mirror of
https://github.com/torvalds/linux.git
synced 2024-11-18 10:01:43 +00:00
39e7ac1bcf
Signed-off-by: Fabian Frederick <fabf@skynet.be> Signed-off-by: Scott Wood <oss@buserror.net>
628 lines
17 KiB
C
628 lines
17 KiB
C
/* Copyright 2009 - 2016 Freescale Semiconductor, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Freescale Semiconductor nor the
|
|
* names of its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* ALTERNATIVELY, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") as published by the Free Software
|
|
* Foundation, either version 2 of that License or (at your option) any
|
|
* later version.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "qman_test.h"
|
|
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/delay.h>
|
|
|
|
/*
|
|
* Algorithm:
|
|
*
|
|
* Each cpu will have HP_PER_CPU "handlers" set up, each of which incorporates
|
|
* an rx/tx pair of FQ objects (both of which are stashed on dequeue). The
|
|
* organisation of FQIDs is such that the HP_PER_CPU*NUM_CPUS handlers will
|
|
* shuttle a "hot potato" frame around them such that every forwarding action
|
|
* moves it from one cpu to another. (The use of more than one handler per cpu
|
|
* is to allow enough handlers/FQs to truly test the significance of caching -
|
|
* ie. when cache-expiries are occurring.)
|
|
*
|
|
* The "hot potato" frame content will be HP_NUM_WORDS*4 bytes in size, and the
|
|
* first and last words of the frame data will undergo a transformation step on
|
|
* each forwarding action. To achieve this, each handler will be assigned a
|
|
* 32-bit "mixer", that is produced using a 32-bit LFSR. When a frame is
|
|
* received by a handler, the mixer of the expected sender is XOR'd into all
|
|
* words of the entire frame, which is then validated against the original
|
|
* values. Then, before forwarding, the entire frame is XOR'd with the mixer of
|
|
* the current handler. Apart from validating that the frame is taking the
|
|
* expected path, this also provides some quasi-realistic overheads to each
|
|
* forwarding action - dereferencing *all* the frame data, computation, and
|
|
* conditional branching. There is a "special" handler designated to act as the
|
|
* instigator of the test by creating an enqueuing the "hot potato" frame, and
|
|
* to determine when the test has completed by counting HP_LOOPS iterations.
|
|
*
|
|
* Init phases:
|
|
*
|
|
* 1. prepare each cpu's 'hp_cpu' struct using on_each_cpu(,,1) and link them
|
|
* into 'hp_cpu_list'. Specifically, set processor_id, allocate HP_PER_CPU
|
|
* handlers and link-list them (but do no other handler setup).
|
|
*
|
|
* 2. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
|
|
* hp_cpu's 'iterator' to point to its first handler. With each loop,
|
|
* allocate rx/tx FQIDs and mixer values to the hp_cpu's iterator handler
|
|
* and advance the iterator for the next loop. This includes a final fixup,
|
|
* which connects the last handler to the first (and which is why phase 2
|
|
* and 3 are separate).
|
|
*
|
|
* 3. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
|
|
* hp_cpu's 'iterator' to point to its first handler. With each loop,
|
|
* initialise FQ objects and advance the iterator for the next loop.
|
|
* Moreover, do this initialisation on the cpu it applies to so that Rx FQ
|
|
* initialisation targets the correct cpu.
|
|
*/
|
|
|
|
/*
|
|
* helper to run something on all cpus (can't use on_each_cpu(), as that invokes
|
|
* the fn from irq context, which is too restrictive).
