mirror of
https://github.com/torvalds/linux.git
synced 2025-01-01 15:51:46 +00:00
43fa9ba632
Return negative error code from the edac_mc_add_mc() error handling case instead of 0, as done elsewhere in this function. Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com> Acked-by: York Sun <york.sun@nxp.com> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/1473350284-26482-1-git-send-email-weiyj.lk@gmail.com Signed-off-by: Borislav Petkov <bp@suse.de>
634 lines
15 KiB
C
634 lines
15 KiB
C
/*
|
|
* Freescale Memory Controller kernel module
|
|
*
|
|
* Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
|
|
* ARM-based Layerscape SoCs including LS2xxx. Originally split
|
|
* out from mpc85xx_edac EDAC driver.
|
|
*
|
|
* Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
|
|
*
|
|
* Author: Dave Jiang <djiang@mvista.com>
|
|
*
|
|
* 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
|
|
* the terms of the GNU General Public License version 2. This program
|
|
* is licensed "as is" without any warranty of any kind, whether express
|
|
* or implied.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/edac.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/gfp.h>
|
|
|
|
#include <linux/of_platform.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_address.h>
|
|
#include "edac_module.h"
|
|
#include "edac_core.h"
|
|
#include "fsl_ddr_edac.h"
|
|
|
|
#define EDAC_MOD_STR "fsl_ddr_edac"
|
|
|
|
static int edac_mc_idx;
|
|
|
|
static u32 orig_ddr_err_disable;
|
|
static u32 orig_ddr_err_sbe;
|
|
static bool little_endian;
|
|
|
|
static inline u32 ddr_in32(void __iomem *addr)
|
|
{
|
|
return little_endian ? ioread32(addr) : ioread32be(addr);
|
|
}
|
|
|
|
static inline void ddr_out32(void __iomem *addr, u32 value)
|
|
{
|
|
if (little_endian)
|
|
iowrite32(value, addr);
|
|
else
|
|
iowrite32be(value, addr);
|
|
}
|
|
|
|
/************************ MC SYSFS parts ***********************************/
|
|
|
|
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
|
|
|
|
static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
|
|
struct device_attribute *mattr,
|
|
char *data)
|
|
{
|
|
struct mem_ctl_info *mci = to_mci(dev);
|
|
struct fsl_mc_pdata *pdata = mci->pvt_info;
|
|
return sprintf(data, "0x%08x",
|
|
ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
|
|
}
|
|
|
|
static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
|
|
struct device_attribute *mattr,
|
|
char *data)
|
|
{
|
|
struct mem_ctl_info *mci = to_mci(dev);
|
|
struct fsl_mc_pdata *pdata = mci->pvt_info;
|
|
return sprintf(data, "0x%08x",
|
|
ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
|
|
}
|
|
|
|
static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
|
|
struct device_attribute *mattr,
|
|
char *data)
|
|
{
|
|
struct mem_ctl_info *mci = to_mci(dev);
|
|
struct fsl_mc_pdata *pdata = mci->pvt_info;
|
|
return sprintf(data, "0x%08x",
|
|
ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
|
|
}
|
|
|
|
static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
|
|
struct device_attribute *mattr,
|
|
const char *data, size_t count)
|
|
{
|
|
struct mem_ctl_info *mci = to_mci(dev);
|
|
struct fsl_mc_pdata *pdata = mci->pvt_info;
|
|
unsigned long val;
|
|
int rc;
|
|
|
|
if (isdigit(*data)) {
|
|
rc = kstrtoul(data, 0, &val);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
|
|
return count;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
|
|
struct device_attribute *mattr,
|
|
const char *data, size_t count)
|
|
{
|
|
struct mem_ctl_info *mci = to_mci(dev);
|
|
struct fsl_mc_pdata *pdata = mci->pvt_info;
|
|
unsigned long val;
|
|
int rc;
|
|
|
|
if (isdigit(*data)) {
|
|
rc = kstrtoul(data, 0, &val);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
|
|
return count;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
|
|
struct device_attribute *mattr,
|
|
const char *data, size_t count)
|
|
{
|
|
struct mem_ctl_info *mci = to_mci(dev);
|
|
struct fsl_mc_pdata *pdata = mci->pvt_info;
|
|
unsigned long val;
|
|
int rc;
|
|
|
|
if (isdigit(*data)) {
|
|
rc = kstrtoul(data, 0, &val);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
|
|
return count;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
|
|
fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
|
|
DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
|
|
fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
|
|
DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
|
|
fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
|
|
|
|
static struct attribute *fsl_ddr_dev_attrs[] = {
|
|
&dev_attr_inject_data_hi.attr,
|
|
&dev_attr_inject_data_lo.attr,
|
|
&dev_attr_inject_ctrl.attr,
|
|
NULL
|
|
};
|
|
|
|
ATTRIBUTE_GROUPS(fsl_ddr_dev);
|
|
|
|
/**************************** MC Err device ***************************/
|
|
|
|
/*
|
|
* Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
|
|
* MPC8572 User's Manual. Each line represents a syndrome bit column as a
|
|
* 64-bit value, but split into an upper and lower 32-bit chunk. The labels
|
|
* below correspond to Freescale's manuals.
