linux/fs/btrfs/bio.c
Qu Wenruo 4317ff0056 btrfs: introduce btrfs_bio::fs_info member
Currently we're doing a lot of work for btrfs_bio:

- Checksum verification for data read bios
- Bio splits if it crosses stripe boundary
- Read repair for data read bios

However for the incoming scrub patches, we don't want this extra
functionality at all, just plain logical + mirror -> physical mapping
ability.

Thus here we do the following changes:

- Introduce btrfs_bio::fs_info
  This is for the new scrub specific btrfs_bio, which would not populate
  btrfs_bio::inode.
  Thus we need such new member to grab a fs_info

  This new member will always be populated.

- Replace @inode argument with @fs_info for btrfs_bio_init() and its
  caller
  Since @inode is no longer a mandatory member, replace it with
  @fs_info, and let involved users populate @inode.

- Skip checksum verification and generation if @bbio->inode is NULL

- Add extra ASSERT()s
  To make sure:

  * bbio->inode is properly set for involved read repair path
  * if @file_offset is set, bbio->inode is also populated

- Grab @fs_info from @bbio directly
  We can no longer go @bbio->inode->root->fs_info, as bbio->inode can be
  NULL. This involves:

  * btrfs_simple_end_io()
  * should_async_write()
  * btrfs_wq_submit_bio()
  * btrfs_use_zone_append()

