mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 22:21:40 +00:00
7823921887
During growfs, if new ag in memory has been initialized, however
sb_agcount has not been updated, if an error occurs at this time it
will cause perag leaks as follows, these new AGs will not been freed
during umount , because of these new AGs are not visible(that is
included in mp->m_sb.sb_agcount).
unreferenced object 0xffff88810be40200 (size 512):
comm "xfs_growfs", pid 857, jiffies 4294909093
hex dump (first 32 bytes):
00 c0 c1 05 81 88 ff ff 04 00 00 00 00 00 00 00 ................
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 381741e2):
[<ffffffff8191aef6>] __kmalloc+0x386/0x4f0
[<ffffffff82553e65>] kmem_alloc+0xb5/0x2f0
[<ffffffff8238dac5>] xfs_initialize_perag+0xc5/0x810
[<ffffffff824f679c>] xfs_growfs_data+0x9bc/0xbc0
[<ffffffff8250b90e>] xfs_file_ioctl+0x5fe/0x14d0
[<ffffffff81aa5194>] __x64_sys_ioctl+0x144/0x1c0
[<ffffffff83c3d81f>] do_syscall_64+0x3f/0xe0
[<ffffffff83e00087>] entry_SYSCALL_64_after_hwframe+0x62/0x6a
unreferenced object 0xffff88810be40800 (size 512):
comm "xfs_growfs", pid 857, jiffies 4294909093
hex dump (first 32 bytes):
20 00 00 00 00 00 00 00 57 ef be dc 00 00 00 00 .......W.......
10 08 e4 0b 81 88 ff ff 10 08 e4 0b 81 88 ff ff ................
backtrace (crc bde50e2d):
[<ffffffff8191b43a>] __kmalloc_node+0x3da/0x540
[<ffffffff81814489>] kvmalloc_node+0x99/0x160
[<ffffffff8286acff>] bucket_table_alloc.isra.0+0x5f/0x400
[<ffffffff8286bdc5>] rhashtable_init+0x405/0x760
[<ffffffff8238dda3>] xfs_initialize_perag+0x3a3/0x810
[<ffffffff824f679c>] xfs_growfs_data+0x9bc/0xbc0
[<ffffffff8250b90e>] xfs_file_ioctl+0x5fe/0x14d0
[<ffffffff81aa5194>] __x64_sys_ioctl+0x144/0x1c0
[<ffffffff83c3d81f>] do_syscall_64+0x3f/0xe0
[<ffffffff83e00087>] entry_SYSCALL_64_after_hwframe+0x62/0x6a
Factor out xfs_free_unused_perag_range() from xfs_initialize_perag(),
used for freeing unused perag within a specified range in error handling,
included in the error path of the growfs failure.
Fixes: 1c1c6ebcf5
("xfs: Replace per-ag array with a radix tree")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
1147 lines
28 KiB
C
1147 lines
28 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* Copyright (c) 2018 Red Hat, Inc.
|
|
* All rights reserved.
|
|
*/
|
|
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_rmap_btree.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_rmap.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_ag_resv.h"
|
|
#include "xfs_health.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_icache.h"
|
|
|
|
|
|
/*
|
|
* Passive reference counting access wrappers to the perag structures. If the
|
|
* per-ag structure is to be freed, the freeing code is responsible for cleaning
|
|
* up objects with passive references before freeing the structure. This is
|
|
* things like cached buffers.
|
|
*/
|
|
struct xfs_perag *
|
|
xfs_perag_get(
|
|
struct xfs_mount *mp,
|
|
xfs_agnumber_t agno)
|
|
{
|
|
struct xfs_perag *pag;
|
|
|
|
rcu_read_lock();
|
|
pag = radix_tree_lookup(&mp->m_perag_tree, agno);
|
|
if (pag) {
|
|
trace_xfs_perag_get(pag, _RET_IP_);
|
|
ASSERT(atomic_read(&pag->pag_ref) >= 0);
|
|
atomic_inc(&pag->pag_ref);
|
|
}
|
|
rcu_read_unlock();
|
|
return pag;
|
|
}
|
|
|
|
/*
|
|
* search from @first to find the next perag with the given tag set.
|
|
*/
|
|
struct xfs_perag *
|
|
xfs_perag_get_tag(
|
|
struct xfs_mount *mp,
|
|
xfs_agnumber_t first,
|
|
unsigned int tag)
|
|
{
|
|
struct xfs_perag *pag;
|
|
int found;
|
|
|
|
rcu_read_lock();
|
|
found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
|
|
(void **)&pag, first, 1, tag);
|
|
if (found <= 0) {
|
|
rcu_read_unlock();
|
|
return NULL;
|
|
}
|
|
trace_xfs_perag_get_tag(pag, _RET_IP_);
|
|
atomic_inc(&pag->pag_ref);
|
|
rcu_read_unlock();
|
|
return pag;
|
|
}
|
|
|
|
/* Get a passive reference to the given perag. */
|
|
struct xfs_perag *
|
|
xfs_perag_hold(
|
|
struct xfs_perag *pag)
|
|
{
|
|
ASSERT(atomic_read(&pag->pag_ref) > 0 ||
|
|
atomic_read(&pag->pag_active_ref) > 0);
|
|
|
|
trace_xfs_perag_hold(pag, _RET_IP_);
|
|
atomic_inc(&pag->pag_ref);
|
|
return pag;
|
|
}
|
|
|
|
void
|
|
xfs_perag_put(
|
|
struct xfs_perag *pag)
|
|
{
|
|
trace_xfs_perag_put(pag, _RET_IP_);
|
|
ASSERT(atomic_read(&pag->pag_ref) > 0);
|
|
atomic_dec(&pag->pag_ref);
|
|
}
|
|
|
|
/*
|
|
* Active references for perag structures. This is for short term access to the
|
|
* per ag structures for walking trees or accessing state. If an AG is being
|
|
* shrunk or is offline, then this will fail to find that AG and return NULL
|
|
* instead.
