linux/arch/powerpc/platforms/pseries/msi.c
Brian King f1dd153121 powerpc/pseries: Make 32-bit MSI quirk work on systems lacking firmware support
Recent commit e61133dda4 added support
for a new firmware feature to force an adapter to use 32 bit MSIs.
However, this firmware is not available for all systems. The hack below
allows devices needing 32 bit MSIs to work on these systems as well.
It is careful to only enable this on Gen2 slots, which should limit
this to configurations where this hack is needed and tested to work.

[Small change to factor out the hack into a separate function -- BenH]

Signed-off-by: Brian King <brking@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-05-24 18:16:54 +10:00

535 lines
12 KiB
C

/*
* Copyright 2006 Jake Moilanen <moilanen@austin.ibm.com>, IBM Corp.
* Copyright 2006-2007 Michael Ellerman, IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2 of the
* License.
*
*/
#include <linux/device.h>
#include <linux/irq.h>
#include <linux/msi.h>
#include <asm/rtas.h>
#include <asm/hw_irq.h>
#include <asm/ppc-pci.h>
static int query_token, change_token;
#define RTAS_QUERY_FN 0
#define RTAS_CHANGE_FN 1
#define RTAS_RESET_FN 2
#define RTAS_CHANGE_MSI_FN 3
#define RTAS_CHANGE_MSIX_FN 4
#define RTAS_CHANGE_32MSI_FN 5
/* RTAS Helpers */
static int rtas_change_msi(struct pci_dn *pdn, u32 func, u32 num_irqs)
{
u32 addr, seq_num, rtas_ret[3];
unsigned long buid;
int rc;
addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
buid = pdn->phb->buid;
seq_num = 1;
do {
if (func == RTAS_CHANGE_MSI_FN || func == RTAS_CHANGE_MSIX_FN ||
func == RTAS_CHANGE_32MSI_FN)
rc = rtas_call(change_token, 6, 4, rtas_ret, addr,
BUID_HI(buid), BUID_LO(buid),
func, num_irqs, seq_num);
else
rc = rtas_call(change_token, 6, 3, rtas_ret, addr,
BUID_HI(buid), BUID_LO(buid),
func, num_irqs, seq_num);
seq_num = rtas_ret[1];
} while (rtas_busy_delay(rc));
/*
* If the RTAS call succeeded, return the number of irqs allocated.
* If not, make sure we return a negative error code.
*/
if (rc == 0)
rc = rtas_ret[0];
else if (rc > 0)
rc = -rc;
pr_debug("rtas_msi: ibm,change_msi(func=%d,num=%d), got %d rc = %d\n",
func, num_irqs, rtas_ret[0], rc);
return rc;
}
static void rtas_disable_msi(struct pci_dev *pdev)
{
struct pci_dn *pdn;
pdn = pci_get_pdn(pdev);
if (!pdn)
return;
/*
* disabling MSI with the explicit interface also disables MSI-X
*/
if (rtas_change_msi(pdn, RTAS_CHANGE_MSI_FN, 0) != 0) {
/*
* may have failed because explicit interface is not
* present
*/
if (rtas_change_msi(pdn, RTAS_CHANGE_FN, 0) != 0) {
pr_debug("rtas_msi: Setting MSIs to 0 failed!\n");
}
}
}
static int rtas_query_irq_number(struct pci_dn *pdn, int offset)
{
u32 addr, rtas_ret[2];
unsigned long buid;
int rc;
addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
buid = pdn->phb->buid;
do {
rc = rtas_call(query_token, 4, 3, rtas_ret, addr,
BUID_HI(buid), BUID_LO(buid), offset);
} while (rtas_busy_delay(rc));
if (rc) {
pr_debug("rtas_msi: error (%d) querying source number\n", rc);
return rc;
}
return rtas_ret[0];
}
static void rtas_teardown_msi_irqs(struct pci_dev *pdev)
{
struct msi_desc *entry;