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17 18:01:23 +02:00

857 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
* Copyright (C) 2022 Christoph Hellwig.
*/
#include <linux/bio.h>
#include "bio.h"
#include "ctree.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"
#include "check-integrity.h"
#include "dev-replace.h"
#include "rcu-string.h"
#include "zoned.h"
#include "file-item.h"
static struct bio_set btrfs_bioset;
static struct bio_set btrfs_clone_bioset;
static struct bio_set btrfs_repair_bioset;
static mempool_t btrfs_failed_bio_pool;
struct btrfs_failed_bio {
struct btrfs_bio *bbio;
int num_copies;
atomic_t repair_count;
};
/*
* Initialize a btrfs_bio structure. This skips the embedded bio itself as it
* is already initialized by the block layer.
*/
void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
btrfs_bio_end_io_t end_io, void *private)
{
memset(bbio, 0, offsetof(struct btrfs_bio, bio));
bbio->fs_info = fs_info;
bbio->end_io = end_io;
bbio->private = private;
atomic_set(&bbio->pending_ios, 1);
}
/*
* Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for
* btrfs, and is used for all I/O submitted through btrfs_submit_bio.
*
* Just like the underlying bio_alloc_bioset it will not fail as it is backed by
* a mempool.
*/
struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
struct btrfs_fs_info *fs_info,
btrfs_bio_end_io_t end_io, void *private)
{
struct btrfs_bio *bbio;
struct bio *bio;
bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
bbio = btrfs_bio(bio);
btrfs_bio_init(bbio, fs_info, end_io, private);
return bbio;
}
static blk_status_t btrfs_bio_extract_ordered_extent(struct btrfs_bio *bbio)
{
struct btrfs_ordered_extent *ordered;
int ret;
ordered = btrfs_lookup_ordered_extent(bbio->inode, bbio->file_offset);
if (WARN_ON_ONCE(!ordered))
return BLK_STS_IOERR;
ret = btrfs_extract_ordered_extent(bbio, ordered);
btrfs_put_ordered_extent(ordered);
return errno_to_blk_status(ret);
}
static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
struct btrfs_bio *orig_bbio,
u64 map_length, bool use_append)
{
struct btrfs_bio *bbio;
struct bio *bio;
if (use_append) {
unsigned int nr_segs;
bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs,
&btrfs_clone_bioset, map_length);
} else {
bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT,
GFP_NOFS, &btrfs_clone_bioset);
}
bbio = btrfs_bio(bio);
btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
bbio->inode = orig_bbio->inode;
bbio->file_offset = orig_bbio->file_offset;
if (!(orig_bbio->bio.bi_opf & REQ_BTRFS_ONE_ORDERED))
orig_bbio->file_offset += map_length;
atomic_inc(&orig_bbio->pending_ios);
return bbio;
}
static void btrfs_orig_write_end_io(struct bio *bio);
static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
struct btrfs_bio *orig_bbio)
{
/*
* For writes we tolerate nr_mirrors - 1 write failures, so we can't
* just blindly propagate a write failure here. Instead increment the
* error count in the original I/O context so that it is guaranteed to
* be larger than the error tolerance.
*/
if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
struct btrfs_io_context *orig_bioc = orig_stripe->bioc;
atomic_add(orig_bioc->max_errors, &orig_bioc->error);
} else {
orig_bbio->bio.bi_status = bbio->bio.bi_status;
}
}
static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio)
{
if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
struct btrfs_bio *orig_bbio = bbio->private;
if (bbio->bio.bi_status)
btrfs_bbio_propagate_error(bbio, orig_bbio);
bio_put(&bbio->bio);
bbio = orig_bbio;
}
if (atomic_dec_and_test(&bbio->pending_ios))
bbio->end_io(bbio);
}
static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
{
if (cur_mirror == fbio->num_copies)
return cur_mirror + 1 - fbio->num_copies;
return cur_mirror + 1;
}
static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
{
if (cur_mirror == 1)
return fbio->num_copies;
return cur_mirror - 1;
}
static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
{
if (atomic_dec_and_test(&fbio->repair_count)) {
btrfs_orig_bbio_end_io(fbio->bbio);
mempool_free(fbio, &btrfs_failed_bio_pool);
}
}
static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
struct btrfs_device *dev)
{
struct btrfs_failed_bio *fbio = repair_bbio->private;
struct btrfs_inode *inode = repair_bbio->inode;
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
int mirror = repair_bbio->mirror_num;
if (repair_bbio->bio.bi_status ||
!btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
mirror = next_repair_mirror(fbio, mirror);
if (mirror == fbio->bbio->mirror_num) {
btrfs_debug(fs_info, "no mirror left");
fbio->bbio->bio.bi_status = BLK_STS_IOERR;
goto done;
}
btrfs_submit_bio(repair_bbio, mirror);
return;
}
do {
mirror = prev_repair_mirror(fbio, mirror);
btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
repair_bbio->file_offset, fs_info->sectorsize,
repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
bv->bv_page, bv->bv_offset, mirror);
} while (mirror != fbio->bbio->mirror_num);
done:
btrfs_repair_done(fbio);
bio_put(&repair_bbio->bio);
}
/*
* Try to kick off a repair read to the next available mirror for a bad sector.
*
* This primarily tries to recover good data to serve the actual read request,
* but also tries to write the good data back to the bad mirror(s) when a
* read succeeded to restore the redundancy.
*/
static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
u32 bio_offset,
struct bio_vec *bv,
struct btrfs_failed_bio *fbio)
{
struct btrfs_inode *inode = failed_bbio->inode;
struct btrfs_fs_info *fs_info = inode->root->fs_info;
const u32 sectorsize = fs_info->sectorsize;
const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
struct btrfs_bio *repair_bbio;
struct bio *repair_bio;
int num_copies;
int mirror;
btrfs_debug(fs_info, "repair read error: read error at %llu",
failed_bbio->file_offset + bio_offset);
num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
if (num_copies == 1) {
btrfs_debug(fs_info, "no copy to repair from");
failed_bbio->bio.bi_status = BLK_STS_IOERR;
return fbio;
}
if (!fbio) {
fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
fbio->bbio = failed_bbio;
fbio->num_copies = num_copies;
atomic_set(&fbio->repair_count, 1);
}
atomic_inc(&fbio->repair_count);
repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
&btrfs_repair_bioset);
repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
repair_bbio = btrfs_bio(repair_bio);
btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
repair_bbio->inode = failed_bbio->inode;
repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
btrfs_submit_bio(repair_bbio, mirror);
return fbio;
}
static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
{
struct btrfs_inode *inode = bbio->inode;
struct btrfs_fs_info *fs_info = inode->root->fs_info;
u32 sectorsize = fs_info->sectorsize;
struct bvec_iter *iter = &bbio->saved_iter;
blk_status_t status = bbio->bio.bi_status;
struct btrfs_failed_bio *fbio = NULL;
u32 offset = 0;
/* Read-repair requires the inode field to be set by the submitter. */
ASSERT(inode);
/*
* Hand off repair bios to the repair code as there is no upper level
* submitter for them.
*/
if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
btrfs_end_repair_bio(bbio, dev);
return;
}
/* Clear the I/O error. A failed repair will reset it. */
bbio->bio.bi_status = BLK_STS_OK;
while (iter->bi_size) {
struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
bv.bv_len = min(bv.bv_len, sectorsize);
if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
fbio = repair_one_sector(bbio, offset, &bv, fbio);
bio_advance_iter_single(&bbio->bio, iter, sectorsize);
offset += sectorsize;
}
if (bbio->csum != bbio->csum_inline)
kfree(bbio->csum);
if (fbio)
btrfs_repair_done(fbio);
else
btrfs_orig_bbio_end_io(bbio);
}
static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
{
if (!dev || !dev->bdev)
return;
if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
return;
if (btrfs_op(bio) == BTRFS_MAP_WRITE)
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
else if (!(bio->bi_opf & REQ_RAHEAD))
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
if (bio->bi_opf & REQ_PREFLUSH)
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
}
static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
struct bio *bio)
{
if (bio->bi_opf & REQ_META)
return fs_info->endio_meta_workers;
return fs_info->endio_workers;
}
static void btrfs_end_bio_work(struct work_struct *work)
{
struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
/* Metadata reads are checked and repaired by the submitter. */
if (bbio->inode && !(bbio->bio.bi_opf & REQ_META))
btrfs_check_read_bio(bbio, bbio->bio.bi_private);
else
bbio->end_io(bbio);
}
static void btrfs_simple_end_io(struct bio *bio)
{
struct btrfs_bio *bbio = btrfs_bio(bio);
struct btrfs_device *dev = bio->bi_private;