|
|
*/
|
|
struct xfs_perag *
|
|
xfs_perag_grab(
|
|
struct xfs_mount *mp,
|
|
xfs_agnumber_t agno)
|
|
{
|
|
struct xfs_perag *pag;
|
|
|
|
rcu_read_lock();
|
|
pag = radix_tree_lookup(&mp->m_perag_tree, agno);
|
|
if (pag) {
|
|
trace_xfs_perag_grab(pag, _RET_IP_);
|
|
if (!atomic_inc_not_zero(&pag->pag_active_ref))
|
|
pag = NULL;
|
|
}
|
|
rcu_read_unlock();
|
|
return pag;
|
|
}
|
|
|
|
/*
|
|
* search from @first to find the next perag with the given tag set.
|
|
*/
|
|
struct xfs_perag *
|
|
xfs_perag_grab_tag(
|
|
struct xfs_mount *mp,
|
|
xfs_agnumber_t first,
|
|
int tag)
|
|
{
|
|
struct xfs_perag *pag;
|
|
int found;
|
|
|
|
rcu_read_lock();
|
|
found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
|
|
(void **)&pag, first, 1, tag);
|
|
if (found <= 0) {
|
|
rcu_read_unlock();
|
|
return NULL;
|
|
}
|
|
trace_xfs_perag_grab_tag(pag, _RET_IP_);
|
|
if (!atomic_inc_not_zero(&pag->pag_active_ref))
|
|
pag = NULL;
|
|
rcu_read_unlock();
|
|
return pag;
|
|
}
|
|
|
|
void
|
|
xfs_perag_rele(
|
|
struct xfs_perag *pag)
|
|
{
|
|
trace_xfs_perag_rele(pag, _RET_IP_);
|
|
if (atomic_dec_and_test(&pag->pag_active_ref))
|
|
wake_up(&pag->pag_active_wq);
|
|
}
|
|
|
|
/*
|
|
* xfs_initialize_perag_data
|
|
*
|
|
* Read in each per-ag structure so we can count up the number of
|
|
* allocated inodes, free inodes and used filesystem blocks as this
|
|
* information is no longer persistent in the superblock. Once we have
|
|
* this information, write it into the in-core superblock structure.
|
|
*/
|
|
int
|
|
xfs_initialize_perag_data(
|
|
struct xfs_mount *mp,
|
|
xfs_agnumber_t agcount)
|
|
{
|
|
xfs_agnumber_t index;
|
|
struct xfs_perag *pag;
|
|
struct xfs_sb *sbp = &mp->m_sb;
|
|
uint64_t ifree = 0;
|
|
uint64_t ialloc = 0;
|
|
uint64_t bfree = 0;
|
|
uint64_t bfreelst = 0;
|
|
uint64_t btree = 0;
|
|
uint64_t fdblocks;
|
|
int error = 0;
|
|
|
|
for (index = 0; index < agcount; index++) {
|
|
/*
|
|
* Read the AGF and AGI buffers to populate the per-ag
|
|
* structures for us.
|
|
*/
|
|
pag = xfs_perag_get(mp, index);
|
|
error = xfs_alloc_read_agf(pag, NULL, 0, NULL);
|
|
if (!error)
|
|
error = xfs_ialloc_read_agi(pag, NULL, NULL);
|
|
if (error) {
|
|
xfs_perag_put(pag);
|
|
return error;
|
|
}
|
|
|
|
ifree += pag->pagi_freecount;
|
|
ialloc += pag->pagi_count;
|
|
bfree += pag->pagf_freeblks;
|
|
bfreelst += pag->pagf_flcount;
|
|
btree += pag->pagf_btreeblks;
|
|
xfs_perag_put(pag);
|
|
}
|
|
fdblocks = bfree + bfreelst + btree;
|
|
|
|
/*
|
|
* If the new summary counts are obviously incorrect, fail the
|
|
* mount operation because that implies the AGFs are also corrupt.
|
|
* Clear FS_COUNTERS so that we don't unmount with a dirty log, which
|
|
* will prevent xfs_repair from fixing anything.
