mirror of
https://github.com/torvalds/linux.git
synced 2024-12-27 21:33:00 +00:00
173d668138
The Xtensa port contained many header files that were never needed. This rather lengthy patch removes all those files. Unfortunately, there were many dependencies that needed to be updated, so this patch touches quite a few source files. Signed-off-by: Chris Zankel <chris@zankel.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
433 lines
15 KiB
C
433 lines
15 KiB
C
/*
|
|
* linux/include/asm-xtensa/pgtable.h
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Copyright (C) 2001 - 2005 Tensilica Inc.
|
|
*/
|
|
|
|
#ifndef _XTENSA_PGTABLE_H
|
|
#define _XTENSA_PGTABLE_H
|
|
|
|
#include <asm-generic/pgtable-nopmd.h>
|
|
#include <asm/page.h>
|
|
|
|
/*
|
|
* We only use two ring levels, user and kernel space.
|
|
*/
|
|
|
|
#define USER_RING 1 /* user ring level */
|
|
#define KERNEL_RING 0 /* kernel ring level */
|
|
|
|
/*
|
|
* The Xtensa architecture port of Linux has a two-level page table system,
|
|
* i.e. the logical three-level Linux page table layout are folded.
|
|
* Each task has the following memory page tables:
|
|
*
|
|
* PGD table (page directory), ie. 3rd-level page table:
|
|
* One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
|
|
* (Architectures that don't have the PMD folded point to the PMD tables)
|
|
*
|
|
* The pointer to the PGD table for a given task can be retrieved from
|
|
* the task structure (struct task_struct*) t, e.g. current():
|
|
* (t->mm ? t->mm : t->active_mm)->pgd
|
|
*
|
|
* PMD tables (page middle-directory), ie. 2nd-level page tables:
|
|
* Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
|
|
*
|
|
* PTE tables (page table entry), ie. 1st-level page tables:
|
|
* One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
|
|
* invalid_pte_table for absent mappings.
|
|
*
|
|
* The individual pages are 4 kB big with special pages for the empty_zero_page.
|
|
*/
|
|
#define PGDIR_SHIFT 22
|
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
|
|
|
/*
|
|
* Entries per page directory level: we use two-level, so
|
|
* we don't really have any PMD directory physically.
|
|
*/
|
|
#define PTRS_PER_PTE 1024
|
|
#define PTRS_PER_PTE_SHIFT 10
|
|
#define PTRS_PER_PMD 1
|
|
#define PTRS_PER_PGD 1024
|
|
#define PGD_ORDER 0
|
|
#define PMD_ORDER 0
|
|
#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
|
|
#define FIRST_USER_ADDRESS 0
|
|
#define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
|
|
|
|
/* virtual memory area. We keep a distance to other memory regions to be
|
|
* on the safe side. We also use this area for cache aliasing.
|
|
*/
|
|
|
|
// FIXME: virtual memory area must be configuration-dependent
|
|
|
|
#define VMALLOC_START 0xC0000000
|
|
#define VMALLOC_END 0xC7FF0000
|
|
|
|
/* Xtensa Linux config PTE layout (when present):
|
|
* 31-12: PPN
|
|
* 11-6: Software
|
|
* 5-4: RING
|
|
* 3-0: CA
|
|
*
|
|
* Similar to the Alpha and MIPS ports, we need to keep track of the ref
|
|
* and mod bits in software. We have a software "you can read
|
|
* from this page" bit, and a hardware one which actually lets the
|
|
* process read from the page. On the same token we have a software
|
|
* writable bit and the real hardware one which actually lets the
|
|
* process write to the page.
|
|
*
|
|
* See further below for PTE layout for swapped-out pages.