list_for_each_entry(entry, &pdev->msi_list, list) {
if (entry->irq == NO_IRQ)
continue;
irq_set_msi_desc(entry->irq, NULL);
irq_dispose_mapping(entry->irq);
}
rtas_disable_msi(pdev);
}
static int check_req(struct pci_dev *pdev, int nvec, char *prop_name)
{
struct device_node *dn;
struct pci_dn *pdn;
const u32 *req_msi;
pdn = pci_get_pdn(pdev);
if (!pdn)
return -ENODEV;
dn = pdn->node;
req_msi = of_get_property(dn, prop_name, NULL);
if (!req_msi) {
pr_debug("rtas_msi: No %s on %s\n", prop_name, dn->full_name);
return -ENOENT;
}
if (*req_msi < nvec) {
pr_debug("rtas_msi: %s requests < %d MSIs\n", prop_name, nvec);
if (*req_msi == 0) /* Be paranoid */
return -ENOSPC;
return *req_msi;
}
return 0;
}
static int check_req_msi(struct pci_dev *pdev, int nvec)
{
return check_req(pdev, nvec, "ibm,req#msi");
}
static int check_req_msix(struct pci_dev *pdev, int nvec)
{
return check_req(pdev, nvec, "ibm,req#msi-x");
}
/* Quota calculation */
static struct device_node *find_pe_total_msi(struct pci_dev *dev, int *total)
{
struct device_node *dn;
const u32 *p;
dn = of_node_get(pci_device_to_OF_node(dev));
while (dn) {
p = of_get_property(dn, "ibm,pe-total-#msi", NULL);
if (p) {
pr_debug("rtas_msi: found prop on dn %s\n",
dn->full_name);
*total = *p;
return dn;
}
dn = of_get_next_parent(dn);
}
return NULL;
}
static struct device_node *find_pe_dn(struct pci_dev *dev, int *total)
{
struct device_node *dn;
struct eeh_dev *edev;
/* Found our PE and assume 8 at that point. */
dn = pci_device_to_OF_node(dev);
if (!dn)
return NULL;
/* Get the top level device in the PE */
edev = of_node_to_eeh_dev(dn);
if (edev->pe)
edev = list_first_entry(&edev->pe->edevs, struct eeh_dev, list);
dn = eeh_dev_to_of_node(edev);
if (!dn)
return NULL;
/* We actually want the parent */
dn = of_get_parent(dn);
if (!dn)
return NULL;
/* Hardcode of 8 for old firmwares */
*total = 8;
pr_debug("rtas_msi: using PE dn %s\n", dn->full_name);
return dn;
}
struct msi_counts {
struct device_node *requestor;
int num_devices;
int request;
int quota;
int spare;
int over_quota;
};
static void *count_non_bridge_devices(struct device_node *dn, void *data)
{
struct msi_counts *counts = data;
const u32 *p;
u32 class;
pr_debug("rtas_msi: counting %s\n", dn->full_name);
p = of_get_property(dn, "class-code", NULL);
class = p ? *p : 0;
if ((class >> 8) != PCI_CLASS_BRIDGE_PCI)
counts->num_devices++;
return NULL;
}
static void *count_spare_msis(struct device_node *dn, void *data)
{
struct msi_counts *counts = data;
const u32 *p;
int req;
if (dn == counts->requestor)
req = counts->request;
else {
/* We don't know if a driver will try to use MSI or MSI-X,
* so we just have to punt and use the larger of the two. */
req = 0;
p = of_get_property(dn, "ibm,req#msi", NULL);
if (p)
req = *p;
p = of_get_property(dn, "ibm,req#msi-x", NULL);
if (p)
req = max(req, (int)*p);
}
if (req < counts->quota)
counts->spare += counts->quota - req;
else if (req > counts->quota)
counts->over_quota++;
return NULL;
}
static int msi_quota_for_device(struct pci_dev *dev, int request)
{
struct device_node *pe_dn;
struct msi_counts counts;
int total;
pr_debug("rtas_msi: calc quota for %s, request %d\n", pci_name(dev),