|
|
*/
|
|
if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
|
|
xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
|
|
error = -EFSCORRUPTED;
|
|
goto out;
|
|
}
|
|
|
|
/* Overwrite incore superblock counters with just-read data */
|
|
spin_lock(&mp->m_sb_lock);
|
|
sbp->sb_ifree = ifree;
|
|
sbp->sb_icount = ialloc;
|
|
sbp->sb_fdblocks = fdblocks;
|
|
spin_unlock(&mp->m_sb_lock);
|
|
|
|
xfs_reinit_percpu_counters(mp);
|
|
out:
|
|
xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
|
|
return error;
|
|
}
|
|
|
|
STATIC void
|
|
__xfs_free_perag(
|
|
struct rcu_head *head)
|
|
{
|
|
struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
|
|
|
|
ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
|
|
kmem_free(pag);
|
|
}
|
|
|
|
/*
|
|
* Free up the per-ag resources associated with the mount structure.
|
|
*/
|
|
void
|
|
xfs_free_perag(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t agno;
|
|
|
|
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
|
|
spin_lock(&mp->m_perag_lock);
|
|
pag = radix_tree_delete(&mp->m_perag_tree, agno);
|
|
spin_unlock(&mp->m_perag_lock);
|
|
ASSERT(pag);
|
|
XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
|
|
xfs_defer_drain_free(&pag->pag_intents_drain);
|
|
|
|
cancel_delayed_work_sync(&pag->pag_blockgc_work);
|
|
xfs_buf_hash_destroy(pag);
|
|
|
|
/* drop the mount's active reference */
|
|
xfs_perag_rele(pag);
|
|
XFS_IS_CORRUPT(pag->pag_mount,
|
|
atomic_read(&pag->pag_active_ref) != 0);
|
|
call_rcu(&pag->rcu_head, __xfs_free_perag);
|
|
}
|
|
}
|
|
|
|
/* Find the size of the AG, in blocks. */
|
|
static xfs_agblock_t
|
|
__xfs_ag_block_count(
|
|
struct xfs_mount *mp,
|
|
xfs_agnumber_t agno,
|
|
xfs_agnumber_t agcount,
|
|
xfs_rfsblock_t dblocks)
|
|
{
|
|
ASSERT(agno < agcount);
|
|
|
|
if (agno < agcount - 1)
|
|
return mp->m_sb.sb_agblocks;
|
|
return dblocks - (agno * mp->m_sb.sb_agblocks);
|
|
}
|
|
|
|
xfs_agblock_t
|
|
xfs_ag_block_count(
|
|
struct xfs_mount *mp,
|
|
xfs_agnumber_t agno)
|
|
{
|
|
return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount,
|
|
mp->m_sb.sb_dblocks);
|
|
}
|
|
|
|
/* Calculate the first and last possible inode number in an AG. */
|
|
static void
|
|
__xfs_agino_range(
|
|
struct xfs_mount *mp,
|
|
xfs_agblock_t eoag,
|
|
xfs_agino_t *first,
|
|
xfs_agino_t *last)
|
|
{
|
|
xfs_agblock_t bno;
|
|
|
|
/*
|
|
* Calculate the first inode, which will be in the first
|
|
* cluster-aligned block after the AGFL.
|
|
*/
|
|
bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align);
|
|
*first = XFS_AGB_TO_AGINO(mp, bno);
|
|
|
|
/*
|
|
* Calculate the last inode, which will be at the end of the
|
|
* last (aligned) cluster that can be allocated in the AG.
|
|
*/
|
|
bno = round_down(eoag, M_IGEO(mp)->cluster_align);
|
|
*last = XFS_AGB_TO_AGINO(mp, bno) - 1;
|
|
}
|
|
|
|
void
|
|
xfs_agino_range(
|
|
struct xfs_mount *mp,
|
|
xfs_agnumber_t agno,
|
|
xfs_agino_t *first,
|
|
xfs_agino_t *last)
|
|
{
|
|
return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last);
|
|
}
|
|
|
|
/*
|
|
* Free perag within the specified AG range, it is only used to free unused
|
|
* perags under the error handling path.
|
|
*/
|
|
void
|
|
xfs_free_unused_perag_range(
|
|
struct xfs_mount *mp,
|
|
xfs_agnumber_t agstart,
|
|
xfs_agnumber_t agend)
|
|
{
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t index;
|
|
|
|
for (index = agstart; index < agend; index++) {
|
|
spin_lock(&mp->m_perag_lock);
|
|
pag = radix_tree_delete(&mp->m_perag_tree, index);
|
|
spin_unlock(&mp->m_perag_lock);
|
|
if (!pag)
|
|
break;
|
|
xfs_buf_hash_destroy(pag);
|
|
xfs_defer_drain_free(&pag->pag_intents_drain);
|
|
kmem_free(pag);
|
|
}
|
|
}
|
|
|
|
int
|
|
xfs_initialize_perag(
|
|
struct xfs_mount *mp,
|
|
xfs_agnumber_t agcount,
|
|
xfs_rfsblock_t dblocks,
|
|
xfs_agnumber_t *maxagi)
|
|
{
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t index;
|
|
xfs_agnumber_t first_initialised = NULLAGNUMBER;
|
|
int error;
|
|
|
|
/*
|
|
* Walk the current per-ag tree so we don't try to initialise AGs
|
|
* that already exist (growfs case). Allocate and insert all the
|
|
* AGs we don't find ready for initialisation.