|
|
*/
|
|
|
|
#define _PAGE_VALID (1<<0) /* hardware: page is accessible */
|
|
#define _PAGE_WRENABLE (1<<1) /* hardware: page is writable */
|
|
|
|
/* None of these cache modes include MP coherency: */
|
|
#define _PAGE_NO_CACHE (0<<2) /* bypass, non-speculative */
|
|
#if XCHAL_DCACHE_IS_WRITEBACK
|
|
# define _PAGE_WRITEBACK (1<<2) /* write back */
|
|
# define _PAGE_WRITETHRU (2<<2) /* write through */
|
|
#else
|
|
# define _PAGE_WRITEBACK (1<<2) /* assume write through */
|
|
# define _PAGE_WRITETHRU (1<<2)
|
|
#endif
|
|
#define _PAGE_NOALLOC (3<<2) /* don't allocate cache,if not cached */
|
|
#define _CACHE_MASK (3<<2)
|
|
|
|
#define _PAGE_USER (1<<4) /* user access (ring=1) */
|
|
#define _PAGE_KERNEL (0<<4) /* kernel access (ring=0) */
|
|
|
|
/* Software */
|
|
#define _PAGE_RW (1<<6) /* software: page writable */
|
|
#define _PAGE_DIRTY (1<<7) /* software: page dirty */
|
|
#define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
|
|
#define _PAGE_FILE (1<<9) /* nonlinear file mapping*/
|
|
|
|
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _CACHE_MASK | _PAGE_DIRTY)
|
|
#define _PAGE_PRESENT ( _PAGE_VALID | _PAGE_WRITEBACK | _PAGE_ACCESSED)
|
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
# define PAGE_NONE __pgprot(_PAGE_PRESENT)
|
|
# define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_RW)
|
|
# define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
|
|
# define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
|
|
# define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_KERNEL | _PAGE_WRENABLE)
|
|
# define PAGE_INVALID __pgprot(_PAGE_USER)
|
|
|
|
# if (DCACHE_WAY_SIZE > PAGE_SIZE)
|
|
# define PAGE_DIRECTORY __pgprot(_PAGE_VALID | _PAGE_ACCESSED | _PAGE_KERNEL)
|
|
# else
|
|
# define PAGE_DIRECTORY __pgprot(_PAGE_PRESENT | _PAGE_KERNEL)
|
|
# endif
|
|
|
|
#else /* no mmu */
|
|
|
|
# define PAGE_NONE __pgprot(0)
|
|
# define PAGE_SHARED __pgprot(0)
|
|
# define PAGE_COPY __pgprot(0)
|
|
# define PAGE_READONLY __pgprot(0)
|
|
# define PAGE_KERNEL __pgprot(0)
|
|
|
|
#endif
|
|
|
|
/*
|
|
* On certain configurations of Xtensa MMUs (eg. the initial Linux config),
|
|
* the MMU can't do page protection for execute, and considers that the same as
|
|
* read. Also, write permissions may imply read permissions.
|
|
* What follows is the closest we can get by reasonable means..
|
|
* See linux/mm/mmap.c for protection_map[] array that uses these definitions.
|
|
*/
|
|
#define __P000 PAGE_NONE /* private --- */
|
|
#define __P001 PAGE_READONLY /* private --r */
|
|
#define __P010 PAGE_COPY /* private -w- */
|
|
#define __P011 PAGE_COPY /* private -wr */
|
|
#define __P100 PAGE_READONLY /* private x-- */
|
|
#define __P101 PAGE_READONLY /* private x-r */
|
|
#define __P110 PAGE_COPY /* private xw- */
|
|
#define __P111 PAGE_COPY /* private xwr */
|
|
|
|
#define __S000 PAGE_NONE /* shared --- */
|
|
#define __S001 PAGE_READONLY /* shared --r */
|
|
#define __S010 PAGE_SHARED /* shared -w- */
|
|
#define __S011 PAGE_SHARED /* shared -wr */
|
|
#define __S100 PAGE_READONLY /* shared x-- */
|
|
#define __S101 PAGE_READONLY /* shared x-r */
|
|
#define __S110 PAGE_SHARED /* shared xw- */
|
|
#define __S111 PAGE_SHARED /* shared xwr */
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#define pte_ERROR(e) \
|
|
printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
|
|
#define pgd_ERROR(e) \
|
|
printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
|
|
|
|
extern unsigned long empty_zero_page[1024];
|
|
|
|
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
|
|
|
|
extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
|
|
|
|
/*
|
|
* The pmd contains the kernel virtual address of the pte page.
|
|
*/
|
|
#define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
|
|
#define pmd_page(pmd) virt_to_page(pmd_val(pmd))
|
|
|
|
/*
|
|
* The following only work if pte_present() is true.
