mirror of
https://github.com/torvalds/linux.git
synced 2024-11-17 09:31:50 +00:00
41b5368f31
By default if no fill symbol is given to .align directive in a code section it fills gap with NOPs. If previous fragment is not instruction-aligned, additional pre-alignment is done by zero bytes before NOPs. These zero bytes are marked as data by special symbol $d in symbol table. Unfortunately GAS assumes that there is only code in the code section so it "puts back" code symbol $a at the end of this pre-alignment. So if there is some data after alignment it will be interpreted as code and will be swapped back to LE for BE8 system during a final linking. If explicit fill value is given to .align, the NOP-padding code is skipped and symbol table does not get messed-up. So the workaround for this issue: Use explicit fill value if data should be aligned in the code section. Acked-by: Ben Dooks <ben.dooks@codethink.co.uk> Acked-by: Jon Medhurst <tixy@linaro.org> Signed-off-by: Taras Kondratiuk <taras.kondratiuk@linaro.org>
1702 lines
42 KiB
C
1702 lines
42 KiB
C
/*
|
|
* arch/arm/kernel/kprobes-test.c
|
|
*
|
|
* Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
/*
|
|
* This file contains test code for ARM kprobes.
|
|
*
|
|
* The top level function run_all_tests() executes tests for all of the
|
|
* supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
|
|
* fall into two categories; run_api_tests() checks basic functionality of the
|
|
* kprobes API, and run_test_cases() is a comprehensive test for kprobes
|
|
* instruction decoding and simulation.
|
|
*
|
|
* run_test_cases() first checks the kprobes decoding table for self consistency
|
|
* (using table_test()) then executes a series of test cases for each of the CPU
|
|
* instruction forms. coverage_start() and coverage_end() are used to verify
|
|
* that these test cases cover all of the possible combinations of instructions
|
|
* described by the kprobes decoding tables.
|
|
*
|
|
* The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
|
|
* which use the macros defined in kprobes-test.h. The rest of this
|
|
* documentation will describe the operation of the framework used by these
|
|
* test cases.
|
|
*/
|
|
|
|
/*
|
|
* TESTING METHODOLOGY
|
|
* -------------------
|
|
*
|
|
* The methodology used to test an ARM instruction 'test_insn' is to use
|
|
* inline assembler like:
|
|
*
|
|
* test_before: nop
|
|
* test_case: test_insn
|
|
* test_after: nop
|
|
*
|
|
* When the test case is run a kprobe is placed of each nop. The
|
|
* post-handler of the test_before probe is used to modify the saved CPU
|
|
* register context to that which we require for the test case. The
|
|
* pre-handler of the of the test_after probe saves a copy of the CPU
|
|
* register context. In this way we can execute test_insn with a specific
|
|
* register context and see the results afterwards.
|
|
*
|
|
* To actually test the kprobes instruction emulation we perform the above
|
|
* step a second time but with an additional kprobe on the test_case
|
|
* instruction itself. If the emulation is accurate then the results seen
|
|
* by the test_after probe will be identical to the first run which didn't
|
|
* have a probe on test_case.
|
|
*
|
|
* Each test case is run several times with a variety of variations in the
|
|
* flags value of stored in CPSR, and for Thumb code, different ITState.
|
|
*
|
|
* For instructions which can modify PC, a second test_after probe is used
|
|
* like this:
|
|
*
|
|
* test_before: nop
|
|
* test_case: test_insn
|
|
* test_after: nop
|
|
* b test_done
|
|
* test_after2: nop
|
|
* test_done:
|
|
*
|
|
* The test case is constructed such that test_insn branches to
|
|
* test_after2, or, if testing a conditional instruction, it may just
|
|
* continue to test_after. The probes inserted at both locations let us
|
|
* determine which happened. A similar approach is used for testing
|
|
* backwards branches...
|
|
*
|
|
* b test_before
|
|
* b test_done @ helps to cope with off by 1 branches
|
|
* test_after2: nop
|
|
* b test_done
|
|
* test_before: nop
|
|
* test_case: test_insn
|
|
* test_after: nop
|
|
* test_done:
|
|
*
|
|
* The macros used to generate the assembler instructions describe above
|
|
* are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
|
|
* (branch backwards). In these, the local variables numbered 1, 50, 2 and
|
|
* 99 represent: test_before, test_case, test_after2 and test_done.
|
|
*
|
|
* FRAMEWORK
|
|
* ---------
|
|
*
|
|
* Each test case is wrapped between the pair of macros TESTCASE_START and
|
|
* TESTCASE_END. As well as performing the inline assembler boilerplate,
|
|
* these call out to the kprobes_test_case_start() and
|
|
* kprobes_test_case_end() functions which drive the execution of the test
|
|
* case. The specific arguments to use for each test case are stored as
|
|
* inline data constructed using the various TEST_ARG_* macros. Putting
|
|
* this all together, a simple test case may look like:
|
|
*
|
|
* TESTCASE_START("Testing mov r0, r7")
|
|
* TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
|
|
* TEST_ARG_END("")
|
|
* TEST_INSTRUCTION("mov r0, r7")
|
|
* TESTCASE_END
|
|
*
|
|
* Note, in practice the single convenience macro TEST_R would be used for this
|
|
* instead.
|
|
*
|
|
* The above would expand to assembler looking something like:
|
|
*
|
|
* @ TESTCASE_START
|
|
* bl __kprobes_test_case_start
|
|
* @ start of inline data...
|
|
* .ascii "mov r0, r7" @ text title for test case
|
|
* .byte 0
|
|
* .align 2, 0
|
|
*
|
|
* @ TEST_ARG_REG
|
|
* .byte ARG_TYPE_REG
|
|
* .byte 7
|
|
* .short 0
|
|
* .word 0x1234567
|
|
*
|
|
* @ TEST_ARG_END
|
|
* .byte ARG_TYPE_END
|
|
* .byte TEST_ISA @ flags, including ISA being tested
|
|
* .short 50f-0f @ offset of 'test_before'
|
|
* .short 2f-0f @ offset of 'test_after2' (if relevent)
|
|
* .short 99f-0f @ offset of 'test_done'
|
|
* @ start of test case code...
|
|
* 0:
|
|
* .code TEST_ISA @ switch to ISA being tested
|
|
*
|
|
* @ TEST_INSTRUCTION
|
|
* 50: nop @ location for 'test_before' probe
|
|
* 1: mov r0, r7 @ the test case instruction 'test_insn'
|
|
* nop @ location for 'test_after' probe
|
|
*
|
|
* // TESTCASE_END
|
|
* 2:
|
|
* 99: bl __kprobes_test_case_end_##TEST_ISA
|
|
* .code NONMAL_ISA
|
|
*
|
|
* When the above is execute the following happens...
|
|
*
|
|
* __kprobes_test_case_start() is an assembler wrapper which sets up space
|
|
* for a stack buffer and calls the C function kprobes_test_case_start().