|
|
*/
|
|
for (index = 0; index < agcount; index++) {
|
|
pag = xfs_perag_get(mp, index);
|
|
if (pag) {
|
|
xfs_perag_put(pag);
|
|
continue;
|
|
}
|
|
|
|
pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
|
|
if (!pag) {
|
|
error = -ENOMEM;
|
|
goto out_unwind_new_pags;
|
|
}
|
|
pag->pag_agno = index;
|
|
pag->pag_mount = mp;
|
|
|
|
error = radix_tree_preload(GFP_NOFS);
|
|
if (error)
|
|
goto out_free_pag;
|
|
|
|
spin_lock(&mp->m_perag_lock);
|
|
if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
|
|
WARN_ON_ONCE(1);
|
|
spin_unlock(&mp->m_perag_lock);
|
|
radix_tree_preload_end();
|
|
error = -EEXIST;
|
|
goto out_free_pag;
|
|
}
|
|
spin_unlock(&mp->m_perag_lock);
|
|
radix_tree_preload_end();
|
|
|
|
#ifdef __KERNEL__
|
|
/* Place kernel structure only init below this point. */
|
|
spin_lock_init(&pag->pag_ici_lock);
|
|
spin_lock_init(&pag->pagb_lock);
|
|
spin_lock_init(&pag->pag_state_lock);
|
|
INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
|
|
INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
|
|
xfs_defer_drain_init(&pag->pag_intents_drain);
|
|
init_waitqueue_head(&pag->pagb_wait);
|
|
init_waitqueue_head(&pag->pag_active_wq);
|
|
pag->pagb_count = 0;
|
|
pag->pagb_tree = RB_ROOT;
|
|
#endif /* __KERNEL__ */
|
|
|
|
error = xfs_buf_hash_init(pag);
|
|
if (error)
|
|
goto out_remove_pag;
|
|
|
|
/* Active ref owned by mount indicates AG is online. */
|
|
atomic_set(&pag->pag_active_ref, 1);
|
|
|
|
/* first new pag is fully initialized */
|
|
if (first_initialised == NULLAGNUMBER)
|
|
first_initialised = index;
|
|
|
|
/*
|
|
* Pre-calculated geometry
|
|
*/
|
|
pag->block_count = __xfs_ag_block_count(mp, index, agcount,
|
|
dblocks);
|
|
pag->min_block = XFS_AGFL_BLOCK(mp);
|
|
__xfs_agino_range(mp, pag->block_count, &pag->agino_min,
|
|
&pag->agino_max);
|
|
}
|
|
|
|
index = xfs_set_inode_alloc(mp, agcount);
|
|
|
|
if (maxagi)
|
|
*maxagi = index;
|
|
|
|
mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
|
|
return 0;
|
|
|
|
out_remove_pag:
|
|
xfs_defer_drain_free(&pag->pag_intents_drain);
|
|
spin_lock(&mp->m_perag_lock);
|
|
radix_tree_delete(&mp->m_perag_tree, index);
|
|
spin_unlock(&mp->m_perag_lock);
|
|
out_free_pag:
|
|
kmem_free(pag);
|
|
out_unwind_new_pags:
|
|
/* unwind any prior newly initialized pags */
|
|
xfs_free_unused_perag_range(mp, first_initialised, agcount);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
xfs_get_aghdr_buf(
|
|
struct xfs_mount *mp,
|
|
xfs_daddr_t blkno,
|
|
size_t numblks,
|
|
struct xfs_buf **bpp,
|
|
const struct xfs_buf_ops *ops)
|
|
{
|
|
struct xfs_buf *bp;
|
|
int error;
|
|
|
|
error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
|
|
if (error)
|
|
return error;
|
|
|
|
bp->b_maps[0].bm_bn = blkno;
|
|
bp->b_ops = ops;
|
|
|
|
*bpp = bp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Generic btree root block init function
|
|
*/
|
|
static void
|
|
xfs_btroot_init(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp,
|
|
struct aghdr_init_data *id)
|
|
{
|
|
xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno);
|
|
}
|
|
|
|
/* Finish initializing a free space btree. */
|
|
static void
|
|
xfs_freesp_init_recs(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp,
|
|
struct aghdr_init_data *id)
|
|
{
|
|
struct xfs_alloc_rec *arec;
|
|
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
|
|
|
|
arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
|
|
arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
|
|
|
|
if (xfs_ag_contains_log(mp, id->agno)) {
|
|
struct xfs_alloc_rec *nrec;
|
|
xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp,
|
|
mp->m_sb.sb_logstart);
|
|
|
|
ASSERT(start >= mp->m_ag_prealloc_blocks);
|
|
if (start != mp->m_ag_prealloc_blocks) {
|
|
/*
|
|
* Modify first record to pad stripe align of log and
|
|
* bump the record count.
|
|
*/
|
|
arec->ar_blockcount = cpu_to_be32(start -
|
|
mp->m_ag_prealloc_blocks);
|
|
be16_add_cpu(&block->bb_numrecs, 1);
|
|
nrec = arec + 1;
|
|
|
|
/*
|
|
* Insert second record at start of internal log
|
|
* which then gets trimmed.
|
|
*/
|
|
nrec->ar_startblock = cpu_to_be32(
|
|
be32_to_cpu(arec->ar_startblock) +
|
|
be32_to_cpu(arec->ar_blockcount));
|
|
arec = nrec;
|
|
}
|
|
/*
|
|
* Change record start to after the internal log
|
|
*/
|
|
be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
|
|
}
|
|
|
|
/*
|
|
* Calculate the block count of this record; if it is nonzero,
|
|
* increment the record count.