|
|
*/
|
|
static unsigned int ecc_table[16] = {
|
|
/* MSB LSB */
|
|
/* [0:31] [32:63] */
|
|
0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
|
|
0x00ff00ff, 0x00fff0ff,
|
|
0x0f0f0f0f, 0x0f0fff00,
|
|
0x11113333, 0x7777000f,
|
|
0x22224444, 0x8888222f,
|
|
0x44448888, 0xffff4441,
|
|
0x8888ffff, 0x11118882,
|
|
0xffff1111, 0x22221114, /* Syndrome bit 0 */
|
|
};
|
|
|
|
/*
|
|
* Calculate the correct ECC value for a 64-bit value specified by high:low
|
|
*/
|
|
static u8 calculate_ecc(u32 high, u32 low)
|
|
{
|
|
u32 mask_low;
|
|
u32 mask_high;
|
|
int bit_cnt;
|
|
u8 ecc = 0;
|
|
int i;
|
|
int j;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
mask_high = ecc_table[i * 2];
|
|
mask_low = ecc_table[i * 2 + 1];
|
|
bit_cnt = 0;
|
|
|
|
for (j = 0; j < 32; j++) {
|
|
if ((mask_high >> j) & 1)
|
|
bit_cnt ^= (high >> j) & 1;
|
|
if ((mask_low >> j) & 1)
|
|
bit_cnt ^= (low >> j) & 1;
|
|
}
|
|
|
|
ecc |= bit_cnt << i;
|
|
}
|
|
|
|
return ecc;
|
|
}
|
|
|
|
/*
|
|
* Create the syndrome code which is generated if the data line specified by
|
|
* 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
|
|
* User's Manual and 9-61 in the MPC8572 User's Manual.
|
|
*/
|
|
static u8 syndrome_from_bit(unsigned int bit) {
|
|
int i;
|
|
u8 syndrome = 0;
|
|
|
|
/*
|
|
* Cycle through the upper or lower 32-bit portion of each value in
|
|
* ecc_table depending on if 'bit' is in the upper or lower half of
|
|
* 64-bit data.