|
|
* This C function will do some initial processing of the inline data and
|
|
* setup some global state. It then inserts the test_before and test_after
|
|
* kprobes and returns a value which causes the assembler wrapper to jump
|
|
* to the start of the test case code, (local label '0').
|
|
*
|
|
* When the test case code executes, the test_before probe will be hit and
|
|
* test_before_post_handler will call setup_test_context(). This fills the
|
|
* stack buffer and CPU registers with a test pattern and then processes
|
|
* the test case arguments. In our example there is one TEST_ARG_REG which
|
|
* indicates that R7 should be loaded with the value 0x12345678.
|
|
*
|
|
* When the test_before probe ends, the test case continues and executes
|
|
* the "mov r0, r7" instruction. It then hits the test_after probe and the
|
|
* pre-handler for this (test_after_pre_handler) will save a copy of the
|
|
* CPU register context. This should now have R0 holding the same value as
|
|
* R7.
|
|
*
|
|
* Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
|
|
* an assembler wrapper which switches back to the ISA used by the test
|
|
* code and calls the C function kprobes_test_case_end().
|
|
*
|
|
* For each run through the test case, test_case_run_count is incremented
|
|
* by one. For even runs, kprobes_test_case_end() saves a copy of the
|
|
* register and stack buffer contents from the test case just run. It then
|
|
* inserts a kprobe on the test case instruction 'test_insn' and returns a
|
|
* value to cause the test case code to be re-run.
|
|
*
|
|
* For odd numbered runs, kprobes_test_case_end() compares the register and
|
|
* stack buffer contents to those that were saved on the previous even
|
|
* numbered run (the one without the kprobe on test_insn). These should be
|
|
* the same if the kprobe instruction simulation routine is correct.
|
|
*
|
|
* The pair of test case runs is repeated with different combinations of
|
|
* flag values in CPSR and, for Thumb, different ITState. This is
|
|
* controlled by test_context_cpsr().
|
|
*
|
|
* BUILDING TEST CASES
|
|
* -------------------
|
|
*
|
|
*
|
|
* As an aid to building test cases, the stack buffer is initialised with
|
|
* some special values:
|
|
*
|
|
* [SP+13*4] Contains SP+120. This can be used to test instructions
|
|
* which load a value into SP.
|
|
*
|
|
* [SP+15*4] When testing branching instructions using TEST_BRANCH_{F,B},
|
|
* this holds the target address of the branch, 'test_after2'.
|
|
* This can be used to test instructions which load a PC value
|
|
* from memory.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/bug.h>
|
|
#include <asm/opcodes.h>
|
|
|
|
#include "kprobes.h"
|
|
#include "probes-arm.h"
|
|
#include "probes-thumb.h"
|
|
#include "kprobes-test.h"
|
|
|
|
|
|
#define BENCHMARKING 1
|
|
|
|
|
|
/*
|
|
* Test basic API
|
|
*/
|
|
|
|
static bool test_regs_ok;
|
|
static int test_func_instance;
|
|
static int pre_handler_called;
|
|
static int post_handler_called;
|
|
static int jprobe_func_called;
|
|
static int kretprobe_handler_called;
|
|
|
|
#define FUNC_ARG1 0x12345678
|
|
#define FUNC_ARG2 0xabcdef
|
|
|
|
|
|
#ifndef CONFIG_THUMB2_KERNEL
|
|
|
|
long arm_func(long r0, long r1);
|
|
|
|
static void __used __naked __arm_kprobes_test_func(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
".arm \n\t"
|
|
".type arm_func, %%function \n\t"
|
|
"arm_func: \n\t"
|
|
"adds r0, r0, r1 \n\t"
|
|
"bx lr \n\t"
|
|
".code "NORMAL_ISA /* Back to Thumb if necessary */
|
|
: : : "r0", "r1", "cc"
|
|
);
|
|
}
|
|
|
|
#else /* CONFIG_THUMB2_KERNEL */
|
|
|
|
long thumb16_func(long r0, long r1);
|
|
long thumb32even_func(long r0, long r1);
|
|
long thumb32odd_func(long r0, long r1);
|
|
|
|
static void __used __naked __thumb_kprobes_test_funcs(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
".type thumb16_func, %%function \n\t"
|
|
"thumb16_func: \n\t"
|
|
"adds.n r0, r0, r1 \n\t"
|
|
"bx lr \n\t"
|
|
|
|
".align \n\t"
|
|
".type thumb32even_func, %%function \n\t"
|
|
"thumb32even_func: \n\t"
|
|
"adds.w r0, r0, r1 \n\t"
|
|
"bx lr \n\t"
|
|
|
|
".align \n\t"
|
|
"nop.n \n\t"
|
|
".type thumb32odd_func, %%function \n\t"
|
|
"thumb32odd_func: \n\t"
|
|
"adds.w r0, r0, r1 \n\t"
|
|
"bx lr \n\t"
|
|
|
|
: : : "r0", "r1", "cc"
|
|
);
|
|
}
|
|
|
|
#endif /* CONFIG_THUMB2_KERNEL */
|
|
|
|
|
|
static int call_test_func(long (*func)(long, long), bool check_test_regs)
|
|
{
|
|
long ret;
|
|
|
|
++test_func_instance;
|
|
test_regs_ok = false;
|
|
|
|
ret = (*func)(FUNC_ARG1, FUNC_ARG2);
|
|
if (ret != FUNC_ARG1 + FUNC_ARG2) {
|
|
pr_err("FAIL: call_test_func: func returned %lx\n", ret);
|
|
return false;
|
|
}
|
|
|
|
if (check_test_regs && !test_regs_ok) {
|
|
pr_err("FAIL: test regs not OK\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
pre_handler_called = test_func_instance;
|
|
if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
|
|
test_regs_ok = true;
|
|
return 0;
|
|
}
|
|
|
|
static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
|
|
unsigned long flags)
|
|
{
|
|
post_handler_called = test_func_instance;
|
|
if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
|
|
test_regs_ok = false;
|
|
}
|
|
|
|
static struct kprobe the_kprobe = {
|
|
.addr = 0,
|
|
.pre_handler = pre_handler,
|
|
.post_handler = post_handler
|
|
};
|
|
|
|
static int test_kprobe(long (*func)(long, long))
|
|
{
|
|
int ret;
|
|
|
|
the_kprobe.addr = (kprobe_opcode_t *)func;
|
|
ret = register_kprobe(&the_kprobe);
|
|
if (ret < 0) {
|
|
pr_err("FAIL: register_kprobe failed with %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = call_test_func(func, true);
|
|
|
|
unregister_kprobe(&the_kprobe);
|
|
the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