|
|
*/
|
|
arec->ar_blockcount = cpu_to_be32(id->agsize -
|
|
be32_to_cpu(arec->ar_startblock));
|
|
if (arec->ar_blockcount)
|
|
be16_add_cpu(&block->bb_numrecs, 1);
|
|
}
|
|
|
|
/*
|
|
* Alloc btree root block init functions
|
|
*/
|
|
static void
|
|
xfs_bnoroot_init(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp,
|
|
struct aghdr_init_data *id)
|
|
{
|
|
xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 0, id->agno);
|
|
xfs_freesp_init_recs(mp, bp, id);
|
|
}
|
|
|
|
static void
|
|
xfs_cntroot_init(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp,
|
|
struct aghdr_init_data *id)
|
|
{
|
|
xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 0, id->agno);
|
|
xfs_freesp_init_recs(mp, bp, id);
|
|
}
|
|
|
|
/*
|
|
* Reverse map root block init
|
|
*/
|
|
static void
|
|
xfs_rmaproot_init(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp,
|
|
struct aghdr_init_data *id)
|
|
{
|
|
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
|
|
struct xfs_rmap_rec *rrec;
|
|
|
|
xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno);
|
|
|
|
/*
|
|
* mark the AG header regions as static metadata The BNO
|
|
* btree block is the first block after the headers, so
|
|
* it's location defines the size of region the static
|
|
* metadata consumes.
|
|
*
|
|
* Note: unlike mkfs, we never have to account for log
|
|
* space when growing the data regions
|
|
*/
|
|
rrec = XFS_RMAP_REC_ADDR(block, 1);
|
|
rrec->rm_startblock = 0;
|
|
rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
|
|
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
|
|
rrec->rm_offset = 0;
|
|
|
|
/* account freespace btree root blocks */
|
|
rrec = XFS_RMAP_REC_ADDR(block, 2);
|
|
rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
|
|
rrec->rm_blockcount = cpu_to_be32(2);
|
|
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
|
|
rrec->rm_offset = 0;
|
|
|
|
/* account inode btree root blocks */
|
|
rrec = XFS_RMAP_REC_ADDR(block, 3);
|
|
rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
|
|
rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
|
|
XFS_IBT_BLOCK(mp));
|
|
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
|
|
rrec->rm_offset = 0;
|
|
|
|
/* account for rmap btree root */
|
|
rrec = XFS_RMAP_REC_ADDR(block, 4);
|
|
rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
|
|
rrec->rm_blockcount = cpu_to_be32(1);
|
|
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
|
|
rrec->rm_offset = 0;
|
|
|
|
/* account for refc btree root */
|
|
if (xfs_has_reflink(mp)) {
|
|
rrec = XFS_RMAP_REC_ADDR(block, 5);
|
|
rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
|
|
rrec->rm_blockcount = cpu_to_be32(1);
|
|
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
|
|
rrec->rm_offset = 0;
|
|
be16_add_cpu(&block->bb_numrecs, 1);
|
|
}
|
|
|
|
/* account for the log space */
|
|
if (xfs_ag_contains_log(mp, id->agno)) {
|
|
rrec = XFS_RMAP_REC_ADDR(block,
|
|
be16_to_cpu(block->bb_numrecs) + 1);
|
|
rrec->rm_startblock = cpu_to_be32(
|
|
XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
|
|
rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
|
|
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
|
|
rrec->rm_offset = 0;
|
|
be16_add_cpu(&block->bb_numrecs, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialise new secondary superblocks with the pre-grow geometry, but mark
|
|
* them as "in progress" so we know they haven't yet been activated. This will
|
|
* get cleared when the update with the new geometry information is done after
|
|
* changes to the primary are committed. This isn't strictly necessary, but we
|
|
* get it for free with the delayed buffer write lists and it means we can tell
|
|
* if a grow operation didn't complete properly after the fact.