|
|
*/
|
|
for (i = bit < 32; i < 16; i += 2)
|
|
syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
|
|
|
|
return syndrome;
|
|
}
|
|
|
|
/*
|
|
* Decode data and ecc syndrome to determine what went wrong
|
|
* Note: This can only decode single-bit errors
|
|
*/
|
|
static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
|
|
int *bad_data_bit, int *bad_ecc_bit)
|
|
{
|
|
int i;
|
|
u8 syndrome;
|
|
|
|
*bad_data_bit = -1;
|
|
*bad_ecc_bit = -1;
|
|
|
|
/*
|
|
* Calculate the ECC of the captured data and XOR it with the captured
|
|
* ECC to find an ECC syndrome value we can search for
|
|
*/
|
|
syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
|
|
|
|
/* Check if a data line is stuck... */
|
|
for (i = 0; i < 64; i++) {
|
|
if (syndrome == syndrome_from_bit(i)) {
|
|
*bad_data_bit = i;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* If data is correct, check ECC bits for errors... */
|
|
for (i = 0; i < 8; i++) {
|
|
if ((syndrome >> i) & 0x1) {
|
|
*bad_ecc_bit = i;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define make64(high, low) (((u64)(high) << 32) | (low))
|
|
|
|
static void fsl_mc_check(struct mem_ctl_info *mci)
|
|
{
|
|
struct fsl_mc_pdata *pdata = mci->pvt_info;
|
|
struct csrow_info *csrow;
|
|
u32 bus_width;
|
|
u32 err_detect;
|
|
u32 syndrome;
|
|
u64 err_addr;
|
|
u32 pfn;
|
|
int row_index;
|
|
u32 cap_high;
|
|
u32 cap_low;
|
|
int bad_data_bit;
|
|
int bad_ecc_bit;
|
|
|
|
err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
|
|
if (!err_detect)
|
|
return;
|
|
|
|
fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
|
|
err_detect);
|
|
|
|
/* no more processing if not ECC bit errors */
|
|
if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
|
|
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
|
|
return;
|
|
}
|
|
|
|
syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
|
|
|
|
/* Mask off appropriate bits of syndrome based on bus width */
|
|
bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
|
|
DSC_DBW_MASK) ? 32 : 64;
|
|
if (bus_width == 64)
|
|
syndrome &= 0xff;
|
|
else
|
|
syndrome &= 0xffff;
|
|
|
|
err_addr = make64(
|
|
ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
|
|
ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
|
|
pfn = err_addr >> PAGE_SHIFT;
|
|
|
|
for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
|
|
csrow = mci->csrows[row_index];
|
|
if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
|
|
break;
|
|
}
|
|
|
|
cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
|
|
cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
|
|
|
|
/*
|
|
* Analyze single-bit errors on 64-bit wide buses
|
|
* TODO: Add support for 32-bit wide buses
|
|
*/
|
|
if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
|
|
sbe_ecc_decode(cap_high, cap_low, syndrome,
|
|
&bad_data_bit, &bad_ecc_bit);
|
|
|
|
if (bad_data_bit != -1)
|
|
fsl_mc_printk(mci, KERN_ERR,
|
|
"Faulty Data bit: %d\n", bad_data_bit);
|
|
if (bad_ecc_bit != -1)
|
|
fsl_mc_printk(mci, KERN_ERR,
|
|
"Faulty ECC bit: %d\n", bad_ecc_bit);
|
|
|
|
fsl_mc_printk(mci, KERN_ERR,
|
|
"Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
|
|
cap_high ^ (1 << (bad_data_bit - 32)),
|
|
cap_low ^ (1 << bad_data_bit),
|
|
syndrome ^ (1 << bad_ecc_bit));
|
|
}
|
|
|
|
fsl_mc_printk(mci, KERN_ERR,
|
|
"Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
|
|
cap_high, cap_low, syndrome);
|
|
fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
|
|
fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
|
|
|
|
/* we are out of range */
|
|
if (row_index == mci->nr_csrows)