|
|
|
|
if (!ret)
|
|
return -EINVAL;
|
|
if (pre_handler_called != test_func_instance) {
|
|
pr_err("FAIL: kprobe pre_handler not called\n");
|
|
return -EINVAL;
|
|
}
|
|
if (post_handler_called != test_func_instance) {
|
|
pr_err("FAIL: kprobe post_handler not called\n");
|
|
return -EINVAL;
|
|
}
|
|
if (!call_test_func(func, false))
|
|
return -EINVAL;
|
|
if (pre_handler_called == test_func_instance ||
|
|
post_handler_called == test_func_instance) {
|
|
pr_err("FAIL: probe called after unregistering\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __kprobes jprobe_func(long r0, long r1)
|
|
{
|
|
jprobe_func_called = test_func_instance;
|
|
if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
|
|
test_regs_ok = true;
|
|
jprobe_return();
|
|
}
|
|
|
|
static struct jprobe the_jprobe = {
|
|
.entry = jprobe_func,
|
|
};
|
|
|
|
static int test_jprobe(long (*func)(long, long))
|
|
{
|
|
int ret;
|
|
|
|
the_jprobe.kp.addr = (kprobe_opcode_t *)func;
|
|
ret = register_jprobe(&the_jprobe);
|
|
if (ret < 0) {
|
|
pr_err("FAIL: register_jprobe failed with %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = call_test_func(func, true);
|
|
|
|
unregister_jprobe(&the_jprobe);
|
|
the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
|
|
|
|
if (!ret)
|
|
return -EINVAL;
|
|
if (jprobe_func_called != test_func_instance) {
|
|
pr_err("FAIL: jprobe handler function not called\n");
|
|
return -EINVAL;
|
|
}
|
|
if (!call_test_func(func, false))
|
|
return -EINVAL;
|
|
if (jprobe_func_called == test_func_instance) {
|
|
pr_err("FAIL: probe called after unregistering\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __kprobes
|
|
kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
|
|
{
|
|
kretprobe_handler_called = test_func_instance;
|
|
if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
|
|
test_regs_ok = true;
|
|
return 0;
|
|
}
|
|
|
|
static struct kretprobe the_kretprobe = {
|
|
.handler = kretprobe_handler,
|
|
};
|
|
|
|
static int test_kretprobe(long (*func)(long, long))
|
|
{
|
|
int ret;
|
|
|
|
the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
|
|
ret = register_kretprobe(&the_kretprobe);
|
|
if (ret < 0) {
|
|
pr_err("FAIL: register_kretprobe failed with %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = call_test_func(func, true);
|
|
|
|
unregister_kretprobe(&the_kretprobe);
|
|
the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
|
|
|
|
if (!ret)
|
|
return -EINVAL;
|
|
if (kretprobe_handler_called != test_func_instance) {
|
|
pr_err("FAIL: kretprobe handler not called\n");
|
|
return -EINVAL;
|
|
}
|
|
if (!call_test_func(func, false))
|
|
return -EINVAL;
|
|
if (jprobe_func_called == test_func_instance) {
|
|
pr_err("FAIL: kretprobe called after unregistering\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int run_api_tests(long (*func)(long, long))
|
|
{
|
|
int ret;
|
|
|
|
pr_info(" kprobe\n");
|
|
ret = test_kprobe(func);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
pr_info(" jprobe\n");
|
|
ret = test_jprobe(func);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
pr_info(" kretprobe\n");
|
|
ret = test_kretprobe(func);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Benchmarking
|
|
*/
|
|
|
|
#if BENCHMARKING
|
|
|
|
static void __naked benchmark_nop(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
"nop \n\t"
|
|
"bx lr"
|
|
);
|
|
}
|
|
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
#define wide ".w"
|
|
#else
|
|
#define wide
|
|
#endif
|
|
|
|
static void __naked benchmark_pushpop1(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
"stmdb"wide" sp!, {r3-r11,lr} \n\t"
|
|
"ldmia"wide" sp!, {r3-r11,pc}"
|
|
);
|
|
}
|
|
|
|
static void __naked benchmark_pushpop2(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
"stmdb"wide" sp!, {r0-r8,lr} \n\t"
|
|
"ldmia"wide" sp!, {r0-r8,pc}"
|
|
);
|
|
}
|
|
|
|
static void __naked benchmark_pushpop3(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
"stmdb"wide" sp!, {r4,lr} \n\t"
|
|
"ldmia"wide" sp!, {r4,pc}"
|
|
);
|
|
}
|
|
|
|
static void __naked benchmark_pushpop4(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
"stmdb"wide" sp!, {r0,lr} \n\t"
|
|
"ldmia"wide" sp!, {r0,pc}"
|
|
);
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
|
|
static void __naked benchmark_pushpop_thumb(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
"push.n {r0-r7,lr} \n\t"
|
|
"pop.n {r0-r7,pc}"
|
|
);
|
|
}
|
|
|
|
#endif
|
|
|
|
static int __kprobes
|
|
benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int benchmark(void(*fn)(void))
|
|
{
|
|
unsigned n, i, t, t0;
|
|
|
|
for (n = 1000; ; n *= 2) {
|
|
t0 = sched_clock();
|
|
for (i = n; i > 0; --i)
|
|
fn();
|
|
t = sched_clock() - t0;
|
|
if (t >= 250000000)
|
|
break; /* Stop once we took more than 0.25 seconds */
|
|
}
|
|
return t / n; /* Time for one iteration in nanoseconds */
|
|
};
|
|
|
|
static int kprobe_benchmark(void(*fn)(void), unsigned offset)
|
|
{
|
|
struct kprobe k = {
|
|
.addr = (kprobe_opcode_t *)((uintptr_t)fn + offset),
|
|
.pre_handler = benchmark_pre_handler,
|
|
};
|
|
|
|
int ret = register_kprobe(&k);
|
|
if (ret < 0) {
|
|
pr_err("FAIL: register_kprobe failed with %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = benchmark(fn);
|
|
|
|
unregister_kprobe(&k);
|
|
return ret;
|
|
};
|
|
|
|
struct benchmarks {
|
|
void (*fn)(void);
|
|
unsigned offset;
|
|
const char *title;
|
|
};
|
|
|
|
static int run_benchmarks(void)
|
|
{
|
|
int ret;
|
|
struct benchmarks list[] = {
|
|
{&benchmark_nop, 0, "nop"},
|
|
/*
|
|
* benchmark_pushpop{1,3} will have the optimised
|
|
* instruction emulation, whilst benchmark_pushpop{2,4} will
|
|
* be the equivalent unoptimised instructions.
