mirror of
https://github.com/torvalds/linux.git
synced 2024-11-17 01:22:07 +00:00
8b7c94e347
While the current driver mostly supports BCM7445 which has a hardcoded location for its MoCA port on port 7 and port 0 for its internal PHY, this is not necessarily true for all other chips out there such as BCM3390 for instance. Walk the list of ports from Device Tree, get their port number ("reg" property), and then parse the "phy-mode" property and initialize two internal variables: moca_port and a bitmask of internal PHYs. Since we use interrupts for the MoCA port, we introduce two helper functions to enable/disable interrupts and do this at the appropriate bank (INTRL2_0 or INTRL2_1). Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1415 lines
35 KiB
C
1415 lines
35 KiB
C
/*
|
|
* Broadcom Starfighter 2 DSA switch driver
|
|
*
|
|
* Copyright (C) 2014, Broadcom Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/of.h>
|
|
#include <linux/phy.h>
|
|
#include <linux/phy_fixed.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_net.h>
|
|
#include <net/dsa.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/if_bridge.h>
|
|
#include <linux/brcmphy.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <net/switchdev.h>
|
|
|
|
#include "bcm_sf2.h"
|
|
#include "bcm_sf2_regs.h"
|
|
|
|
/* String, offset, and register size in bytes if different from 4 bytes */
|
|
static const struct bcm_sf2_hw_stats bcm_sf2_mib[] = {
|
|
{ "TxOctets", 0x000, 8 },
|
|
{ "TxDropPkts", 0x020 },
|
|
{ "TxQPKTQ0", 0x030 },
|
|
{ "TxBroadcastPkts", 0x040 },
|
|
{ "TxMulticastPkts", 0x050 },
|
|
{ "TxUnicastPKts", 0x060 },
|
|
{ "TxCollisions", 0x070 },
|
|
{ "TxSingleCollision", 0x080 },
|
|
{ "TxMultipleCollision", 0x090 },
|
|
{ "TxDeferredCollision", 0x0a0 },
|
|
{ "TxLateCollision", 0x0b0 },
|
|
{ "TxExcessiveCollision", 0x0c0 },
|
|
{ "TxFrameInDisc", 0x0d0 },
|
|
{ "TxPausePkts", 0x0e0 },
|
|
{ "TxQPKTQ1", 0x0f0 },
|
|
{ "TxQPKTQ2", 0x100 },
|
|
{ "TxQPKTQ3", 0x110 },
|
|
{ "TxQPKTQ4", 0x120 },
|
|
{ "TxQPKTQ5", 0x130 },
|
|
{ "RxOctets", 0x140, 8 },
|
|
{ "RxUndersizePkts", 0x160 },
|
|
{ "RxPausePkts", 0x170 },
|
|
{ "RxPkts64Octets", 0x180 },
|
|
{ "RxPkts65to127Octets", 0x190 },
|
|
{ "RxPkts128to255Octets", 0x1a0 },
|
|
{ "RxPkts256to511Octets", 0x1b0 },
|
|
{ "RxPkts512to1023Octets", 0x1c0 },
|
|
{ "RxPkts1024toMaxPktsOctets", 0x1d0 },
|
|
{ "RxOversizePkts", 0x1e0 },
|
|
{ "RxJabbers", 0x1f0 },
|
|
{ "RxAlignmentErrors", 0x200 },
|
|
{ "RxFCSErrors", 0x210 },
|
|
{ "RxGoodOctets", 0x220, 8 },
|
|
{ "RxDropPkts", 0x240 },
|
|
{ "RxUnicastPkts", 0x250 },
|
|
{ "RxMulticastPkts", 0x260 },
|
|
{ "RxBroadcastPkts", 0x270 },
|
|
{ "RxSAChanges", 0x280 },
|
|
{ "RxFragments", 0x290 },
|
|
{ "RxJumboPkt", 0x2a0 },
|
|
{ "RxSymblErr", 0x2b0 },
|
|
{ "InRangeErrCount", 0x2c0 },
|
|
{ "OutRangeErrCount", 0x2d0 },
|
|
{ "EEELpiEvent", 0x2e0 },
|
|
{ "EEELpiDuration", 0x2f0 },
|
|
{ "RxDiscard", 0x300, 8 },
|
|
{ "TxQPKTQ6", 0x320 },
|
|
{ "TxQPKTQ7", 0x330 },
|
|
{ "TxPkts64Octets", 0x340 },
|
|
{ "TxPkts65to127Octets", 0x350 },
|
|
{ "TxPkts128to255Octets", 0x360 },
|
|
{ "TxPkts256to511Ocets", 0x370 },
|
|
{ "TxPkts512to1023Ocets", 0x380 },
|
|
{ "TxPkts1024toMaxPktOcets", 0x390 },
|
|
};
|
|
|
|