|
|
*/
|
|
struct bstrap {
|
|
int (*fn)(void);
|
|
atomic_t started;
|
|
};
|
|
static int bstrap_fn(void *bs)
|
|
{
|
|
struct bstrap *bstrap = bs;
|
|
int err;
|
|
|
|
atomic_inc(&bstrap->started);
|
|
err = bstrap->fn();
|
|
if (err)
|
|
return err;
|
|
while (!kthread_should_stop())
|
|
msleep(20);
|
|
return 0;
|
|
}
|
|
static int on_all_cpus(int (*fn)(void))
|
|
{
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, cpu_online_mask) {
|
|
struct bstrap bstrap = {
|
|
.fn = fn,
|
|
.started = ATOMIC_INIT(0)
|
|
};
|
|
struct task_struct *k = kthread_create(bstrap_fn, &bstrap,
|
|
"hotpotato%d", cpu);
|
|
int ret;
|
|
|
|
if (IS_ERR(k))
|
|
return -ENOMEM;
|
|
kthread_bind(k, cpu);
|
|
wake_up_process(k);
|
|
/*
|
|
* If we call kthread_stop() before the "wake up" has had an
|
|
* effect, then the thread may exit with -EINTR without ever
|
|
* running the function. So poll until it's started before
|
|
* requesting it to stop.
|
|
*/
|
|
while (!atomic_read(&bstrap.started))
|
|
msleep(20);
|
|
ret = kthread_stop(k);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct hp_handler {
|
|
|
|
/* The following data is stashed when 'rx' is dequeued; */
|
|
/* -------------- */
|
|
/* The Rx FQ, dequeues of which will stash the entire hp_handler */
|
|
struct qman_fq rx;
|
|
/* The Tx FQ we should forward to */
|
|
struct qman_fq tx;
|
|
/* The value we XOR post-dequeue, prior to validating */
|
|
u32 rx_mixer;
|
|
/* The value we XOR pre-enqueue, after validating */
|
|
u32 tx_mixer;
|
|
/* what the hotpotato address should be on dequeue */
|
|
dma_addr_t addr;
|
|
u32 *frame_ptr;
|
|
|
|
/* The following data isn't (necessarily) stashed on dequeue; */
|
|
/* -------------- */
|
|
u32 fqid_rx, fqid_tx;
|
|
/* list node for linking us into 'hp_cpu' */
|
|
struct list_head node;
|
|
/* Just to check ... */
|
|
unsigned int processor_id;
|
|
} ____cacheline_aligned;
|
|
|
|
struct hp_cpu {
|
|
/* identify the cpu we run on; */
|
|
unsigned int processor_id;
|
|
/* root node for the per-cpu list of handlers */
|
|
struct list_head handlers;
|
|
/* list node for linking us into 'hp_cpu_list' */
|
|
struct list_head node;
|
|
/*
|
|
* when repeatedly scanning 'hp_list', each time linking the n'th
|
|
* handlers together, this is used as per-cpu iterator state
|
|
*/
|
|
struct hp_handler *iterator;
|
|
};
|
|
|
|
/* Each cpu has one of these */
|
|
static DEFINE_PER_CPU(struct hp_cpu, hp_cpus);
|
|
|
|
/* links together the hp_cpu structs, in first-come first-serve order. */
|
|
static LIST_HEAD(hp_cpu_list);
|
|
static DEFINE_SPINLOCK(hp_lock);
|
|
|
|
static unsigned int hp_cpu_list_length;
|
|
|
|
/* the "special" handler, that starts and terminates the test. */
|
|
static struct hp_handler *special_handler;
|
|
static int loop_counter;
|
|
|
|
/* handlers are allocated out of this, so they're properly aligned. */
|
|