|
|
*/
|
|
{&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"},
|
|
{&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"},
|
|
{&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"},
|
|
{&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"},
|
|
{&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"},
|
|
{&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"},
|
|
{&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"},
|
|
{&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"},
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
{&benchmark_pushpop_thumb, 0, "push.n {r0-r7,lr}"},
|
|
{&benchmark_pushpop_thumb, 2, "pop.n {r0-r7,pc}"},
|
|
#endif
|
|
{0}
|
|
};
|
|
|
|
struct benchmarks *b;
|
|
for (b = list; b->fn; ++b) {
|
|
ret = kprobe_benchmark(b->fn, b->offset);
|
|
if (ret < 0)
|
|
return ret;
|
|
pr_info(" %dns for kprobe %s\n", ret, b->title);
|
|
}
|
|
|
|
pr_info("\n");
|
|
return 0;
|
|
}
|
|
|
|
#endif /* BENCHMARKING */
|
|
|
|
|
|
/*
|
|
* Decoding table self-consistency tests
|
|
*/
|
|
|
|
static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
|
|
[DECODE_TYPE_TABLE] = sizeof(struct decode_table),
|
|
[DECODE_TYPE_CUSTOM] = sizeof(struct decode_custom),
|
|
[DECODE_TYPE_SIMULATE] = sizeof(struct decode_simulate),
|
|
[DECODE_TYPE_EMULATE] = sizeof(struct decode_emulate),
|
|
[DECODE_TYPE_OR] = sizeof(struct decode_or),
|
|
[DECODE_TYPE_REJECT] = sizeof(struct decode_reject)
|
|
};
|
|
|
|
static int table_iter(const union decode_item *table,
|
|
int (*fn)(const struct decode_header *, void *),
|
|
void *args)
|
|
{
|
|
const struct decode_header *h = (struct decode_header *)table;
|
|
int result;
|
|
|
|
for (;;) {
|
|
enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
|
|
|
|
if (type == DECODE_TYPE_END)
|
|
return 0;
|
|
|
|
result = fn(h, args);
|
|
if (result)
|
|
return result;
|
|
|
|
h = (struct decode_header *)
|
|
((uintptr_t)h + decode_struct_sizes[type]);
|
|
|
|
}
|
|
}
|
|
|
|
static int table_test_fail(const struct decode_header *h, const char* message)
|
|
{
|
|
|
|
pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
|
|
message, h->mask.bits, h->value.bits);
|
|
return -EINVAL;
|
|
}
|
|
|
|
struct table_test_args {
|
|
const union decode_item *root_table;
|
|
u32 parent_mask;
|
|
u32 parent_value;
|
|
};
|
|
|
|
static int table_test_fn(const struct decode_header *h, void *args)
|
|
{
|
|
struct table_test_args *a = (struct table_test_args *)args;
|
|
enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
|
|
|
|
if (h->value.bits & ~h->mask.bits)
|
|
return table_test_fail(h, "Match value has bits not in mask");
|
|
|
|
if ((h->mask.bits & a->parent_mask) != a->parent_mask)
|
|
return table_test_fail(h, "Mask has bits not in parent mask");
|
|
|
|
if ((h->value.bits ^ a->parent_value) & a->parent_mask)
|
|
return table_test_fail(h, "Value is inconsistent with parent");
|
|
|
|
if (type == DECODE_TYPE_TABLE) {
|
|
struct decode_table *d = (struct decode_table *)h;
|
|
struct table_test_args args2 = *a;
|
|
args2.parent_mask = h->mask.bits;
|
|
args2.parent_value = h->value.bits;
|
|
return table_iter(d->table.table, table_test_fn, &args2);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int table_test(const union decode_item *table)
|
|
{
|
|
struct table_test_args args = {
|
|
.root_table = table,
|
|
.parent_mask = 0,
|
|
.parent_value = 0
|
|
};
|
|
return table_iter(args.root_table, table_test_fn, &args);
|
|
}
|
|
|
|
|
|
/*
|
|
* Decoding table test coverage analysis
|
|
*
|
|
* coverage_start() builds a coverage_table which contains a list of
|
|
* coverage_entry's to match each entry in the specified kprobes instruction
|
|
* decoding table.
|
|
*
|
|
* When test cases are run, coverage_add() is called to process each case.
|
|
* This looks up the corresponding entry in the coverage_table and sets it as
|
|
* being matched, as well as clearing the regs flag appropriate for the test.
|
|
*
|
|
* After all test cases have been run, coverage_end() is called to check that
|
|
* all entries in coverage_table have been matched and that all regs flags are
|
|
* cleared. I.e. that all possible combinations of instructions described by
|
|
* the kprobes decoding tables have had a test case executed for them.
|
|
*/
|
|
|
|
bool coverage_fail;
|
|
|
|
#define MAX_COVERAGE_ENTRIES 256
|
|
|
|
struct coverage_entry {
|
|
const struct decode_header *header;
|
|
unsigned regs;
|
|
unsigned nesting;
|
|
char matched;
|
|
};
|
|
|
|
struct coverage_table {
|
|
struct coverage_entry *base;
|
|
unsigned num_entries;
|
|
unsigned nesting;
|
|
};
|
|
|
|
struct coverage_table coverage;
|
|
|
|
#define COVERAGE_ANY_REG (1<<0)
|
|
#define COVERAGE_SP (1<<1)
|
|
#define COVERAGE_PC (1<<2)
|
|
#define COVERAGE_PCWB (1<<3)
|
|
|
|
static const char coverage_register_lookup[16] = {
|
|
[REG_TYPE_ANY] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
|
|
[REG_TYPE_SAMEAS16] = COVERAGE_ANY_REG,
|
|
[REG_TYPE_SP] = COVERAGE_SP,
|
|
[REG_TYPE_PC] = COVERAGE_PC,
|
|
[REG_TYPE_NOSP] = COVERAGE_ANY_REG | COVERAGE_SP,
|
|
[REG_TYPE_NOSPPC] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
|
|
[REG_TYPE_NOPC] = COVERAGE_ANY_REG | COVERAGE_PC,
|
|
[REG_TYPE_NOPCWB] = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
|
|
[REG_TYPE_NOPCX] = COVERAGE_ANY_REG,
|
|
[REG_TYPE_NOSPPCX] = COVERAGE_ANY_REG | COVERAGE_SP,
|
|
};
|
|
|
|
unsigned coverage_start_registers(const struct decode_header *h)
|
|
{
|
|
unsigned regs = 0;
|
|
int i;
|
|
for (i = 0; i < 20; i += 4) {
|
|
int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
|
|
regs |= coverage_register_lookup[r] << i;
|
|
}
|
|
return regs;
|
|
}
|
|
|
|
static int coverage_start_fn(const struct decode_header *h, void *args)
|
|
{
|
|
struct coverage_table *coverage = (struct coverage_table *)args;
|
|
enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
|
|
struct coverage_entry *entry = coverage->base + coverage->num_entries;
|
|
|
|
if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
|
|
pr_err("FAIL: Out of space for test coverage data");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
++coverage->num_entries;
|
|
|
|
entry->header = h;
|
|
entry->regs = coverage_start_registers(h);