|
|
fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
|
|
|
|
if (err_detect & DDR_EDE_SBE)
|
|
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
|
|
pfn, err_addr & ~PAGE_MASK, syndrome,
|
|
row_index, 0, -1,
|
|
mci->ctl_name, "");
|
|
|
|
if (err_detect & DDR_EDE_MBE)
|
|
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
|
|
pfn, err_addr & ~PAGE_MASK, syndrome,
|
|
row_index, 0, -1,
|
|
mci->ctl_name, "");
|
|
|
|
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
|
|
}
|
|
|
|
static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
|
|
{
|
|
struct mem_ctl_info *mci = dev_id;
|
|
struct fsl_mc_pdata *pdata = mci->pvt_info;
|
|
u32 err_detect;
|
|
|
|
err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
|
|
if (!err_detect)
|
|
return IRQ_NONE;
|
|
|
|
fsl_mc_check(mci);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
|
|
{
|
|
struct fsl_mc_pdata *pdata = mci->pvt_info;
|
|
struct csrow_info *csrow;
|
|
struct dimm_info *dimm;
|
|
u32 sdram_ctl;
|
|
u32 sdtype;
|
|
enum mem_type mtype;
|
|
u32 cs_bnds;
|
|
int index;
|
|
|
|
sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
|
|
|
|
sdtype = sdram_ctl & DSC_SDTYPE_MASK;
|
|
if (sdram_ctl & DSC_RD_EN) {
|
|
switch (sdtype) {
|
|
case 0x02000000:
|
|
mtype = MEM_RDDR;
|
|
break;
|
|
case 0x03000000:
|
|
mtype = MEM_RDDR2;
|
|
break;
|
|
case 0x07000000:
|
|
mtype = MEM_RDDR3;
|
|
break;
|
|
case 0x05000000:
|
|
mtype = MEM_RDDR4;
|
|
break;
|
|
default:
|
|
mtype = MEM_UNKNOWN;
|
|
break;
|
|
}
|
|
} else {
|
|
switch (sdtype) {
|
|
case 0x02000000:
|
|
mtype = MEM_DDR;
|
|
break;
|
|
case 0x03000000:
|
|
mtype = MEM_DDR2;
|
|
break;
|
|
case 0x07000000:
|
|
mtype = MEM_DDR3;
|
|
break;
|
|
case 0x05000000:
|
|
mtype = MEM_DDR4;
|
|
break;
|
|
default:
|
|
mtype = MEM_UNKNOWN;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (index = 0; index < mci->nr_csrows; index++) {
|
|
u32 start;
|
|
u32 end;
|
|
|
|
csrow = mci->csrows[index];
|
|
dimm = csrow->channels[0]->dimm;
|
|
|
|
cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
|
|
(index * FSL_MC_CS_BNDS_OFS));
|
|
|
|
start = (cs_bnds & 0xffff0000) >> 16;
|
|
end = (cs_bnds & 0x0000ffff);
|
|
|
|
if (start == end)
|
|
continue; /* not populated */
|
|
|
|
start <<= (24 - PAGE_SHIFT);
|
|
end <<= (24 - PAGE_SHIFT);
|
|
end |= (1 << (24 - PAGE_SHIFT)) - 1;
|
|
|
|
csrow->first_page = start;
|
|
csrow->last_page = end;
|
|
|
|
dimm->nr_pages = end + 1 - start;
|
|
dimm->grain = 8;
|
|
dimm->mtype = mtype;
|
|
dimm->dtype = DEV_UNKNOWN;
|
|
if (sdram_ctl & DSC_X32_EN)
|
|
dimm->dtype = DEV_X32;
|
|
dimm->edac_mode = EDAC_SECDED;
|
|
}
|
|
}
|
|
|
|
int fsl_mc_err_probe(struct platform_device *op)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct edac_mc_layer layers[2];
|
|
struct fsl_mc_pdata *pdata;
|
|
struct resource r;
|
|
u32 sdram_ctl;
|
|
int res;
|
|
|
|
if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
|
|
layers[0].size = 4;
|
|
layers[0].is_virt_csrow = true;
|
|
layers[1].type = EDAC_MC_LAYER_CHANNEL;
|
|
layers[1].size = 1;
|
|
layers[1].is_virt_csrow = false;
|
|
mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
|
|
sizeof(*pdata));
|
|
if (!mci) {
|
|
devres_release_group(&op->dev, fsl_mc_err_probe);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pdata = mci->pvt_info;
|
|
pdata->name = "fsl_mc_err";
|
|
mci->pdev = &op->dev;
|
|
pdata->edac_idx = edac_mc_idx++;
|
|
dev_set_drvdata(mci->pdev, mci);
|
|
mci->ctl_name = pdata->name;
|
|
mci->dev_name = pdata->name;
|
|
|
|
/*
|
|
* Get the endianness of DDR controller registers.