#define BCM_SF2_STATS_SIZE ARRAY_SIZE(bcm_sf2_mib)
|
|
|
|
static void bcm_sf2_sw_get_strings(struct dsa_switch *ds,
|
|
int port, uint8_t *data)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < BCM_SF2_STATS_SIZE; i++)
|
|
memcpy(data + i * ETH_GSTRING_LEN,
|
|
bcm_sf2_mib[i].string, ETH_GSTRING_LEN);
|
|
}
|
|
|
|
static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds,
|
|
int port, uint64_t *data)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
const struct bcm_sf2_hw_stats *s;
|
|
unsigned int i;
|
|
u64 val = 0;
|
|
u32 offset;
|
|
|
|
mutex_lock(&priv->stats_mutex);
|
|
|
|
/* Now fetch the per-port counters */
|
|
for (i = 0; i < BCM_SF2_STATS_SIZE; i++) {
|
|
s = &bcm_sf2_mib[i];
|
|
|
|
/* Do a latched 64-bit read if needed */
|
|
offset = s->reg + CORE_P_MIB_OFFSET(port);
|
|
if (s->sizeof_stat == 8)
|
|
val = core_readq(priv, offset);
|
|
else
|
|
val = core_readl(priv, offset);
|
|
|
|
data[i] = (u64)val;
|
|
}
|
|
|
|
mutex_unlock(&priv->stats_mutex);
|
|
}
|
|
|
|
static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds)
|
|
{
|
|
return BCM_SF2_STATS_SIZE;
|
|
}
|
|
|
|
static char *bcm_sf2_sw_probe(struct device *host_dev, int sw_addr)
|
|
{
|
|
return "Broadcom Starfighter 2";
|
|
}
|
|
|
|
static void bcm_sf2_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
unsigned int i;
|
|
u32 reg;
|
|
|
|
/* Enable the IMP Port to be in the same VLAN as the other ports
|
|
* on a per-port basis such that we only have Port i and IMP in
|
|
* the same VLAN.
|
|
*/
|
|
for (i = 0; i < priv->hw_params.num_ports; i++) {
|
|
if (!((1 << i) & ds->phys_port_mask))
|
|
continue;
|
|
|
|
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
|
|
reg |= (1 << cpu_port);
|
|
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
|
|
}
|
|
}
|
|
|
|
static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
u32 reg, val;
|
|
|
|
/* Enable the port memories */
|
|
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
|
|
reg &= ~P_TXQ_PSM_VDD(port);
|
|
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
|
|
|
|
/* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
|
|
reg = core_readl(priv, CORE_IMP_CTL);
|
|
reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
|
|
reg &= ~(RX_DIS | TX_DIS);
|
|
core_writel(priv, reg, CORE_IMP_CTL);
|
|
|
|
/* Enable forwarding */
|
|
core_writel(priv, SW_FWDG_EN, CORE_SWMODE);
|
|
|
|
/* Enable IMP port in dumb mode */
|
|
reg = core_readl(priv, CORE_SWITCH_CTRL);
|
|
reg |= MII_DUMB_FWDG_EN;
|
|
core_writel(priv, reg, CORE_SWITCH_CTRL);
|
|
|
|
/* Resolve which bit controls the Broadcom tag */
|
|
switch (port) {
|
|
case 8:
|
|
val = BRCM_HDR_EN_P8;
|
|
break;
|
|
case 7:
|
|
val = BRCM_HDR_EN_P7;
|
|
break;
|
|
case 5:
|
|
val = BRCM_HDR_EN_P5;
|
|
break;
|
|
default:
|
|
val = 0;
|
|
break;
|
|
}
|
|
|
|
/* Enable Broadcom tags for IMP port */
|
|
reg = core_readl(priv, CORE_BRCM_HDR_CTRL);
|
|
reg |= val;
|
|
core_writel(priv, reg, CORE_BRCM_HDR_CTRL);
|
|
|
|
/* Enable reception Broadcom tag for CPU TX (switch RX) to
|
|
* allow us to tag outgoing frames
|
|
*/
|
|
reg = core_readl(priv, CORE_BRCM_HDR_RX_DIS);
|
|
reg &= ~(1 << port);
|
|
core_writel(priv, reg, CORE_BRCM_HDR_RX_DIS);
|
|
|
|
/* Enable transmission of Broadcom tags from the switch (CPU RX) to