|
|
entry->nesting = coverage->nesting;
|
|
entry->matched = false;
|
|
|
|
if (type == DECODE_TYPE_TABLE) {
|
|
struct decode_table *d = (struct decode_table *)h;
|
|
int ret;
|
|
++coverage->nesting;
|
|
ret = table_iter(d->table.table, coverage_start_fn, coverage);
|
|
--coverage->nesting;
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int coverage_start(const union decode_item *table)
|
|
{
|
|
coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
|
|
sizeof(struct coverage_entry), GFP_KERNEL);
|
|
coverage.num_entries = 0;
|
|
coverage.nesting = 0;
|
|
return table_iter(table, coverage_start_fn, &coverage);
|
|
}
|
|
|
|
static void
|
|
coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
|
|
{
|
|
int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
|
|
int i;
|
|
for (i = 0; i < 20; i += 4) {
|
|
enum decode_reg_type reg_type = (regs >> i) & 0xf;
|
|
int reg = (insn >> i) & 0xf;
|
|
int flag;
|
|
|
|
if (!reg_type)
|
|
continue;
|
|
|
|
if (reg == 13)
|
|
flag = COVERAGE_SP;
|
|
else if (reg == 15)
|
|
flag = COVERAGE_PC;
|
|
else
|
|
flag = COVERAGE_ANY_REG;
|
|
entry->regs &= ~(flag << i);
|
|
|
|
switch (reg_type) {
|
|
|
|
case REG_TYPE_NONE:
|
|
case REG_TYPE_ANY:
|
|
case REG_TYPE_SAMEAS16:
|
|
break;
|
|
|
|
case REG_TYPE_SP:
|
|
if (reg != 13)
|
|
return;
|
|
break;
|
|
|
|
case REG_TYPE_PC:
|
|
if (reg != 15)
|
|
return;
|
|
break;
|
|
|
|
case REG_TYPE_NOSP:
|
|
if (reg == 13)
|
|
return;
|
|
break;
|
|
|
|
case REG_TYPE_NOSPPC:
|
|
case REG_TYPE_NOSPPCX:
|
|
if (reg == 13 || reg == 15)
|
|
return;
|
|
break;
|
|
|
|
case REG_TYPE_NOPCWB:
|
|
if (!is_writeback(insn))
|
|
break;
|
|
if (reg == 15) {
|
|
entry->regs &= ~(COVERAGE_PCWB << i);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case REG_TYPE_NOPC:
|
|
case REG_TYPE_NOPCX:
|
|
if (reg == 15)
|
|
return;
|
|
break;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
static void coverage_add(kprobe_opcode_t insn)
|
|
{
|
|
struct coverage_entry *entry = coverage.base;
|
|
struct coverage_entry *end = coverage.base + coverage.num_entries;
|
|
bool matched = false;
|
|
unsigned nesting = 0;
|
|
|
|
for (; entry < end; ++entry) {
|
|
const struct decode_header *h = entry->header;
|
|
enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
|
|
|
|
if (entry->nesting > nesting)
|
|
continue; /* Skip sub-table we didn't match */
|
|
|
|
if (entry->nesting < nesting)
|
|
break; /* End of sub-table we were scanning */
|
|
|
|
if (!matched) {
|
|
if ((insn & h->mask.bits) != h->value.bits)
|
|
continue;
|
|
entry->matched = true;
|
|
}
|
|
|
|
switch (type) {
|
|
|
|
case DECODE_TYPE_TABLE:
|
|
++nesting;
|
|
break;
|
|
|
|
case DECODE_TYPE_CUSTOM:
|
|
case DECODE_TYPE_SIMULATE:
|
|
case DECODE_TYPE_EMULATE:
|
|
coverage_add_registers(entry, insn);
|
|
return;
|
|
|
|
case DECODE_TYPE_OR:
|
|
matched = true;
|
|
break;
|
|
|
|
case DECODE_TYPE_REJECT:
|
|
default:
|
|
return;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
static void coverage_end(void)
|
|
{
|
|
struct coverage_entry *entry = coverage.base;
|
|
struct coverage_entry *end = coverage.base + coverage.num_entries;
|
|
|
|
for (; entry < end; ++entry) {
|
|
u32 mask = entry->header->mask.bits;
|
|
u32 value = entry->header->value.bits;
|
|
|
|
if (entry->regs) {
|
|
pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
|
|
mask, value, entry->regs);
|
|
coverage_fail = true;
|
|
}
|
|
if (!entry->matched) {
|
|
pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
|
|
mask, value);
|
|
coverage_fail = true;
|
|
}
|
|
}
|
|
|
|
kfree(coverage.base);
|
|
}
|
|
|
|
|
|
/*
|
|
* Framework for instruction set test cases
|
|
*/
|
|
|
|
void __naked __kprobes_test_case_start(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
"stmdb sp!, {r4-r11} \n\t"
|
|
"sub sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
|
|
"bic r0, lr, #1 @ r0 = inline title string \n\t"
|
|
"mov r1, sp \n\t"
|
|
"bl kprobes_test_case_start \n\t"
|
|
"bx r0 \n\t"
|
|
);
|
|
}
|
|
|
|
#ifndef CONFIG_THUMB2_KERNEL
|
|
|
|
void __naked __kprobes_test_case_end_32(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
"mov r4, lr \n\t"
|
|
"bl kprobes_test_case_end \n\t"
|
|
"cmp r0, #0 \n\t"
|
|
"movne pc, r0 \n\t"
|
|
"mov r0, r4 \n\t"
|
|
"add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
|
|
"ldmia sp!, {r4-r11} \n\t"
|
|
"mov pc, r0 \n\t"
|
|
);
|
|
}
|
|
|
|
#else /* CONFIG_THUMB2_KERNEL */
|
|
|
|
void __naked __kprobes_test_case_end_16(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
"mov r4, lr \n\t"
|
|
"bl kprobes_test_case_end \n\t"
|
|
"cmp r0, #0 \n\t"
|
|
"bxne r0 \n\t"
|
|
"mov r0, r4 \n\t"
|
|
"add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
|
|
"ldmia sp!, {r4-r11} \n\t"
|
|
"bx r0 \n\t"
|
|
);
|
|
}
|
|
|
|
void __naked __kprobes_test_case_end_32(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
".arm \n\t"
|
|
"orr lr, lr, #1 @ will return to Thumb code \n\t"
|
|
"ldr pc, 1f \n\t"
|
|
"1: \n\t"
|
|
".word __kprobes_test_case_end_16 \n\t"
|
|
);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
int kprobe_test_flags;
|
|
int kprobe_test_cc_position;
|
|
|
|
static int test_try_count;
|
|
static int test_pass_count;
|
|
static int test_fail_count;
|
|
|
|
static struct pt_regs initial_regs;
|
|
static struct pt_regs expected_regs;
|
|
static struct pt_regs result_regs;
|
|
|
|
static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
|
|
|
|
static const char *current_title;
|
|
static struct test_arg *current_args;
|
|
static u32 *current_stack;
|
|
static uintptr_t current_branch_target;
|
|
|
|
static uintptr_t current_code_start;
|
|
static kprobe_opcode_t current_instruction;
|
|
|
|
|
|
#define TEST_CASE_PASSED -1
|
|
#define TEST_CASE_FAILED -2
|
|
|
|
static int test_case_run_count;
|
|
static bool test_case_is_thumb;
|
|
static int test_instance;
|
|
|
|
/*
|
|
* We ignore the state of the imprecise abort disable flag (CPSR.A) because this
|
|
* can change randomly as the kernel doesn't take care to preserve or initialise
|
|
* this across context switches. Also, with Security Extentions, the flag may
|
|
* not be under control of the kernel; for this reason we ignore the state of
|
|
* the FIQ disable flag CPSR.F as well.