request);
pe_dn = find_pe_total_msi(dev, &total);
if (!pe_dn)
pe_dn = find_pe_dn(dev, &total);
if (!pe_dn) {
pr_err("rtas_msi: couldn't find PE for %s\n", pci_name(dev));
goto out;
}
pr_debug("rtas_msi: found PE %s\n", pe_dn->full_name);
memset(&counts, 0, sizeof(struct msi_counts));
/* Work out how many devices we have below this PE */
traverse_pci_devices(pe_dn, count_non_bridge_devices, &counts);
if (counts.num_devices == 0) {
pr_err("rtas_msi: found 0 devices under PE for %s\n",
pci_name(dev));
goto out;
}
counts.quota = total / counts.num_devices;
if (request <= counts.quota)
goto out;
/* else, we have some more calculating to do */
counts.requestor = pci_device_to_OF_node(dev);
counts.request = request;
traverse_pci_devices(pe_dn, count_spare_msis, &counts);
/* If the quota isn't an integer multiple of the total, we can
* use the remainder as spare MSIs for anyone that wants them. */
counts.spare += total % counts.num_devices;
/* Divide any spare by the number of over-quota requestors */
if (counts.over_quota)
counts.quota += counts.spare / counts.over_quota;
/* And finally clamp the request to the possibly adjusted quota */
request = min(counts.quota, request);
pr_debug("rtas_msi: request clamped to quota %d\n", request);
out:
of_node_put(pe_dn);
return request;
}
static int rtas_msi_check_device(struct pci_dev *pdev, int nvec, int type)
{
int quota, rc;
if (type == PCI_CAP_ID_MSIX)
rc = check_req_msix(pdev, nvec);
else
rc = check_req_msi(pdev, nvec);
if (rc)
return rc;
quota = msi_quota_for_device(pdev, nvec);
if (quota && quota < nvec)
return quota;
return 0;
}
static int check_msix_entries(struct pci_dev *pdev)
{
struct msi_desc *entry;
int expected;
/* There's no way for us to express to firmware that we want
* a discontiguous, or non-zero based, range of MSI-X entries.
* So we must reject such requests. */
expected = 0;
list_for_each_entry(entry, &pdev->msi_list, list) {
if (entry->msi_attrib.entry_nr != expected) {
pr_debug("rtas_msi: bad MSI-X entries.\n");
return -EINVAL;
}
expected++;
}
return 0;
}
static void rtas_hack_32bit_msi_gen2(struct pci_dev *pdev)
{
u32 addr_hi, addr_lo;
/*
* We should only get in here for IODA1 configs. This is based on the
* fact that we using RTAS for MSIs, we don't have the 32 bit MSI RTAS
* support, and we are in a PCIe Gen2 slot.
*/
dev_info(&pdev->dev,
"rtas_msi: No 32 bit MSI firmware support, forcing 32 bit MSI\n");
pci_read_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_HI, &addr_hi);
addr_lo = 0xffff0000 | ((addr_hi >> (48 - 32)) << 4);
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_LO, addr_lo);
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_HI, 0);
}
static int rtas_setup_msi_irqs(struct pci_dev *pdev, int nvec_in, int type)
{
struct pci_dn *pdn;
int hwirq, virq, i, rc;
struct msi_desc *entry;
struct msi_msg msg;
int nvec = nvec_in;
int use_32bit_msi_hack = 0;
pdn = pci_get_pdn(pdev);
if (!pdn)
return -ENODEV;
if (type == PCI_CAP_ID_MSIX && check_msix_entries(pdev))
return -EINVAL;
/*
* Firmware currently refuse any non power of two allocation
* so we round up if the quota will allow it.