|
|
*/
|
|
#define pte_none(pte) (!(pte_val(pte) ^ _PAGE_USER))
|
|
#define pte_present(pte) (pte_val(pte) & _PAGE_VALID)
|
|
#define pte_clear(mm,addr,ptep) \
|
|
do { update_pte(ptep, __pte(_PAGE_USER)); } while(0)
|
|
|
|
#define pmd_none(pmd) (!pmd_val(pmd))
|
|
#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
|
|
#define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
|
|
#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
|
|
|
|
/* Note: We use the _PAGE_USER bit to indicate write-protect kernel memory */
|
|
|
|
static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
|
|
static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
|
|
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
|
|
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
|
|
static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
|
|
static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_RW | _PAGE_WRENABLE); return pte; }
|
|
static inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
|
|
static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
|
|
static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
|
|
static inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
|
|
static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
|
|
static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
|
|
static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
|
|
|
|
/*
|
|
* Conversion functions: convert a page and protection to a page entry,
|
|
* and a page entry and page directory to the page they refer to.
|
|
*/
|
|
#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
|
|
#define pte_same(a,b) (pte_val(a) == pte_val(b))
|
|
#define pte_page(x) pfn_to_page(pte_pfn(x))
|
|
#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
|
|
#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
|
|
|
|
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
|
{
|
|
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
|
|
}
|
|
|
|
/*
|
|
* Certain architectures need to do special things when pte's
|
|
* within a page table are directly modified. Thus, the following
|
|
* hook is made available.
|
|
*/
|
|
static inline void update_pte(pte_t *ptep, pte_t pteval)
|
|
{
|
|
*ptep = pteval;
|
|
#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
|
|
__asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (ptep));
|
|
#endif
|
|
}
|
|
|
|
struct mm_struct;
|
|
|
|
static inline void
|
|
set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
|
|
{
|
|
update_pte(ptep, pteval);
|
|
}
|
|
|
|
|
|
static inline void
|
|
set_pmd(pmd_t *pmdp, pmd_t pmdval)
|
|
{
|
|
*pmdp = pmdval;
|
|
#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
|
|
__asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (pmdp));
|
|
#endif
|
|
}
|
|
|
|
struct vm_area_struct;
|
|
|
|
static inline int
|
|
ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
pte_t pte = *ptep;
|
|
if (!pte_young(pte))
|
|
return 0;
|
|
update_pte(ptep, pte_mkold(pte));
|
|
return 1;
|
|
}
|
|
|
|
static inline int
|
|
ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
pte_t pte = *ptep;
|
|
if (!pte_dirty(pte))
|
|
return 0;
|
|
update_pte(ptep, pte_mkclean(pte));
|
|
return 1;
|
|
}
|
|
|
|
static inline pte_t
|
|
ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
|
|
{
|
|
pte_t pte = *ptep;
|
|
pte_clear(mm, addr, ptep);
|
|
return pte;
|
|
}
|
|
|
|
static inline void
|
|
ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
|
|
{
|
|
pte_t pte = *ptep;
|
|
update_pte(ptep, pte_wrprotect(pte));
|
|
}
|
|
|
|
/* to find an entry in a kernel page-table-directory */
|
|
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
|
|
|
|
/* to find an entry in a page-table-directory */
|
|
#define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address))
|
|
|
|
#define pgd_index(address) ((address) >> PGDIR_SHIFT)
|
|
|
|
/* Find an entry in the second-level page table.. */
|
|
#define pmd_offset(dir,address) ((pmd_t*)(dir))
|
|
|
|
/* Find an entry in the third-level page table.. */
|
|
#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
|
|
#define pte_offset_kernel(dir,addr) \
|
|
((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr))
|
|
#define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr))
|
|
#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir),(addr))
|
|
|
|
#define pte_unmap(pte) do { } while (0)
|
|
#define pte_unmap_nested(pte) do { } while (0)
|
|
|
|
|
|
/*
|
|
* Encode and decode a swap entry.
|
|
* Each PTE in a process VM's page table is either:
|
|
* "present" -- valid and not swapped out, protection bits are meaningful;
|
|
* "not present" -- which further subdivides in these two cases:
|
|
* "none" -- no mapping at all; identified by pte_none(), set by pte_clear(
|
|
* "swapped out" -- the page is swapped out, and the SWP macros below
|
|
* are used to store swap file info in the PTE itself.