|
|
*/
|
|
#define PSR_IGNORE_BITS (PSR_A_BIT | PSR_F_BIT)
|
|
|
|
static unsigned long test_check_cc(int cc, unsigned long cpsr)
|
|
{
|
|
int ret = arm_check_condition(cc << 28, cpsr);
|
|
|
|
return (ret != ARM_OPCODE_CONDTEST_FAIL);
|
|
}
|
|
|
|
static int is_last_scenario;
|
|
static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
|
|
static int memory_needs_checking;
|
|
|
|
static unsigned long test_context_cpsr(int scenario)
|
|
{
|
|
unsigned long cpsr;
|
|
|
|
probe_should_run = 1;
|
|
|
|
/* Default case is that we cycle through 16 combinations of flags */
|
|
cpsr = (scenario & 0xf) << 28; /* N,Z,C,V flags */
|
|
cpsr |= (scenario & 0xf) << 16; /* GE flags */
|
|
cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
|
|
|
|
if (!test_case_is_thumb) {
|
|
/* Testing ARM code */
|
|
int cc = current_instruction >> 28;
|
|
|
|
probe_should_run = test_check_cc(cc, cpsr) != 0;
|
|
if (scenario == 15)
|
|
is_last_scenario = true;
|
|
|
|
} else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
|
|
/* Testing Thumb code without setting ITSTATE */
|
|
if (kprobe_test_cc_position) {
|
|
int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
|
|
probe_should_run = test_check_cc(cc, cpsr) != 0;
|
|
}
|
|
|
|
if (scenario == 15)
|
|
is_last_scenario = true;
|
|
|
|
} else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
|
|
/* Testing Thumb code with all combinations of ITSTATE */
|
|
unsigned x = (scenario >> 4);
|
|
unsigned cond_base = x % 7; /* ITSTATE<7:5> */
|
|
unsigned mask = x / 7 + 2; /* ITSTATE<4:0>, bits reversed */
|
|
|
|
if (mask > 0x1f) {
|
|
/* Finish by testing state from instruction 'itt al' */
|
|
cond_base = 7;
|
|
mask = 0x4;
|
|
if ((scenario & 0xf) == 0xf)
|
|
is_last_scenario = true;
|
|
}
|
|
|
|
cpsr |= cond_base << 13; /* ITSTATE<7:5> */
|
|
cpsr |= (mask & 0x1) << 12; /* ITSTATE<4> */
|
|
cpsr |= (mask & 0x2) << 10; /* ITSTATE<3> */
|
|
cpsr |= (mask & 0x4) << 8; /* ITSTATE<2> */
|
|
cpsr |= (mask & 0x8) << 23; /* ITSTATE<1> */
|
|
cpsr |= (mask & 0x10) << 21; /* ITSTATE<0> */
|
|
|
|
probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
|
|
|
|
} else {
|
|
/* Testing Thumb code with several combinations of ITSTATE */
|
|
switch (scenario) {
|
|
case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
|
|
cpsr = 0x00000800;
|
|
probe_should_run = 0;
|
|
break;
|
|
case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
|
|
cpsr = 0xf0007800;
|
|
probe_should_run = 0;
|
|
break;
|
|
case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
|
|
cpsr = 0x00009800;
|
|
break;
|
|
case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
|
|
cpsr = 0xf0002800;
|
|
is_last_scenario = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return cpsr;
|
|
}
|
|
|
|
static void setup_test_context(struct pt_regs *regs)
|
|
{
|
|
int scenario = test_case_run_count>>1;
|
|
unsigned long val;
|
|
struct test_arg *args;
|
|
int i;
|
|
|
|
is_last_scenario = false;
|
|
memory_needs_checking = false;
|
|
|
|
/* Initialise test memory on stack */
|
|
val = (scenario & 1) ? VALM : ~VALM;
|
|
for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
|
|
current_stack[i] = val + (i << 8);
|
|
/* Put target of branch on stack for tests which load PC from memory */
|
|
if (current_branch_target)
|
|
current_stack[15] = current_branch_target;
|
|
/* Put a value for SP on stack for tests which load SP from memory */
|
|
current_stack[13] = (u32)current_stack + 120;
|
|
|
|
/* Initialise register values to their default state */
|
|
val = (scenario & 2) ? VALR : ~VALR;
|
|
for (i = 0; i < 13; ++i)
|
|
regs->uregs[i] = val ^ (i << 8);
|
|
regs->ARM_lr = val ^ (14 << 8);
|
|
regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
|
|
regs->ARM_cpsr |= test_context_cpsr(scenario);
|
|
|
|
/* Perform testcase specific register setup */
|
|
args = current_args;
|
|
for (; args[0].type != ARG_TYPE_END; ++args)
|
|
switch (args[0].type) {
|
|
case ARG_TYPE_REG: {
|
|
struct test_arg_regptr *arg =
|
|
(struct test_arg_regptr *)args;
|
|
regs->uregs[arg->reg] = arg->val;
|
|
break;
|
|
}
|
|
case ARG_TYPE_PTR: {
|
|
struct test_arg_regptr *arg =
|
|
(struct test_arg_regptr *)args;
|
|
regs->uregs[arg->reg] =
|
|
(unsigned long)current_stack + arg->val;
|
|
memory_needs_checking = true;
|
|
break;
|
|
}
|
|
case ARG_TYPE_MEM: {
|
|
struct test_arg_mem *arg = (struct test_arg_mem *)args;
|
|
current_stack[arg->index] = arg->val;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
struct test_probe {
|
|
struct kprobe kprobe;
|
|
bool registered;
|
|
int hit;
|
|
};
|
|
|
|
static void unregister_test_probe(struct test_probe *probe)
|
|
{
|
|
if (probe->registered) {
|
|
unregister_kprobe(&probe->kprobe);
|
|
probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
|
|
}
|
|
probe->registered = false;
|
|
}
|
|
|
|
static int register_test_probe(struct test_probe *probe)
|
|
{
|
|
int ret;
|
|
|
|
if (probe->registered)
|
|
BUG();
|
|
|