static struct kmem_cache *hp_handler_slab;
|
|
|
|
/* this is the frame data */
|
|
static void *__frame_ptr;
|
|
static u32 *frame_ptr;
|
|
static dma_addr_t frame_dma;
|
|
|
|
/* needed for dma_map*() */
|
|
static const struct qm_portal_config *pcfg;
|
|
|
|
/* the main function waits on this */
|
|
static DECLARE_WAIT_QUEUE_HEAD(queue);
|
|
|
|
#define HP_PER_CPU 2
|
|
#define HP_LOOPS 8
|
|
/* 80 bytes, like a small ethernet frame, and bleeds into a second cacheline */
|
|
#define HP_NUM_WORDS 80
|
|
/* First word of the LFSR-based frame data */
|
|
#define HP_FIRST_WORD 0xabbaf00d
|
|
|
|
static inline u32 do_lfsr(u32 prev)
|
|
{
|
|
return (prev >> 1) ^ (-(prev & 1u) & 0xd0000001u);
|
|
}
|
|
|
|
static int allocate_frame_data(void)
|
|
{
|
|
u32 lfsr = HP_FIRST_WORD;
|
|
int loop;
|
|
|
|
if (!qman_dma_portal) {
|
|
pr_crit("portal not available\n");
|
|
return -EIO;
|
|
}
|
|
|
|
pcfg = qman_get_qm_portal_config(qman_dma_portal);
|
|
|
|
__frame_ptr = kmalloc(4 * HP_NUM_WORDS, GFP_KERNEL);
|
|
if (!__frame_ptr)
|
|
return -ENOMEM;
|
|
|
|
frame_ptr = PTR_ALIGN(__frame_ptr, 64);
|
|
for (loop = 0; loop < HP_NUM_WORDS; loop++) {
|
|
frame_ptr[loop] = lfsr;
|
|
lfsr = do_lfsr(lfsr);
|
|
}
|
|
|
|
frame_dma = dma_map_single(pcfg->dev, frame_ptr, 4 * HP_NUM_WORDS,
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(pcfg->dev, frame_dma)) {
|
|
pr_crit("dma mapping failure\n");
|
|
kfree(__frame_ptr);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void deallocate_frame_data(void)
|
|
{
|
|
dma_unmap_single(pcfg->dev, frame_dma, 4 * HP_NUM_WORDS,
|
|
DMA_BIDIRECTIONAL);
|
|
kfree(__frame_ptr);
|
|
}
|
|
|
|
static inline int process_frame_data(struct hp_handler *handler,
|
|
const struct qm_fd *fd)
|
|
{
|
|
u32 *p = handler->frame_ptr;
|
|
u32 lfsr = HP_FIRST_WORD;
|
|
int loop;
|
|
|
|
if (qm_fd_addr_get64(fd) != handler->addr) {
|
|
pr_crit("bad frame address, [%llX != %llX]\n",
|
|
qm_fd_addr_get64(fd), handler->addr);
|
|
return -EIO;
|
|
}
|
|
for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
|
|
*p ^= handler->rx_mixer;
|
|
if (*p != lfsr) {
|
|
pr_crit("corrupt frame data");
|
|
return -EIO;
|
|
}
|
|
*p ^= handler->tx_mixer;
|
|
lfsr = do_lfsr(lfsr);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static enum qman_cb_dqrr_result normal_dqrr(struct qman_portal *portal,
|
|
struct qman_fq *fq,
|
|
const struct qm_dqrr_entry *dqrr)
|
|
{
|
|
struct hp_handler *handler = (struct hp_handler *)fq;
|
|
|
|
if (process_frame_data(handler, &dqrr->fd)) {
|
|
WARN_ON(1);
|
|
goto skip;
|
|
}
|
|
if (qman_enqueue(&handler->tx, &dqrr->fd)) {
|
|
pr_crit("qman_enqueue() failed");
|
|
WARN_ON(1);
|
|
}
|
|
skip:
|
|
return qman_cb_dqrr_consume;
|
|
}
|
|
|
|
static enum qman_cb_dqrr_result special_dqrr(struct qman_portal *portal,
|
|
struct qman_fq *fq,
|
|
const struct qm_dqrr_entry *dqrr)
|
|
{
|
|