*/
if (type == PCI_CAP_ID_MSIX) {
int m = roundup_pow_of_two(nvec);
int quota = msi_quota_for_device(pdev, m);
if (quota >= m)
nvec = m;
}
/*
* Try the new more explicit firmware interface, if that fails fall
* back to the old interface. The old interface is known to never
* return MSI-Xs.
*/
again:
if (type == PCI_CAP_ID_MSI) {
if (pdn->force_32bit_msi) {
rc = rtas_change_msi(pdn, RTAS_CHANGE_32MSI_FN, nvec);
if (rc < 0) {
/*
* We only want to run the 32 bit MSI hack below if
* the max bus speed is Gen2 speed
*/
if (pdev->bus->max_bus_speed != PCIE_SPEED_5_0GT)
return rc;
use_32bit_msi_hack = 1;
}
} else
rc = -1;
if (rc < 0)
rc = rtas_change_msi(pdn, RTAS_CHANGE_MSI_FN, nvec);
if (rc < 0) {
pr_debug("rtas_msi: trying the old firmware call.\n");
rc = rtas_change_msi(pdn, RTAS_CHANGE_FN, nvec);
}
if (use_32bit_msi_hack && rc > 0)
rtas_hack_32bit_msi_gen2(pdev);
} else
rc = rtas_change_msi(pdn, RTAS_CHANGE_MSIX_FN, nvec);
if (rc != nvec) {
if (nvec != nvec_in) {
nvec = nvec_in;
goto again;
}
pr_debug("rtas_msi: rtas_change_msi() failed\n");
return rc;
}
i = 0;
list_for_each_entry(entry, &pdev->msi_list, list) {
hwirq = rtas_query_irq_number(pdn, i++);
if (hwirq < 0) {
pr_debug("rtas_msi: error (%d) getting hwirq\n", rc);
return hwirq;
}
virq = irq_create_mapping(NULL, hwirq);
if (virq == NO_IRQ) {
pr_debug("rtas_msi: Failed mapping hwirq %d\n", hwirq);
return -ENOSPC;
}
dev_dbg(&pdev->dev, "rtas_msi: allocated virq %d\n", virq);
irq_set_msi_desc(virq, entry);
/* Read config space back so we can restore after reset */
read_msi_msg(virq, &msg);
entry->msg = msg;
}
return 0;
}
static void rtas_msi_pci_irq_fixup(struct pci_dev *pdev)
{
/* No LSI -> leave MSIs (if any) configured */
if (pdev->irq == NO_IRQ) {
dev_dbg(&pdev->dev, "rtas_msi: no LSI, nothing to do.\n");
return;
}
/* No MSI -> MSIs can't have been assigned by fw, leave LSI */
if (check_req_msi(pdev, 1) && check_req_msix(pdev, 1)) {
dev_dbg(&pdev->dev, "rtas_msi: no req#msi/x, nothing to do.\n");
return;
}
dev_dbg(&pdev->dev, "rtas_msi: disabling existing MSI.\n");
rtas_disable_msi(pdev);
}
static int rtas_msi_init(void)
{
query_token = rtas_token("ibm,query-interrupt-source-number");
change_token = rtas_token("ibm,change-msi");
if ((query_token == RTAS_UNKNOWN_SERVICE) ||
(change_token == RTAS_UNKNOWN_SERVICE)) {
pr_debug("rtas_msi: no RTAS tokens, no MSI support.\n");
return -1;
}
pr_debug("rtas_msi: Registering RTAS MSI callbacks.\n");
WARN_ON(ppc_md.setup_msi_irqs);
ppc_md.setup_msi_irqs = rtas_setup_msi_irqs;
ppc_md.teardown_msi_irqs = rtas_teardown_msi_irqs;
ppc_md.msi_check_device = rtas_msi_check_device;
WARN_ON(ppc_md.pci_irq_fixup);
ppc_md.pci_irq_fixup = rtas_msi_pci_irq_fixup;
return 0;
}
arch_initcall(rtas_msi_init);