struct btrfs_fs_info *fs_info = bbio->fs_info;
btrfs_bio_counter_dec(fs_info);
if (bio->bi_status)
btrfs_log_dev_io_error(bio, dev);
if (bio_op(bio) == REQ_OP_READ) {
INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
} else {
if (bio_op(bio) == REQ_OP_ZONE_APPEND)
btrfs_record_physical_zoned(bbio);
btrfs_orig_bbio_end_io(bbio);
}
}
static void btrfs_raid56_end_io(struct bio *bio)
{
struct btrfs_io_context *bioc = bio->bi_private;
struct btrfs_bio *bbio = btrfs_bio(bio);
btrfs_bio_counter_dec(bioc->fs_info);
bbio->mirror_num = bioc->mirror_num;
if (bio_op(bio) == REQ_OP_READ && bbio->inode &&
!(bbio->bio.bi_opf & REQ_META))
btrfs_check_read_bio(bbio, NULL);
else
btrfs_orig_bbio_end_io(bbio);
btrfs_put_bioc(bioc);
}
static void btrfs_orig_write_end_io(struct bio *bio)
{
struct btrfs_io_stripe *stripe = bio->bi_private;
struct btrfs_io_context *bioc = stripe->bioc;
struct btrfs_bio *bbio = btrfs_bio(bio);
btrfs_bio_counter_dec(bioc->fs_info);
if (bio->bi_status) {
atomic_inc(&bioc->error);
btrfs_log_dev_io_error(bio, stripe->dev);
}
/*
* Only send an error to the higher layers if it is beyond the tolerance
* threshold.
*/
if (atomic_read(&bioc->error) > bioc->max_errors)
bio->bi_status = BLK_STS_IOERR;
else
bio->bi_status = BLK_STS_OK;
btrfs_orig_bbio_end_io(bbio);
btrfs_put_bioc(bioc);
}
static void btrfs_clone_write_end_io(struct bio *bio)
{
struct btrfs_io_stripe *stripe = bio->bi_private;
if (bio->bi_status) {
atomic_inc(&stripe->bioc->error);
btrfs_log_dev_io_error(bio, stripe->dev);
}
/* Pass on control to the original bio this one was cloned from */
bio_endio(stripe->bioc->orig_bio);
bio_put(bio);
}
static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
{
if (!dev || !dev->bdev ||
test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
(btrfs_op(bio) == BTRFS_MAP_WRITE &&
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
bio_io_error(bio);
return;
}
bio_set_dev(bio, dev->bdev);
/*
* For zone append writing, bi_sector must point the beginning of the
* zone
*/
if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
u64 zone_start = round_down(physical, dev->fs_info->zone_size);
ASSERT(btrfs_dev_is_sequential(dev, physical));
bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
}
btrfs_debug_in_rcu(dev->fs_info,
"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
dev->devid, bio->bi_iter.bi_size);
btrfsic_check_bio(bio);
if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
blkcg_punt_bio_submit(bio);
else
submit_bio(bio);
}
static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
{
struct bio *orig_bio = bioc->orig_bio, *bio;
ASSERT(bio_op(orig_bio) != REQ_OP_READ);
/* Reuse the bio embedded into the btrfs_bio for the last mirror */
if (dev_nr == bioc->num_stripes - 1) {
bio = orig_bio;
bio->bi_end_io = btrfs_orig_write_end_io;
} else {
bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
bio_inc_remaining(orig_bio);
bio->bi_end_io = btrfs_clone_write_end_io;
}
bio->bi_private = &bioc->stripes[dev_nr];
bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
bioc->stripes[dev_nr].bioc = bioc;
btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
}
static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
struct btrfs_io_stripe *smap, int mirror_num)
{
/* Do not leak our private flag into the block layer. */
bio->bi_opf &= ~REQ_BTRFS_ONE_ORDERED;
if (!bioc) {
/* Single mirror read/write fast path. */
btrfs_bio(bio)->mirror_num = mirror_num;
bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
bio->bi_private = smap->dev;
bio->bi_end_io = btrfs_simple_end_io;
btrfs_submit_dev_bio(smap->dev, bio);
} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
/* Parity RAID write or read recovery. */
bio->bi_private = bioc;
bio->bi_end_io = btrfs_raid56_end_io;
if (bio_op(bio) == REQ_OP_READ)
raid56_parity_recover(bio, bioc, mirror_num);
else
raid56_parity_write(bio, bioc);
} else {
/* Write to multiple mirrors. */
int total_devs = bioc->num_stripes;
bioc->orig_bio = bio;
for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
btrfs_submit_mirrored_bio(bioc, dev_nr);
}
}
static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
{
if (bbio->bio.bi_opf & REQ_META)
return btree_csum_one_bio(bbio);
return btrfs_csum_one_bio(bbio);
}
/*
* Async submit bios are used to offload expensive checksumming onto the worker
* threads.
*/
struct async_submit_bio {
struct btrfs_bio *bbio;
struct btrfs_io_context *bioc;
struct btrfs_io_stripe smap;
int mirror_num;