|
|
* Default is big endian.
|
|
*/
|
|
little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
|
|
|
|
res = of_address_to_resource(op->dev.of_node, 0, &r);
|
|
if (res) {
|
|
pr_err("%s: Unable to get resource for MC err regs\n",
|
|
__func__);
|
|
goto err;
|
|
}
|
|
|
|
if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
|
|
pdata->name)) {
|
|
pr_err("%s: Error while requesting mem region\n",
|
|
__func__);
|
|
res = -EBUSY;
|
|
goto err;
|
|
}
|
|
|
|
pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
|
|
if (!pdata->mc_vbase) {
|
|
pr_err("%s: Unable to setup MC err regs\n", __func__);
|
|
res = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
|
|
if (!(sdram_ctl & DSC_ECC_EN)) {
|
|
/* no ECC */
|
|
pr_warn("%s: No ECC DIMMs discovered\n", __func__);
|
|
res = -ENODEV;
|
|
goto err;
|
|
}
|
|
|
|
edac_dbg(3, "init mci\n");
|
|
mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
|
|
MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
|
|
MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
|
|
MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
|
|
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
|
|
mci->edac_cap = EDAC_FLAG_SECDED;
|
|
mci->mod_name = EDAC_MOD_STR;
|
|
|
|
if (edac_op_state == EDAC_OPSTATE_POLL)
|
|
mci->edac_check = fsl_mc_check;
|
|
|
|
mci->ctl_page_to_phys = NULL;
|
|
|
|
mci->scrub_mode = SCRUB_SW_SRC;
|
|
|
|
fsl_ddr_init_csrows(mci);
|
|
|
|
/* store the original error disable bits */
|
|
orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
|
|
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
|
|
|
|
/* clear all error bits */
|
|
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
|
|
|
|
res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
|
|
if (res) {
|
|
edac_dbg(3, "failed edac_mc_add_mc()\n");
|
|
goto err;
|
|
}
|
|
|
|
if (edac_op_state == EDAC_OPSTATE_INT) {
|
|
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
|
|
DDR_EIE_MBEE | DDR_EIE_SBEE);
|
|
|
|
/* store the original error management threshold */
|
|
orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
|
|
FSL_MC_ERR_SBE) & 0xff0000;
|
|
|
|
/* set threshold to 1 error per interrupt */
|
|
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
|
|
|
|
/* register interrupts */
|
|
pdata->irq = platform_get_irq(op, 0);
|
|
res = devm_request_irq(&op->dev, pdata->irq,
|
|
fsl_mc_isr,
|
|
IRQF_SHARED,
|
|
"[EDAC] MC err", mci);
|
|
if (res < 0) {
|
|
pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
|
|
__func__, pdata->irq);
|
|
res = -ENODEV;
|
|
goto err2;
|
|
}
|
|
|
|
pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
|
|
pdata->irq);
|
|
}
|
|
|
|
devres_remove_group(&op->dev, fsl_mc_err_probe);
|
|
edac_dbg(3, "success\n");
|
|
pr_info(EDAC_MOD_STR " MC err registered\n");
|
|
|
|
return 0;
|
|
|
|
err2:
|
|
edac_mc_del_mc(&op->dev);
|
|
err:
|
|
devres_release_group(&op->dev, fsl_mc_err_probe);
|
|
edac_mc_free(mci);
|
|
return res;
|
|
}
|
|
|
|
int fsl_mc_err_remove(struct platform_device *op)
|
|
{
|
|
struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
|
|
struct fsl_mc_pdata *pdata = mci->pvt_info;
|
|
|
|
edac_dbg(0, "\n");
|
|
|
|
if (edac_op_state == EDAC_OPSTATE_INT) {
|
|
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
|
|
}
|
|
|
|
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
|
|
orig_ddr_err_disable);
|
|
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
|
|
|
|
edac_mc_del_mc(&op->dev);
|
|
edac_mc_free(mci);
|
|
return 0;
|
|
}
|