|
|
*/
|
|
static void
|
|
xfs_sbblock_init(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp,
|
|
struct aghdr_init_data *id)
|
|
{
|
|
struct xfs_dsb *dsb = bp->b_addr;
|
|
|
|
xfs_sb_to_disk(dsb, &mp->m_sb);
|
|
dsb->sb_inprogress = 1;
|
|
}
|
|
|
|
static void
|
|
xfs_agfblock_init(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp,
|
|
struct aghdr_init_data *id)
|
|
{
|
|
struct xfs_agf *agf = bp->b_addr;
|
|
xfs_extlen_t tmpsize;
|
|
|
|
agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
|
|
agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
|
|
agf->agf_seqno = cpu_to_be32(id->agno);
|
|
agf->agf_length = cpu_to_be32(id->agsize);
|
|
agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
|
|
agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
|
|
agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
|
|
agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
|
|
if (xfs_has_rmapbt(mp)) {
|
|
agf->agf_roots[XFS_BTNUM_RMAPi] =
|
|
cpu_to_be32(XFS_RMAP_BLOCK(mp));
|
|
agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
|
|
agf->agf_rmap_blocks = cpu_to_be32(1);
|
|
}
|
|
|
|
agf->agf_flfirst = cpu_to_be32(1);
|
|
agf->agf_fllast = 0;
|
|
agf->agf_flcount = 0;
|
|
tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
|
|
agf->agf_freeblks = cpu_to_be32(tmpsize);
|
|
agf->agf_longest = cpu_to_be32(tmpsize);
|
|
if (xfs_has_crc(mp))
|
|
uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
|
|
if (xfs_has_reflink(mp)) {
|
|
agf->agf_refcount_root = cpu_to_be32(
|
|
xfs_refc_block(mp));
|
|
agf->agf_refcount_level = cpu_to_be32(1);
|
|
agf->agf_refcount_blocks = cpu_to_be32(1);
|
|
}
|
|
|
|
if (xfs_ag_contains_log(mp, id->agno)) {
|
|
int64_t logblocks = mp->m_sb.sb_logblocks;
|
|
|
|
be32_add_cpu(&agf->agf_freeblks, -logblocks);
|
|
agf->agf_longest = cpu_to_be32(id->agsize -
|
|
XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xfs_agflblock_init(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp,
|
|
struct aghdr_init_data *id)
|
|
{
|
|
struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
|
|
__be32 *agfl_bno;
|
|
int bucket;
|
|
|
|
if (xfs_has_crc(mp)) {
|
|
agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
|
|
agfl->agfl_seqno = cpu_to_be32(id->agno);
|
|
uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
|
|
}
|
|
|
|
agfl_bno = xfs_buf_to_agfl_bno(bp);
|
|
for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
|
|
agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
|
|
}
|
|
|
|
static void
|
|
xfs_agiblock_init(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp,
|
|
struct aghdr_init_data *id)
|
|
{
|
|
struct xfs_agi *agi = bp->b_addr;
|
|
int bucket;
|
|
|
|
agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
|
|
agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
|
|
agi->agi_seqno = cpu_to_be32(id->agno);
|
|
agi->agi_length = cpu_to_be32(id->agsize);
|
|
agi->agi_count = 0;
|
|
agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
|
|
agi->agi_level = cpu_to_be32(1);
|
|
agi->agi_freecount = 0;
|
|
agi->agi_newino = cpu_to_be32(NULLAGINO);
|
|
agi->agi_dirino = cpu_to_be32(NULLAGINO);
|
|
if (xfs_has_crc(mp))
|
|
uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
|
|
if (xfs_has_finobt(mp)) {
|
|
agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
|
|
agi->agi_free_level = cpu_to_be32(1);
|
|
}
|
|
for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
|
|
agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
|
|
if (xfs_has_inobtcounts(mp)) {
|
|
agi->agi_iblocks = cpu_to_be32(1);
|
|
if (xfs_has_finobt(mp))
|
|
agi->agi_fblocks = cpu_to_be32(1);
|
|
}
|
|
}
|
|
|
|
typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
|
|
struct aghdr_init_data *id);
|
|
static int
|
|
xfs_ag_init_hdr(
|
|
struct xfs_mount *mp,
|
|
struct aghdr_init_data *id,
|
|
aghdr_init_work_f work,
|
|
const struct xfs_buf_ops *ops)
|
|
{
|
|
struct xfs_buf *bp;
|
|
int error;
|
|
|
|
error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
|
|
if (error)
|
|
return error;
|
|
|
|
(*work)(mp, bp, id);
|
|
|
|
xfs_buf_delwri_queue(bp, &id->buffer_list);
|
|
xfs_buf_relse(bp);
|
|
return 0;
|
|
}
|
|
|
|
struct xfs_aghdr_grow_data {
|
|
xfs_daddr_t daddr;
|
|
size_t numblks;
|
|
const struct xfs_buf_ops *ops;
|
|
aghdr_init_work_f work;
|
|
xfs_btnum_t type;
|
|
bool need_init;
|
|
};
|
|
|
|
/*
|
|
* Prepare new AG headers to be written to disk. We use uncached buffers here,
|
|
* as it is assumed these new AG headers are currently beyond the currently
|
|
* valid filesystem address space. Using cached buffers would trip over EOFS
|
|
* corruption detection alogrithms in the buffer cache lookup routines.
|
|
*
|
|
* This is a non-transactional function, but the prepared buffers are added to a
|
|
* delayed write buffer list supplied by the caller so they can submit them to
|
|
* disk and wait on them as required.