struct btrfs_work work;
};
/*
* In order to insert checksums into the metadata in large chunks, we wait
* until bio submission time. All the pages in the bio are checksummed and
* sums are attached onto the ordered extent record.
*
* At IO completion time the csums attached on the ordered extent record are
* inserted into the btree.
*/
static void run_one_async_start(struct btrfs_work *work)
{
struct async_submit_bio *async =
container_of(work, struct async_submit_bio, work);
blk_status_t ret;
ret = btrfs_bio_csum(async->bbio);
if (ret)
async->bbio->bio.bi_status = ret;
}
/*
* In order to insert checksums into the metadata in large chunks, we wait
* until bio submission time. All the pages in the bio are checksummed and
* sums are attached onto the ordered extent record.
*
* At IO completion time the csums attached on the ordered extent record are
* inserted into the tree.
*/
static void run_one_async_done(struct btrfs_work *work)
{
struct async_submit_bio *async =
container_of(work, struct async_submit_bio, work);
struct bio *bio = &async->bbio->bio;
/* If an error occurred we just want to clean up the bio and move on. */
if (bio->bi_status) {
btrfs_orig_bbio_end_io(async->bbio);
return;
}
/*
* All of the bios that pass through here are from async helpers.
* Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
* context. This changes nothing when cgroups aren't in use.
*/
bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
__btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
}
static void run_one_async_free(struct btrfs_work *work)
{
kfree(container_of(work, struct async_submit_bio, work));
}
static bool should_async_write(struct btrfs_bio *bbio)
{
/*
* If the I/O is not issued by fsync and friends, (->sync_writers != 0),
* then try to defer the submission to a workqueue to parallelize the
* checksum calculation.
*/
if (atomic_read(&bbio->inode->sync_writers))
return false;
/*
* Submit metadata writes synchronously if the checksum implementation
* is fast, or we are on a zoned device that wants I/O to be submitted
* in order.
*/
if (bbio->bio.bi_opf & REQ_META) {
struct btrfs_fs_info *fs_info = bbio->fs_info;
if (btrfs_is_zoned(fs_info))
return false;
if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
return false;
}
return true;
}
/*
* Submit bio to an async queue.
*
* Return true if the work has been succesfuly submitted, else false.
*/
static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
struct btrfs_io_context *bioc,
struct btrfs_io_stripe *smap, int mirror_num)
{
struct btrfs_fs_info *fs_info = bbio->fs_info;
struct async_submit_bio *async;
async = kmalloc(sizeof(*async), GFP_NOFS);
if (!async)
return false;
async->bbio = bbio;
async->bioc = bioc;
async->smap = *smap;
async->mirror_num = mirror_num;
btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
run_one_async_free);
if (op_is_sync(bbio->bio.bi_opf))
btrfs_queue_work(fs_info->hipri_workers, &async->work);
else
btrfs_queue_work(fs_info->workers, &async->work);
return true;
}
static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
{
struct btrfs_inode *inode = bbio->inode;
struct btrfs_fs_info *fs_info = bbio->fs_info;
struct btrfs_bio *orig_bbio = bbio;
struct bio *bio = &bbio->bio;
u64 logical = bio->bi_iter.bi_sector << 9;
u64 length = bio->bi_iter.bi_size;
u64 map_length = length;
bool use_append = btrfs_use_zone_append(bbio);
struct btrfs_io_context *bioc = NULL;
struct btrfs_io_stripe smap;
blk_status_t ret;
int error;
btrfs_bio_counter_inc_blocked(fs_info);
error = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
&bioc, &smap, &mirror_num, 1);
if (error) {
ret = errno_to_blk_status(error);
goto fail;
}
map_length = min(map_length, length);
if (use_append)
map_length = min(map_length, fs_info->max_zone_append_size);
if (map_length < length) {
bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append);
bio = &bbio->bio;
}
/*
* Save the iter for the end_io handler and preload the checksums for
* data reads.
*/
if (bio_op(bio) == REQ_OP_READ && inode && !(bio->bi_opf & REQ_META)) {
bbio->saved_iter = bio->bi_iter;
ret = btrfs_lookup_bio_sums(bbio);
if (ret)
goto fail_put_bio;
}
if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
if (use_append) {
bio->bi_opf &= ~REQ_OP_WRITE;
bio->bi_opf |= REQ_OP_ZONE_APPEND;
ret = btrfs_bio_extract_ordered_extent(bbio);
if (ret)
goto fail_put_bio;
}
/*
* Csum items for reloc roots have already been cloned at this