struct hp_handler *handler = (struct hp_handler *)fq;
|
|
|
|
process_frame_data(handler, &dqrr->fd);
|
|
if (++loop_counter < HP_LOOPS) {
|
|
if (qman_enqueue(&handler->tx, &dqrr->fd)) {
|
|
pr_crit("qman_enqueue() failed");
|
|
WARN_ON(1);
|
|
goto skip;
|
|
}
|
|
} else {
|
|
pr_info("Received final (%dth) frame\n", loop_counter);
|
|
wake_up(&queue);
|
|
}
|
|
skip:
|
|
return qman_cb_dqrr_consume;
|
|
}
|
|
|
|
static int create_per_cpu_handlers(void)
|
|
{
|
|
struct hp_handler *handler;
|
|
int loop;
|
|
struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
|
|
|
|
hp_cpu->processor_id = smp_processor_id();
|
|
spin_lock(&hp_lock);
|
|
list_add_tail(&hp_cpu->node, &hp_cpu_list);
|
|
hp_cpu_list_length++;
|
|
spin_unlock(&hp_lock);
|
|
INIT_LIST_HEAD(&hp_cpu->handlers);
|
|
for (loop = 0; loop < HP_PER_CPU; loop++) {
|
|
handler = kmem_cache_alloc(hp_handler_slab, GFP_KERNEL);
|
|
if (!handler) {
|
|
pr_crit("kmem_cache_alloc() failed");
|
|
WARN_ON(1);
|
|
return -EIO;
|
|
}
|
|
handler->processor_id = hp_cpu->processor_id;
|
|
handler->addr = frame_dma;
|
|
handler->frame_ptr = frame_ptr;
|
|
list_add_tail(&handler->node, &hp_cpu->handlers);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int destroy_per_cpu_handlers(void)
|
|
{
|
|
struct list_head *loop, *tmp;
|
|
struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
|
|
|
|
spin_lock(&hp_lock);
|
|
list_del(&hp_cpu->node);
|
|
spin_unlock(&hp_lock);
|
|
list_for_each_safe(loop, tmp, &hp_cpu->handlers) {
|
|
u32 flags = 0;
|
|
struct hp_handler *handler = list_entry(loop, struct hp_handler,
|
|
node);
|
|
if (qman_retire_fq(&handler->rx, &flags) ||
|
|
(flags & QMAN_FQ_STATE_BLOCKOOS)) {
|
|
pr_crit("qman_retire_fq(rx) failed, flags: %x", flags);
|
|
WARN_ON(1);
|
|
return -EIO;
|
|
}
|
|
if (qman_oos_fq(&handler->rx)) {
|
|
pr_crit("qman_oos_fq(rx) failed");
|
|
WARN_ON(1);
|
|
return -EIO;
|
|
}
|
|
qman_destroy_fq(&handler->rx);
|
|
qman_destroy_fq(&handler->tx);
|
|
qman_release_fqid(handler->fqid_rx);
|
|
list_del(&handler->node);
|
|
kmem_cache_free(hp_handler_slab, handler);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline u8 num_cachelines(u32 offset)
|
|
{
|
|
u8 res = (offset + (L1_CACHE_BYTES - 1))
|
|
/ (L1_CACHE_BYTES);
|
|
if (res > 3)
|
|
return 3;
|
|
return res;
|
|
}
|
|
#define STASH_DATA_CL \
|
|
num_cachelines(HP_NUM_WORDS * 4)
|
|
#define STASH_CTX_CL \
|
|
num_cachelines(offsetof(struct hp_handler, fqid_rx))
|
|
|
|
static int init_handler(void *h)
|
|
{
|
|
struct qm_mcc_initfq opts;
|
|
struct hp_handler *handler = h;
|
|
int err;
|
|
|
|
if (handler->processor_id != smp_processor_id()) {
|
|
err = -EIO;
|
|
goto failed;
|
|
}
|
|
/* Set up rx */
|
|
memset(&handler->rx, 0, sizeof(handler->rx));
|
|
if (handler == special_handler)
|
|
handler->rx.cb.dqrr = special_dqrr;
|
|
else
|
|
handler->rx.cb.dqrr = normal_dqrr;
|
|