|
ret = register_kprobe(&probe->kprobe);
|
|
if (ret >= 0) {
|
|
probe->registered = true;
|
|
probe->hit = -1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int __kprobes
|
|
test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
container_of(p, struct test_probe, kprobe)->hit = test_instance;
|
|
return 0;
|
|
}
|
|
|
|
static void __kprobes
|
|
test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
|
|
unsigned long flags)
|
|
{
|
|
setup_test_context(regs);
|
|
initial_regs = *regs;
|
|
initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
|
|
}
|
|
|
|
static int __kprobes
|
|
test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
container_of(p, struct test_probe, kprobe)->hit = test_instance;
|
|
return 0;
|
|
}
|
|
|
|
static int __kprobes
|
|
test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
|
|
return 0; /* Already run for this test instance */
|
|
|
|
result_regs = *regs;
|
|
result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
|
|
|
|
/* Undo any changes done to SP by the test case */
|
|
regs->ARM_sp = (unsigned long)current_stack;
|
|
|
|
container_of(p, struct test_probe, kprobe)->hit = test_instance;
|
|
return 0;
|
|
}
|
|
|
|
static struct test_probe test_before_probe = {
|
|
.kprobe.pre_handler = test_before_pre_handler,
|
|
.kprobe.post_handler = test_before_post_handler,
|
|
};
|
|
|
|
static struct test_probe test_case_probe = {
|
|
.kprobe.pre_handler = test_case_pre_handler,
|
|
};
|
|
|
|
static struct test_probe test_after_probe = {
|
|
.kprobe.pre_handler = test_after_pre_handler,
|
|
};
|
|
|
|
static struct test_probe test_after2_probe = {
|
|
.kprobe.pre_handler = test_after_pre_handler,
|
|
};
|
|
|
|
static void test_case_cleanup(void)
|
|
{
|
|
unregister_test_probe(&test_before_probe);
|
|
unregister_test_probe(&test_case_probe);
|
|
unregister_test_probe(&test_after_probe);
|
|
unregister_test_probe(&test_after2_probe);
|
|
}
|
|
|
|
static void print_registers(struct pt_regs *regs)
|
|
{
|
|
pr_err("r0 %08lx | r1 %08lx | r2 %08lx | r3 %08lx\n",
|
|
regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
|
|
pr_err("r4 %08lx | r5 %08lx | r6 %08lx | r7 %08lx\n",
|
|
regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
|
|
pr_err("r8 %08lx | r9 %08lx | r10 %08lx | r11 %08lx\n",
|
|
regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
|
|
pr_err("r12 %08lx | sp %08lx | lr %08lx | pc %08lx\n",
|
|
regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
|
|
pr_err("cpsr %08lx\n", regs->ARM_cpsr);
|
|
}
|
|
|
|
static void print_memory(u32 *mem, size_t size)
|
|
{
|
|
int i;
|
|
for (i = 0; i < size / sizeof(u32); i += 4)
|
|
pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
|
|
mem[i+2], mem[i+3]);
|
|
}
|
|
|
|
static size_t expected_memory_size(u32 *sp)
|
|
{
|
|
size_t size = sizeof(expected_memory);
|
|
int offset = (uintptr_t)sp - (uintptr_t)current_stack;
|
|
if (offset > 0)
|
|
size -= offset;
|
|
return size;
|
|
}
|
|
|
|
static void test_case_failed(const char *message)
|
|
{
|
|
test_case_cleanup();
|
|
|
|
pr_err("FAIL: %s\n", message);
|
|
pr_err("FAIL: Test %s\n", current_title);
|
|
pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
|
|
}
|
|
|
|
static unsigned long next_instruction(unsigned long pc)
|
|
{
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
if ((pc & 1) &&
|
|
!is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
|
|
return pc + 2;
|
|
else
|
|
#endif
|
|
return pc + 4;
|
|
}
|
|
|
|
static uintptr_t __used kprobes_test_case_start(const char *title, void *stack)
|
|
{
|
|
struct test_arg *args;
|
|
struct test_arg_end *end_arg;
|
|
unsigned long test_code;
|
|
|
|
args = (struct test_arg *)PTR_ALIGN(title + strlen(title) + 1, 4);
|
|
|
|
current_title = title;
|
|
current_args = args;
|
|
current_stack = stack;
|
|
|
|
++test_try_count;
|
|
|
|
while (args->type != ARG_TYPE_END)
|
|
++args;
|
|
end_arg = (struct test_arg_end *)args;
|
|
|
|
test_code = (unsigned long)(args + 1); /* Code starts after args */
|
|
|
|
test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
|
|
if (test_case_is_thumb)
|
|
test_code |= 1;
|
|
|
|
current_code_start = test_code;
|
|
|
|
current_branch_target = 0;
|
|
if (end_arg->branch_offset != end_arg->end_offset)
|
|
current_branch_target = test_code + end_arg->branch_offset;
|
|
|
|
test_code += end_arg->code_offset;
|
|
test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
|
|
|
|
test_code = next_instruction(test_code);
|
|
test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
|
|
|
|
if (test_case_is_thumb) {
|
|
u16 *p = (u16 *)(test_code & ~1);
|
|
current_instruction = __mem_to_opcode_thumb16(p[0]);
|
|
if (is_wide_instruction(current_instruction)) {
|
|
u16 instr2 = __mem_to_opcode_thumb16(p[1]);
|
|
current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
|
|
}
|
|
} else {
|
|
current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
|
|
}
|
|
|
|
if (current_title[0] == '.')