|
|
*/
|
|
int
|
|
xfs_ag_init_headers(
|
|
struct xfs_mount *mp,
|
|
struct aghdr_init_data *id)
|
|
|
|
{
|
|
struct xfs_aghdr_grow_data aghdr_data[] = {
|
|
{ /* SB */
|
|
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
|
|
.numblks = XFS_FSS_TO_BB(mp, 1),
|
|
.ops = &xfs_sb_buf_ops,
|
|
.work = &xfs_sbblock_init,
|
|
.need_init = true
|
|
},
|
|
{ /* AGF */
|
|
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
|
|
.numblks = XFS_FSS_TO_BB(mp, 1),
|
|
.ops = &xfs_agf_buf_ops,
|
|
.work = &xfs_agfblock_init,
|
|
.need_init = true
|
|
},
|
|
{ /* AGFL */
|
|
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
|
|
.numblks = XFS_FSS_TO_BB(mp, 1),
|
|
.ops = &xfs_agfl_buf_ops,
|
|
.work = &xfs_agflblock_init,
|
|
.need_init = true
|
|
},
|
|
{ /* AGI */
|
|
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
|
|
.numblks = XFS_FSS_TO_BB(mp, 1),
|
|
.ops = &xfs_agi_buf_ops,
|
|
.work = &xfs_agiblock_init,
|
|
.need_init = true
|
|
},
|
|
{ /* BNO root block */
|
|
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
|
|
.numblks = BTOBB(mp->m_sb.sb_blocksize),
|
|
.ops = &xfs_bnobt_buf_ops,
|
|
.work = &xfs_bnoroot_init,
|
|
.need_init = true
|
|
},
|
|
{ /* CNT root block */
|
|
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
|
|
.numblks = BTOBB(mp->m_sb.sb_blocksize),
|
|
.ops = &xfs_cntbt_buf_ops,
|
|
.work = &xfs_cntroot_init,
|
|
.need_init = true
|
|
},
|
|
{ /* INO root block */
|
|
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
|
|
.numblks = BTOBB(mp->m_sb.sb_blocksize),
|
|
.ops = &xfs_inobt_buf_ops,
|
|
.work = &xfs_btroot_init,
|
|
.type = XFS_BTNUM_INO,
|
|
.need_init = true
|
|
},
|
|
{ /* FINO root block */
|
|
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
|
|
.numblks = BTOBB(mp->m_sb.sb_blocksize),
|
|
.ops = &xfs_finobt_buf_ops,
|
|
.work = &xfs_btroot_init,
|
|
.type = XFS_BTNUM_FINO,
|
|
.need_init = xfs_has_finobt(mp)
|
|
},
|
|
{ /* RMAP root block */
|
|
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
|
|
.numblks = BTOBB(mp->m_sb.sb_blocksize),
|
|
.ops = &xfs_rmapbt_buf_ops,
|
|
.work = &xfs_rmaproot_init,
|
|
.need_init = xfs_has_rmapbt(mp)
|
|
},
|
|
{ /* REFC root block */
|
|
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
|
|
.numblks = BTOBB(mp->m_sb.sb_blocksize),
|
|
.ops = &xfs_refcountbt_buf_ops,
|
|
.work = &xfs_btroot_init,
|
|
.type = XFS_BTNUM_REFC,
|
|
.need_init = xfs_has_reflink(mp)
|
|
},
|
|
{ /* NULL terminating block */
|
|
.daddr = XFS_BUF_DADDR_NULL,
|
|
}
|
|
};
|
|
struct xfs_aghdr_grow_data *dp;
|
|
int error = 0;
|
|
|
|
/* Account for AG free space in new AG */
|
|
id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
|
|
for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
|
|
if (!dp->need_init)
|
|
continue;
|
|
|
|
id->daddr = dp->daddr;
|
|
id->numblks = dp->numblks;
|
|
id->type = dp->type;
|
|
error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
|
|
if (error)
|
|
break;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_ag_shrink_space(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans **tpp,
|
|
xfs_extlen_t delta)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
struct xfs_alloc_arg args = {
|
|
.tp = *tpp,
|
|
.mp = mp,
|
|
.pag = pag,
|
|
.minlen = delta,
|
|
.maxlen = delta,
|
|
.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE,
|
|
.resv = XFS_AG_RESV_NONE,
|
|
.prod = 1
|
|
};
|
|
struct xfs_buf *agibp, *agfbp;
|
|
struct xfs_agi *agi;
|
|
struct xfs_agf *agf;
|
|
xfs_agblock_t aglen;
|
|
int error, err2;
|
|
|
|
ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1);
|
|
error = xfs_ialloc_read_agi(pag, *tpp, &agibp);
|
|
if (error)
|
|
return error;
|
|
|
|
agi = agibp->b_addr;
|
|
|
|
error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp);
|
|
if (error)
|
|
return error;
|
|
|
|
agf = agfbp->b_addr;
|
|
aglen = be32_to_cpu(agi->agi_length);
|
|
/* some extra paranoid checks before we shrink the ag */
|
|
if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length))
|
|
return -EFSCORRUPTED;
|
|
if (delta >= aglen)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Make sure that the last inode cluster cannot overlap with the new
|
|
* end of the AG, even if it's sparse.
|
|
*/
|
|
error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Disable perag reservations so it doesn't cause the allocation request
|
|
* to fail. We'll reestablish reservation before we return.
|
|
*/
|
|
error = xfs_ag_resv_free(pag);
|
|
if (error)
|
|
return error;
|
|
|
|
/* internal log shouldn't also show up in the free space btrees */
|
|
error = xfs_alloc_vextent_exact_bno(&args,
|
|
XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta));
|
|
if (!error && args.agbno == NULLAGBLOCK)
|
|
error = -ENOSPC;
|
|
|
|
if (error) {
|
|
/*
|
|
* if extent allocation fails, need to roll the transaction to
|
|
* ensure that the AGFL fixup has been committed anyway.