|
|
*
|
|
* In the Xtensa processor MMU, any PTE entries in user space (or anywhere
|
|
* in virtual memory that can map differently across address spaces)
|
|
* must have a correct ring value that represents the RASID field that
|
|
* is changed when switching address spaces. Eg. such PTE entries cannot
|
|
* be set to ring zero, because that can cause a (global) kernel ASID
|
|
* entry to be created in the TLBs (even with invalid cache attribute),
|
|
* potentially causing a multihit exception when going back to another
|
|
* address space that mapped the same virtual address at another ring.
|
|
*
|
|
* SO: we avoid using ring bits (_PAGE_RING_MASK) in "not present" PTEs.
|
|
* We also avoid using the _PAGE_VALID bit which must be zero for non-present
|
|
* pages.
|
|
*
|
|
* We end up with the following available bits: 1..3 and 7..31.
|
|
* We don't bother with 1..3 for now (we can use them later if needed),
|
|
* and chose to allocate 6 bits for SWP_TYPE and the remaining 19 bits
|
|
* for SWP_OFFSET. At least 5 bits are needed for SWP_TYPE, because it
|
|
* is currently implemented as an index into swap_info[MAX_SWAPFILES]
|
|
* and MAX_SWAPFILES is currently defined as 32 in <linux/swap.h>.
|
|
* However, for some reason all other architectures in the 2.4 kernel
|
|
* reserve either 6, 7, or 8 bits so I'll not detract from that for now. :)
|
|
* SWP_OFFSET is an offset into the swap file in page-size units, so
|
|
* with 4 kB pages, 19 bits supports a maximum swap file size of 2 GB.
|
|
*
|
|
* FIXME: 2 GB isn't very big. Other bits can be used to allow
|
|
* larger swap sizes. In the meantime, it appears relatively easy to get
|
|
* around the 2 GB limitation by simply using multiple swap files.
|
|
*/
|
|
|
|
#define __swp_type(entry) (((entry).val >> 7) & 0x3f)
|
|
#define __swp_offset(entry) ((entry).val >> 13)
|
|
#define __swp_entry(type,offs) ((swp_entry_t) {((type) << 7) | ((offs) << 13)})
|
|
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
|
|
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
|
|
|
|
#define PTE_FILE_MAX_BITS 29
|
|
#define pte_to_pgoff(pte) (pte_val(pte) >> 3)
|
|
#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
|
|
|
|
|
|
#endif /* !defined (__ASSEMBLY__) */
|
|
|
|
|
|
#ifdef __ASSEMBLY__
|
|
|
|
/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
|
|
* _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
|
|
* _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
|
|
* _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
|
|
*
|
|
* Note: We require an additional temporary register which can be the same as
|
|
* the register that holds the address.
|
|
*
|
|
* ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
|
|
*
|
|
*/
|
|
#define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
|
|
#define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
|
|
|
|
#define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
|
|
_PGD_INDEX(tmp, adr); \
|
|
addx4 mm, tmp, mm
|
|
|
|
#define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
|
|
srli pmd, pmd, PAGE_SHIFT; \
|
|
slli pmd, pmd, PAGE_SHIFT; \
|
|
addx4 pmd, tmp, pmd
|
|
|
|
#else
|
|
|
|
extern void paging_init(void);
|
|
|
|
#define kern_addr_valid(addr) (1)
|
|
|
|
extern void update_mmu_cache(struct vm_area_struct * vma,
|
|
unsigned long address, pte_t pte);
|
|
|
|
/*
|
|
* remap a physical page `pfn' of size `size' with page protection `prot'
|
|
* into virtual address `from'
|
|
*/
|
|
#define io_remap_pfn_range(vma,from,pfn,size,prot) \
|
|
remap_pfn_range(vma, from, pfn, size, prot)
|
|
|
|
|
|
/* No page table caches to init */
|
|
|
|
#define pgtable_cache_init() do { } while (0)
|
|
|
|
typedef pte_t *pte_addr_t;
|
|
|
|
#endif /* !defined (__ASSEMBLY__) */
|
|
|
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
|
|
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
|
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
|
|
#define __HAVE_ARCH_PTEP_MKDIRTY
|
|
#define __HAVE_ARCH_PTE_SAME
|
|
|
|
#include <asm-generic/pgtable.h>
|
|
|
|
#endif /* _XTENSA_PGTABLE_H */
|