* point, so they are handled as part of the no-checksum case.
*/
if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
!test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
!btrfs_is_data_reloc_root(inode->root)) {
if (should_async_write(bbio) &&
btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
goto done;
ret = btrfs_bio_csum(bbio);
if (ret)
goto fail_put_bio;
}
}
__btrfs_submit_bio(bio, bioc, &smap, mirror_num);
done:
return map_length == length;
fail_put_bio:
if (map_length < length)
bio_put(bio);
fail:
btrfs_bio_counter_dec(fs_info);
btrfs_bio_end_io(orig_bbio, ret);
/* Do not submit another chunk */
return true;
}
void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num)
{
/* If bbio->inode is not populated, its file_offset must be 0. */
ASSERT(bbio->inode || bbio->file_offset == 0);
while (!btrfs_submit_chunk(bbio, mirror_num))
;
}
/*
* Submit a repair write.
*
* This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
* RAID setup. Here we only want to write the one bad copy, so we do the
* mapping ourselves and submit the bio directly.
*
* The I/O is issued synchronously to block the repair read completion from
* freeing the bio.
*/
int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
u64 length, u64 logical, struct page *page,
unsigned int pg_offset, int mirror_num)
{
struct btrfs_device *dev;
struct bio_vec bvec;
struct bio bio;
u64 map_length = 0;
u64 sector;
struct btrfs_io_context *bioc = NULL;
int ret = 0;
ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
BUG_ON(!mirror_num);
if (btrfs_repair_one_zone(fs_info, logical))
return 0;
map_length = length;
/*
* Avoid races with device replace and make sure our bioc has devices
* associated to its stripes that don't go away while we are doing the
* read repair operation.
*/
btrfs_bio_counter_inc_blocked(fs_info);
if (btrfs_is_parity_mirror(fs_info, logical, length)) {
/*
* Note that we don't use BTRFS_MAP_WRITE because it's supposed
* to update all raid stripes, but here we just want to correct
* bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
* stripe's dev and sector.
*/
ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
&map_length, &bioc, 0);
if (ret)
goto out_counter_dec;
ASSERT(bioc->mirror_num == 1);
} else {
ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
&map_length, &bioc, mirror_num);
if (ret)
goto out_counter_dec;
/*
* This happens when dev-replace is also running, and the
* mirror_num indicates the dev-replace target.
*
* In this case, we don't need to do anything, as the read
* error just means the replace progress hasn't reached our
* read range, and later replace routine would handle it well.
*/
if (mirror_num != bioc->mirror_num)
goto out_counter_dec;
}
sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
dev = bioc->stripes[bioc->mirror_num - 1].dev;
btrfs_put_bioc(bioc);
if (!dev || !dev->bdev ||
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
ret = -EIO;
goto out_counter_dec;
}
bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
bio.bi_iter.bi_sector = sector;
__bio_add_page(&bio, page, length, pg_offset);
btrfsic_check_bio(&bio);
ret = submit_bio_wait(&bio);
if (ret) {
/* try to remap that extent elsewhere? */
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
goto out_bio_uninit;
}
btrfs_info_rl_in_rcu(fs_info,
"read error corrected: ino %llu off %llu (dev %s sector %llu)",
ino, start, btrfs_dev_name(dev), sector);
ret = 0;
out_bio_uninit:
bio_uninit(&bio);
out_counter_dec:
btrfs_bio_counter_dec(fs_info);
return ret;
}
int __init btrfs_bioset_init(void)
{
if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
offsetof(struct btrfs_bio, bio),
BIOSET_NEED_BVECS))
return -ENOMEM;
if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
offsetof(struct btrfs_bio, bio), 0))
goto out_free_bioset;
if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
offsetof(struct btrfs_bio, bio),
BIOSET_NEED_BVECS))
goto out_free_clone_bioset;
if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
sizeof(struct btrfs_failed_bio)))
goto out_free_repair_bioset;
return 0;
out_free_repair_bioset:
bioset_exit(&btrfs_repair_bioset);
out_free_clone_bioset:
bioset_exit(&btrfs_clone_bioset);
out_free_bioset:
bioset_exit(&btrfs_bioset);
return -ENOMEM;
}
void __cold btrfs_bioset_exit(void)
{
mempool_exit(&btrfs_failed_bio_pool);
bioset_exit(&btrfs_repair_bioset);
bioset_exit(&btrfs_clone_bioset);
bioset_exit(&btrfs_bioset);
}