|
|
*/
|
|
xfs_trans_bhold(*tpp, agfbp);
|
|
err2 = xfs_trans_roll(tpp);
|
|
if (err2)
|
|
return err2;
|
|
xfs_trans_bjoin(*tpp, agfbp);
|
|
goto resv_init_out;
|
|
}
|
|
|
|
/*
|
|
* if successfully deleted from freespace btrees, need to confirm
|
|
* per-AG reservation works as expected.
|
|
*/
|
|
be32_add_cpu(&agi->agi_length, -delta);
|
|
be32_add_cpu(&agf->agf_length, -delta);
|
|
|
|
err2 = xfs_ag_resv_init(pag, *tpp);
|
|
if (err2) {
|
|
be32_add_cpu(&agi->agi_length, delta);
|
|
be32_add_cpu(&agf->agf_length, delta);
|
|
if (err2 != -ENOSPC)
|
|
goto resv_err;
|
|
|
|
err2 = xfs_free_extent_later(*tpp, args.fsbno, delta, NULL,
|
|
XFS_AG_RESV_NONE, true);
|
|
if (err2)
|
|
goto resv_err;
|
|
|
|
/*
|
|
* Roll the transaction before trying to re-init the per-ag
|
|
* reservation. The new transaction is clean so it will cancel
|
|
* without any side effects.
|
|
*/
|
|
error = xfs_defer_finish(tpp);
|
|
if (error)
|
|
return error;
|
|
|
|
error = -ENOSPC;
|
|
goto resv_init_out;
|
|
}
|
|
|
|
/* Update perag geometry */
|
|
pag->block_count -= delta;
|
|
__xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
|
|
&pag->agino_max);
|
|
|
|
xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
|
|
xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
|
|
return 0;
|
|
|
|
resv_init_out:
|
|
err2 = xfs_ag_resv_init(pag, *tpp);
|
|
if (!err2)
|
|
return error;
|
|
resv_err:
|
|
xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
return err2;
|
|
}
|
|
|
|
/*
|
|
* Extent the AG indicated by the @id by the length passed in
|
|
*/
|
|
int
|
|
xfs_ag_extend_space(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
xfs_extlen_t len)
|
|
{
|
|
struct xfs_buf *bp;
|
|
struct xfs_agi *agi;
|
|
struct xfs_agf *agf;
|
|
int error;
|
|
|
|
ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1);
|
|
|
|
error = xfs_ialloc_read_agi(pag, tp, &bp);
|
|
if (error)
|
|
return error;
|
|
|
|
agi = bp->b_addr;
|
|
be32_add_cpu(&agi->agi_length, len);
|
|
xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
|
|
|
|
/*
|
|
* Change agf length.
|
|
*/
|
|
error = xfs_alloc_read_agf(pag, tp, 0, &bp);
|
|
if (error)
|
|
return error;
|
|
|
|
agf = bp->b_addr;
|
|
be32_add_cpu(&agf->agf_length, len);
|
|
ASSERT(agf->agf_length == agi->agi_length);
|
|
xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
|
|
|
|
/*
|
|
* Free the new space.
|
|
*
|
|
* XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
|
|
* this doesn't actually exist in the rmap btree.
|
|
*/
|
|
error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len,
|
|
len, &XFS_RMAP_OINFO_SKIP_UPDATE);
|
|
if (error)
|
|
return error;
|
|
|
|
error = xfs_free_extent(tp, pag, be32_to_cpu(agf->agf_length) - len,
|
|
len, &XFS_RMAP_OINFO_SKIP_UPDATE, XFS_AG_RESV_NONE);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Update perag geometry */
|
|
pag->block_count = be32_to_cpu(agf->agf_length);
|
|
__xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
|
|
&pag->agino_max);
|
|
return 0;
|
|
}
|
|
|
|
/* Retrieve AG geometry. */
|
|
int
|
|
xfs_ag_get_geometry(
|
|
struct xfs_perag *pag,
|
|
struct xfs_ag_geometry *ageo)
|
|
{
|
|
struct xfs_buf *agi_bp;
|
|
struct xfs_buf *agf_bp;
|
|
struct xfs_agi *agi;
|
|
struct xfs_agf *agf;
|
|
unsigned int freeblks;
|
|
int error;
|
|
|
|
/* Lock the AG headers. */
|
|
error = xfs_ialloc_read_agi(pag, NULL, &agi_bp);
|
|
if (error)
|
|
return error;
|
|
error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp);
|
|
if (error)
|
|
goto out_agi;
|
|
|
|
/* Fill out form. */
|
|
memset(ageo, 0, sizeof(*ageo));
|
|
ageo->ag_number = pag->pag_agno;
|
|
|
|
agi = agi_bp->b_addr;
|
|
ageo->ag_icount = be32_to_cpu(agi->agi_count);
|
|
ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
|
|
|
|
agf = agf_bp->b_addr;
|
|
ageo->ag_length = be32_to_cpu(agf->agf_length);
|
|
freeblks = pag->pagf_freeblks +
|
|
pag->pagf_flcount +
|
|
pag->pagf_btreeblks -
|
|
xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
|
|
ageo->ag_freeblks = freeblks;
|
|
xfs_ag_geom_health(pag, ageo);
|
|
|
|
/* Release resources. */
|
|
xfs_buf_relse(agf_bp);
|
|
out_agi:
|
|
xfs_buf_relse(agi_bp);
|
|
return error;
|
|
}
|