err = qman_create_fq(handler->fqid_rx, 0, &handler->rx);
|
|
if (err) {
|
|
pr_crit("qman_create_fq(rx) failed");
|
|
goto failed;
|
|
}
|
|
memset(&opts, 0, sizeof(opts));
|
|
opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL |
|
|
QM_INITFQ_WE_CONTEXTA);
|
|
opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING);
|
|
qm_fqd_set_stashing(&opts.fqd, 0, STASH_DATA_CL, STASH_CTX_CL);
|
|
err = qman_init_fq(&handler->rx, QMAN_INITFQ_FLAG_SCHED |
|
|
QMAN_INITFQ_FLAG_LOCAL, &opts);
|
|
if (err) {
|
|
pr_crit("qman_init_fq(rx) failed");
|
|
goto failed;
|
|
}
|
|
/* Set up tx */
|
|
memset(&handler->tx, 0, sizeof(handler->tx));
|
|
err = qman_create_fq(handler->fqid_tx, QMAN_FQ_FLAG_NO_MODIFY,
|
|
&handler->tx);
|
|
if (err) {
|
|
pr_crit("qman_create_fq(tx) failed");
|
|
goto failed;
|
|
}
|
|
|
|
return 0;
|
|
failed:
|
|
return err;
|
|
}
|
|
|
|
static void init_handler_cb(void *h)
|
|
{
|
|
if (init_handler(h))
|
|
WARN_ON(1);
|
|
}
|
|
|
|
static int init_phase2(void)
|
|
{
|
|
int loop;
|
|
u32 fqid = 0;
|
|
u32 lfsr = 0xdeadbeef;
|
|
struct hp_cpu *hp_cpu;
|
|
struct hp_handler *handler;
|
|
|
|
for (loop = 0; loop < HP_PER_CPU; loop++) {
|
|
list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
|
|
int err;
|
|
|
|
if (!loop)
|
|
hp_cpu->iterator = list_first_entry(
|
|
&hp_cpu->handlers,
|
|
struct hp_handler, node);
|
|
else
|
|
hp_cpu->iterator = list_entry(
|
|
hp_cpu->iterator->node.next,
|
|
struct hp_handler, node);
|
|
/* Rx FQID is the previous handler's Tx FQID */
|
|
hp_cpu->iterator->fqid_rx = fqid;
|
|
/* Allocate new FQID for Tx */
|
|
err = qman_alloc_fqid(&fqid);
|
|
if (err) {
|
|
pr_crit("qman_alloc_fqid() failed");
|
|
return err;
|
|
}
|
|
hp_cpu->iterator->fqid_tx = fqid;
|
|
/* Rx mixer is the previous handler's Tx mixer */
|
|
hp_cpu->iterator->rx_mixer = lfsr;
|
|
/* Get new mixer for Tx */
|
|
lfsr = do_lfsr(lfsr);
|
|
hp_cpu->iterator->tx_mixer = lfsr;
|
|
}
|
|
}
|
|
/* Fix up the first handler (fqid_rx==0, rx_mixer=0xdeadbeef) */
|
|
hp_cpu = list_first_entry(&hp_cpu_list, struct hp_cpu, node);
|
|
handler = list_first_entry(&hp_cpu->handlers, struct hp_handler, node);
|
|
if (handler->fqid_rx != 0 || handler->rx_mixer != 0xdeadbeef)
|
|
return 1;
|
|
handler->fqid_rx = fqid;
|
|
handler->rx_mixer = lfsr;
|
|
/* and tag it as our "special" handler */
|
|
special_handler = handler;
|
|
return 0;
|
|
}
|
|
|
|
static int init_phase3(void)
|
|
{
|
|
int loop, err;
|
|
struct hp_cpu *hp_cpu;
|
|
|
|
for (loop = 0; loop < HP_PER_CPU; loop++) {
|
|
list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
|
|
if (!loop)
|
|
hp_cpu->iterator = list_first_entry(
|
|
&hp_cpu->handlers,
|
|
struct hp_handler, node);
|
|
else
|
|
hp_cpu->iterator = list_entry(
|
|
hp_cpu->iterator->node.next,
|
|
struct hp_handler, node);
|
|
preempt_disable();
|
|
if (hp_cpu->processor_id == smp_processor_id()) {
|
|