|
|
* allow delivering frames to the per-port net_devices
|
|
*/
|
|
reg = core_readl(priv, CORE_BRCM_HDR_TX_DIS);
|
|
reg &= ~(1 << port);
|
|
core_writel(priv, reg, CORE_BRCM_HDR_TX_DIS);
|
|
|
|
/* Force link status for IMP port */
|
|
reg = core_readl(priv, CORE_STS_OVERRIDE_IMP);
|
|
reg |= (MII_SW_OR | LINK_STS);
|
|
core_writel(priv, reg, CORE_STS_OVERRIDE_IMP);
|
|
}
|
|
|
|
static void bcm_sf2_eee_enable_set(struct dsa_switch *ds, int port, bool enable)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_EEE_EN_CTRL);
|
|
if (enable)
|
|
reg |= 1 << port;
|
|
else
|
|
reg &= ~(1 << port);
|
|
core_writel(priv, reg, CORE_EEE_EN_CTRL);
|
|
}
|
|
|
|
static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
u32 reg;
|
|
|
|
reg = reg_readl(priv, REG_SPHY_CNTRL);
|
|
if (enable) {
|
|
reg |= PHY_RESET;
|
|
reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | CK25_DIS);
|
|
reg_writel(priv, reg, REG_SPHY_CNTRL);
|
|
udelay(21);
|
|
reg = reg_readl(priv, REG_SPHY_CNTRL);
|
|
reg &= ~PHY_RESET;
|
|
} else {
|
|
reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
|
|
reg_writel(priv, reg, REG_SPHY_CNTRL);
|
|
mdelay(1);
|
|
reg |= CK25_DIS;
|
|
}
|
|
reg_writel(priv, reg, REG_SPHY_CNTRL);
|
|
|
|
/* Use PHY-driven LED signaling */
|
|
if (!enable) {
|
|
reg = reg_readl(priv, REG_LED_CNTRL(0));
|
|
reg |= SPDLNK_SRC_SEL;
|
|
reg_writel(priv, reg, REG_LED_CNTRL(0));
|
|
}
|
|
}
|
|
|
|
static inline void bcm_sf2_port_intr_enable(struct bcm_sf2_priv *priv,
|
|
int port)
|
|
{
|
|
unsigned int off;
|
|
|
|
switch (port) {
|
|
case 7:
|
|
off = P7_IRQ_OFF;
|
|
break;
|
|
case 0:
|
|
/* Port 0 interrupts are located on the first bank */
|
|
intrl2_0_mask_clear(priv, P_IRQ_MASK(P0_IRQ_OFF));
|
|
return;
|
|
default:
|
|
off = P_IRQ_OFF(port);
|
|
break;
|
|
}
|
|
|
|
intrl2_1_mask_clear(priv, P_IRQ_MASK(off));
|
|
}
|
|
|
|
static inline void bcm_sf2_port_intr_disable(struct bcm_sf2_priv *priv,
|
|
int port)
|
|
{
|
|
unsigned int off;
|
|
|
|
switch (port) {
|
|
case 7:
|
|
off = P7_IRQ_OFF;
|
|
break;
|
|
case 0:
|
|
/* Port 0 interrupts are located on the first bank */
|
|
intrl2_0_mask_set(priv, P_IRQ_MASK(P0_IRQ_OFF));
|
|
intrl2_0_writel(priv, P_IRQ_MASK(P0_IRQ_OFF), INTRL2_CPU_CLEAR);
|
|
return;
|
|
default:
|
|
off = P_IRQ_OFF(port);
|
|
break;
|
|
}
|
|
|
|
intrl2_1_mask_set(priv, P_IRQ_MASK(off));
|
|
intrl2_1_writel(priv, P_IRQ_MASK(off), INTRL2_CPU_CLEAR);
|
|
}
|
|
|
|
static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
|
|
struct phy_device *phy)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
s8 cpu_port = ds->dst[ds->index].cpu_port;
|
|
u32 reg;
|
|
|
|
/* Clear the memory power down */
|
|
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
|
|
reg &= ~P_TXQ_PSM_VDD(port);
|
|
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
|
|
|
|
/* Clear the Rx and Tx disable bits and set to no spanning tree */
|
|
core_writel(priv, 0, CORE_G_PCTL_PORT(port));
|
|
|
|
/* Re-enable the GPHY and re-apply workarounds */
|
|
if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) {
|
|
bcm_sf2_gphy_enable_set(ds, true);
|
|
if (phy) {
|
|
/* if phy_stop() has been called before, phy
|
|
* will be in halted state, and phy_start()
|
|
* will call resume.
