layout *layout;
};
static struct mem_layout f1500_layout[] = {
{0x20000000, 0x10000000, MEBIBYTE(256)},
};
static struct mem_layout f4500_layout[] = {
{0x40000000, 0x10000000, MEBIBYTE(256)},
{0x20000000, 0x20000000, MEBIBYTE(32)},
};
static struct mem_layout f8500_layout[] = {
{0x40000000, 0x10000000, MEBIBYTE(256)},
{0x20000000, 0x20000000, MEBIBYTE(32)},
{0x30000000, 0x30000000, MEBIBYTE(32)},
};
static struct mem_layout fx600_layout[] = {
{0x20000000, 0x10000000, MEBIBYTE(256)},
{0x60000000, 0x60000000, MEBIBYTE(128)},
};
static struct mem_layout_list layout_list[] = {
{FAMILY_1500, ARRAY_SIZE(f1500_layout), f1500_layout},
{FAMILY_1500VZE, ARRAY_SIZE(f1500_layout), f1500_layout},
{FAMILY_1500VZF, ARRAY_SIZE(f1500_layout), f1500_layout},
{FAMILY_4500, ARRAY_SIZE(f4500_layout), f4500_layout},
{FAMILY_8500, ARRAY_SIZE(f8500_layout), f8500_layout},
{FAMILY_8500RNG, ARRAY_SIZE(f8500_layout), f8500_layout},
{FAMILY_4600, ARRAY_SIZE(fx600_layout), fx600_layout},
{FAMILY_4600VZA, ARRAY_SIZE(fx600_layout), fx600_layout},
{FAMILY_8600, ARRAY_SIZE(fx600_layout), fx600_layout},
{FAMILY_8600VZB, ARRAY_SIZE(fx600_layout), fx600_layout},
};
/* If we can't determine the layout, use this */
static struct mem_layout default_layout[] = {
{0x20000000, 0x10000000, MEBIBYTE(128)},
};
/**
* register_non_ram - register low memory not available for RAM usage
*/
static __init void register_non_ram(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(low_mem_reserved); i++)
add_memory_region(low_mem_reserved[i].start,
low_mem_reserved[i].size, BOOT_MEM_RESERVED);
}
/**
* get_memsize - get the size of memory as a single bank
*/
static phys_addr_t get_memsize(void)
{
static char cmdline[COMMAND_LINE_SIZE] __initdata;
phys_addr_t memsize = 0;
char *memsize_str;
char *ptr;
/* Check the command line first for a memsize directive */
strcpy(cmdline, arcs_cmdline);
ptr = strstr(cmdline, "memsize=");
if (ptr && (ptr != cmdline) && (*(ptr - 1) != ' '))
ptr = strstr(ptr, " memsize=");
if (ptr) {
memsize = memparse(ptr + 8, &ptr);
} else {
/* otherwise look in the environment */
memsize_str = prom_getenv("memsize");
if (memsize_str != NULL) {
pr_info("prom memsize = %s\n", memsize_str);
memsize = simple_strtol(memsize_str, NULL, 0);
}
if (memsize == 0) {
if (_prom_memsize != 0) {
memsize = _prom_memsize;
pr_info("_prom_memsize = 0x%x\n", memsize);
/* add in memory that the bootloader doesn't
* report */
memsize += BLDR_SIZE;
} else {
memsize = DEFAULT_MEMSIZE;
pr_info("Memsize not passed by bootloader, "
"defaulting to 0x%x\n", memsize);
}
}
}
return memsize;
}
/**
* register_low_ram - register an aliased section of RAM
* @p: Alias address of memory
* @n: Number of bytes in this section of memory
*
* Returns the number of bytes registered
*
*/
static __init phys_addr_t register_low_ram(phys_addr_t p, phys_addr_t n)
{
phys_addr_t s;
int i;
phys_addr_t orig_n;
orig_n = n;
BUG_ON(p + n > RV_PHYS);
for (i = 0; n != 0 && i < ARRAY_SIZE(low_mem_reserved); i++) {
phys_addr_t start;
phys_addr_t size;
start = low_mem_reserved[i].start;
size = low_mem_reserved[i].size;
/* Handle memory before this low memory section */
if (p < start) {
phys_addr_t s;
s = min(n, start - p);
add_memory_region(p, s, BOOT_MEM_RAM);
p += s;
n -= s;
}
/* Handle the low memory section itself. If it's aliased,
* we reduce the number of byes left, but if not, the RAM
* is available elsewhere and we don't reduce the number of
* bytes remaining. */
if (p == start) {
if (low_mem_reserved[i].is_aliased) {
s = min(n, size);
n -= s;
p += s;
} else
p += n;
}
}
return orig_n - n;
}
/*
* register_ram - register real RAM
* @p: Address of memory as seen by devices
* @alias: If the memory is seen at an additional address by the processor,
* this will be the address, otherwise it is the same as @p.
* @n: Number of bytes in this section of memory
*/
static __init void register_ram(phys_addr_t p, phys_addr_t alias,
phys_addr_t n)
{
/*
* If some or all of this memory has an alias, break it into the
* aliased and non-aliased portion.
*/
if (p != alias) {
phys_addr_t alias_size;
phys_addr_t registered;
alias_size = min(n, LOW_RAM_END - alias);
registered = register_low_ram(alias, alias_size);
ioremap_add_map(alias, p, n);
n -= registered;
p += registered;
}
#ifdef CONFIG_HIGHMEM
if (n != 0) {
add_memory_region(p, n, BOOT_MEM_RAM);
ioremap_add_map(p, p, n);
}
#endif
}
/**
* register_address_space - register things in the address space
* @memsize: Number of bytes of RAM installed
*
* Takes the given number of bytes of RAM and registers as many of the regions,
* or partial regions, as it can. So, the default configuration might have
* two regions with 256 MiB each. If the memsize passed in on the command line
* is 384 MiB, it will register the first region with 256 MiB and the second
* with 128 MiB.
*/
static __init void register_address_space(phys_addr_t memsize)
{
int i;
phys_addr_t size;
size_t n;
struct mem_layout *layout;
enum family_type family;
/*
* Register all of the things that aren't available to the kernel as
* memory.
*/
register_non_ram();
/* Find the appropriate memory description */
family = platform_get_family();
for (i = 0; i < ARRAY_SIZE(layout_list); i++) {
if (layout_list[i].family == family)
break;
}
if (i == ARRAY_SIZE(layout_list)) {
n = ARRAY_SIZE(default_layout);
layout = default_layout;
} else {
n = layout_list[i].n;
layout = layout_list[i].layout;
}
for (i = 0; memsize != 0 && i < n; i++) {
size = min(memsize, layout[i].size);
register_ram(layout[i].phys, layout[i].alias, size);
memsize -= size;
}
}
void __init prom_meminit(void)
{
ptv_memsize = get_memsize();
register_address_space(ptv_memsize);
}
void __init prom_free_prom_memory(void)
{
unsigned long addr;
int i;
for (i = 0; i < boot_mem_map.nr_map; i++) {
if (boot_mem_map.map[i].type != BOOT_MEM_ROM_DATA)
continue;
addr = boot_mem_map.map[i].addr;
free_init_pages("prom memory",
addr, addr + boot_mem_map.map[i].size);
}
}