err = init_handler(hp_cpu->iterator);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
smp_call_function_single(hp_cpu->processor_id,
|
|
init_handler_cb, hp_cpu->iterator, 1);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int send_first_frame(void *ignore)
|
|
{
|
|
u32 *p = special_handler->frame_ptr;
|
|
u32 lfsr = HP_FIRST_WORD;
|
|
int loop, err;
|
|
struct qm_fd fd;
|
|
|
|
if (special_handler->processor_id != smp_processor_id()) {
|
|
err = -EIO;
|
|
goto failed;
|
|
}
|
|
memset(&fd, 0, sizeof(fd));
|
|
qm_fd_addr_set64(&fd, special_handler->addr);
|
|
qm_fd_set_contig_big(&fd, HP_NUM_WORDS * 4);
|
|
for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
|
|
if (*p != lfsr) {
|
|
err = -EIO;
|
|
pr_crit("corrupt frame data");
|
|
goto failed;
|
|
}
|
|
*p ^= special_handler->tx_mixer;
|
|
lfsr = do_lfsr(lfsr);
|
|
}
|
|
pr_info("Sending first frame\n");
|
|
err = qman_enqueue(&special_handler->tx, &fd);
|
|
if (err) {
|
|
pr_crit("qman_enqueue() failed");
|
|
goto failed;
|
|
}
|
|
|
|
return 0;
|
|
failed:
|
|
return err;
|
|
}
|
|
|
|
static void send_first_frame_cb(void *ignore)
|
|
{
|
|
if (send_first_frame(NULL))
|
|
WARN_ON(1);
|
|
}
|
|
|
|
int qman_test_stash(void)
|
|
{
|
|
int err;
|
|
|
|
if (cpumask_weight(cpu_online_mask) < 2) {
|
|
pr_info("%s(): skip - only 1 CPU\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
pr_info("%s(): Starting\n", __func__);
|
|
|
|
hp_cpu_list_length = 0;
|
|
loop_counter = 0;
|
|
hp_handler_slab = kmem_cache_create("hp_handler_slab",
|
|
sizeof(struct hp_handler), L1_CACHE_BYTES,
|
|
SLAB_HWCACHE_ALIGN, NULL);
|
|
if (!hp_handler_slab) {
|
|
err = -EIO;
|
|
pr_crit("kmem_cache_create() failed");
|
|
goto failed;
|
|
}
|
|
|
|
err = allocate_frame_data();
|
|
if (err)
|
|
goto failed;
|
|
|
|
/* Init phase 1 */
|
|
pr_info("Creating %d handlers per cpu...\n", HP_PER_CPU);
|
|
if (on_all_cpus(create_per_cpu_handlers)) {
|
|
err = -EIO;
|
|
pr_crit("on_each_cpu() failed");
|
|
goto failed;
|
|
}
|
|
pr_info("Number of cpus: %d, total of %d handlers\n",
|
|
hp_cpu_list_length, hp_cpu_list_length * HP_PER_CPU);
|
|
|
|
err = init_phase2();
|
|
if (err)
|
|
goto failed;
|
|
|
|
err = init_phase3();
|
|
if (err)
|
|
goto failed;
|
|
|
|
preempt_disable();
|
|
if (special_handler->processor_id == smp_processor_id()) {
|
|
err = send_first_frame(NULL);
|
|
if (err)
|
|
goto failed;
|
|
} else {
|
|
smp_call_function_single(special_handler->processor_id,
|
|
send_first_frame_cb, NULL, 1);
|
|
}
|
|
preempt_enable();
|
|
|
|
wait_event(queue, loop_counter == HP_LOOPS);
|
|
deallocate_frame_data();
|
|
if (on_all_cpus(destroy_per_cpu_handlers)) {
|
|
err = -EIO;
|
|
pr_crit("on_each_cpu() failed");
|
|
goto failed;
|
|
}
|
|
kmem_cache_destroy(hp_handler_slab);
|
|
pr_info("%s(): Finished\n", __func__);
|
|
|
|
return 0;
|
|
failed:
|
|
WARN_ON(1);
|
|
return err;
|
|
}
|