|
|
verbose("%s\n", current_title);
|
|
else
|
|
verbose("%s\t@ %0*x\n", current_title,
|
|
test_case_is_thumb ? 4 : 8,
|
|
current_instruction);
|
|
|
|
test_code = next_instruction(test_code);
|
|
test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
|
|
|
|
if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
|
|
if (!test_case_is_thumb ||
|
|
is_wide_instruction(current_instruction)) {
|
|
test_case_failed("expected 16-bit instruction");
|
|
goto fail;
|
|
}
|
|
} else {
|
|
if (test_case_is_thumb &&
|
|
!is_wide_instruction(current_instruction)) {
|
|
test_case_failed("expected 32-bit instruction");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
coverage_add(current_instruction);
|
|
|
|
if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
|
|
if (register_test_probe(&test_case_probe) < 0)
|
|
goto pass;
|
|
test_case_failed("registered probe for unsupported instruction");
|
|
goto fail;
|
|
}
|
|
|
|
if (end_arg->flags & ARG_FLAG_SUPPORTED) {
|
|
if (register_test_probe(&test_case_probe) >= 0)
|
|
goto pass;
|
|
test_case_failed("couldn't register probe for supported instruction");
|
|
goto fail;
|
|
}
|
|
|
|
if (register_test_probe(&test_before_probe) < 0) {
|
|
test_case_failed("register test_before_probe failed");
|
|
goto fail;
|
|
}
|
|
if (register_test_probe(&test_after_probe) < 0) {
|
|
test_case_failed("register test_after_probe failed");
|
|
goto fail;
|
|
}
|
|
if (current_branch_target) {
|
|
test_after2_probe.kprobe.addr =
|
|
(kprobe_opcode_t *)current_branch_target;
|
|
if (register_test_probe(&test_after2_probe) < 0) {
|
|
test_case_failed("register test_after2_probe failed");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Start first run of test case */
|
|
test_case_run_count = 0;
|
|
++test_instance;
|
|
return current_code_start;
|
|
pass:
|
|
test_case_run_count = TEST_CASE_PASSED;
|
|
return (uintptr_t)test_after_probe.kprobe.addr;
|
|
fail:
|
|
test_case_run_count = TEST_CASE_FAILED;
|
|
return (uintptr_t)test_after_probe.kprobe.addr;
|
|
}
|
|
|
|
static bool check_test_results(void)
|
|
{
|
|
size_t mem_size = 0;
|
|
u32 *mem = 0;
|
|
|
|
if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
|
|
test_case_failed("registers differ");
|
|
goto fail;
|
|
}
|
|
|
|
if (memory_needs_checking) {
|
|
mem = (u32 *)result_regs.ARM_sp;
|
|
mem_size = expected_memory_size(mem);
|
|
if (memcmp(expected_memory, mem, mem_size)) {
|
|
test_case_failed("test memory differs");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
|
|
fail:
|
|
pr_err("initial_regs:\n");
|
|
print_registers(&initial_regs);
|
|
pr_err("expected_regs:\n");
|
|
print_registers(&expected_regs);
|
|
pr_err("result_regs:\n");
|
|
print_registers(&result_regs);
|
|
|
|
if (mem) {
|
|
pr_err("current_stack=%p\n", current_stack);
|
|
pr_err("expected_memory:\n");
|
|
print_memory(expected_memory, mem_size);
|
|
pr_err("result_memory:\n");
|
|
print_memory(mem, mem_size);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static uintptr_t __used kprobes_test_case_end(void)
|
|
{
|
|
if (test_case_run_count < 0) {
|
|
if (test_case_run_count == TEST_CASE_PASSED)
|
|
/* kprobes_test_case_start did all the needed testing */
|
|
goto pass;
|
|
else
|
|
/* kprobes_test_case_start failed */
|
|
goto fail;
|
|
}
|
|
|
|
if (test_before_probe.hit != test_instance) {
|
|
test_case_failed("test_before_handler not run");
|
|
goto fail;
|
|
}
|
|
|
|
if (test_after_probe.hit != test_instance &&
|
|
test_after2_probe.hit != test_instance) {
|
|
test_case_failed("test_after_handler not run");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Even numbered test runs ran without a probe on the test case so
|
|
* we can gather reference results. The subsequent odd numbered run
|
|
* will have the probe inserted.
|
|
*/
|
|
if ((test_case_run_count & 1) == 0) {
|
|
/* Save results from run without probe */
|
|
u32 *mem = (u32 *)result_regs.ARM_sp;
|
|
expected_regs = result_regs;
|
|
memcpy(expected_memory, mem, expected_memory_size(mem));
|
|
|
|
/* Insert probe onto test case instruction */
|
|
if (register_test_probe(&test_case_probe) < 0) {
|
|
test_case_failed("register test_case_probe failed");
|
|
goto fail;
|
|
}
|
|
} else {
|
|
/* Check probe ran as expected */
|
|
if (probe_should_run == 1) {
|
|
if (test_case_probe.hit != test_instance) {
|
|
test_case_failed("test_case_handler not run");
|
|
goto fail;
|
|
}
|
|
} else if (probe_should_run == 0) {
|
|
if (test_case_probe.hit == test_instance) {
|
|
test_case_failed("test_case_handler ran");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Remove probe for any subsequent reference run */
|
|
unregister_test_probe(&test_case_probe);
|
|
|
|
if (!check_test_results())
|
|
goto fail;
|
|
|
|
if (is_last_scenario)
|
|
goto pass;
|
|
}
|
|
|
|
/* Do next test run */
|
|
++test_case_run_count;
|
|
++test_instance;
|
|
return current_code_start;
|
|
fail:
|
|
++test_fail_count;
|
|
goto end;
|
|
pass:
|
|
++test_pass_count;
|
|
end:
|
|
test_case_cleanup();
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Top level test functions
|
|
*/
|
|
|
|
static int run_test_cases(void (*tests)(void), const union decode_item *table)
|
|
{
|
|
int ret;
|
|
|
|
pr_info(" Check decoding tables\n");
|
|
ret = table_test(table);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pr_info(" Run test cases\n");
|
|
ret = coverage_start(table);
|
|
if (ret)
|
|
return ret;
|
|
|
|
tests();
|
|
|
|
coverage_end();
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __init run_all_tests(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
pr_info("Beginning kprobe tests...\n");
|
|
|
|
#ifndef CONFIG_THUMB2_KERNEL
|
|
|
|
pr_info("Probe ARM code\n");
|
|
ret = run_api_tests(arm_func);
|
|
if (ret)
|
|
goto out;
|
|
|
|
pr_info("ARM instruction simulation\n");
|
|
ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
|
|
if (ret)
|
|
goto out;
|
|
|
|
#else /* CONFIG_THUMB2_KERNEL */
|
|
|
|
pr_info("Probe 16-bit Thumb code\n");
|
|
ret = run_api_tests(thumb16_func);
|
|
if (ret)
|
|
goto out;
|
|
|
|
pr_info("Probe 32-bit Thumb code, even halfword\n");
|
|
ret = run_api_tests(thumb32even_func);
|
|
if (ret)
|
|
goto out;
|
|
|
|
pr_info("Probe 32-bit Thumb code, odd halfword\n");
|
|
ret = run_api_tests(thumb32odd_func);
|
|
if (ret)
|
|
goto out;
|
|
|
|
pr_info("16-bit Thumb instruction simulation\n");
|
|
ret = run_test_cases(kprobe_thumb16_test_cases,
|
|
probes_decode_thumb16_table);
|
|
if (ret)
|
|
goto out;
|
|
|
|
pr_info("32-bit Thumb instruction simulation\n");
|
|
ret = run_test_cases(kprobe_thumb32_test_cases,
|
|
probes_decode_thumb32_table);
|
|
if (ret)
|
|
goto out;
|
|
#endif
|
|
|
|
pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
|
|
test_try_count, test_pass_count, test_fail_count);
|
|
if (test_fail_count) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
#if BENCHMARKING
|
|
pr_info("Benchmarks\n");
|
|
ret = run_benchmarks();
|
|
if (ret)
|
|
goto out;
|
|
#endif
|
|
|
|
#if __LINUX_ARM_ARCH__ >= 7
|
|
/* We are able to run all test cases so coverage should be complete */
|
|
if (coverage_fail) {
|
|
pr_err("FAIL: Test coverage checks failed\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
#endif
|
|
|
|
out:
|
|
if (ret == 0)
|
|
pr_info("Finished kprobe tests OK\n");
|
|
else
|
|
pr_err("kprobe tests failed\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* Module setup
|
|
*/
|
|
|
|
#ifdef MODULE
|
|
|
|
static void __exit kprobe_test_exit(void)
|
|
{
|
|
}
|
|
|
|
module_init(run_all_tests)
|
|
module_exit(kprobe_test_exit)
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#else /* !MODULE */
|
|
|
|
late_initcall(run_all_tests);
|
|
|
|
#endif
|