|
|
*
|
|
* the resume path does not configure back
|
|
* autoneg settings, and since we hard reset
|
|
* the phy manually here, we need to reset the
|
|
* state machine also.
|
|
*/
|
|
phy->state = PHY_READY;
|
|
phy_init_hw(phy);
|
|
}
|
|
}
|
|
|
|
/* Enable MoCA port interrupts to get notified */
|
|
if (port == priv->moca_port)
|
|
bcm_sf2_port_intr_enable(priv, port);
|
|
|
|
/* Set this port, and only this one to be in the default VLAN,
|
|
* if member of a bridge, restore its membership prior to
|
|
* bringing down this port.
|
|
*/
|
|
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
|
|
reg &= ~PORT_VLAN_CTRL_MASK;
|
|
reg |= (1 << port);
|
|
reg |= priv->port_sts[port].vlan_ctl_mask;
|
|
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(port));
|
|
|
|
bcm_sf2_imp_vlan_setup(ds, cpu_port);
|
|
|
|
/* If EEE was enabled, restore it */
|
|
if (priv->port_sts[port].eee.eee_enabled)
|
|
bcm_sf2_eee_enable_set(ds, port, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_port_disable(struct dsa_switch *ds, int port,
|
|
struct phy_device *phy)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
u32 off, reg;
|
|
|
|
if (priv->wol_ports_mask & (1 << port))
|
|
return;
|
|
|
|
if (port == priv->moca_port)
|
|
bcm_sf2_port_intr_disable(priv, port);
|
|
|
|
if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1)
|
|
bcm_sf2_gphy_enable_set(ds, false);
|
|
|
|
if (dsa_is_cpu_port(ds, port))
|
|
off = CORE_IMP_CTL;
|
|
else
|
|
off = CORE_G_PCTL_PORT(port);
|
|
|
|
reg = core_readl(priv, off);
|
|
reg |= RX_DIS | TX_DIS;
|
|
core_writel(priv, reg, off);
|
|
|
|
/* Power down the port memory */
|
|
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
|
|
reg |= P_TXQ_PSM_VDD(port);
|
|
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
|
|
}
|
|
|
|
/* Returns 0 if EEE was not enabled, or 1 otherwise
|
|
*/
|
|
static int bcm_sf2_eee_init(struct dsa_switch *ds, int port,
|
|
struct phy_device *phy)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
struct ethtool_eee *p = &priv->port_sts[port].eee;
|
|
int ret;
|
|
|
|
p->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_100baseT_Full);
|
|
|
|
ret = phy_init_eee(phy, 0);
|
|
if (ret)
|
|
return 0;
|
|
|
|
bcm_sf2_eee_enable_set(ds, port, true);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int bcm_sf2_sw_get_eee(struct dsa_switch *ds, int port,
|
|
struct ethtool_eee *e)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
struct ethtool_eee *p = &priv->port_sts[port].eee;
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_EEE_LPI_INDICATE);
|
|
e->eee_enabled = p->eee_enabled;
|
|
e->eee_active = !!(reg & (1 << port));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_set_eee(struct dsa_switch *ds, int port,
|
|
struct phy_device *phydev,
|
|
struct ethtool_eee *e)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
struct ethtool_eee *p = &priv->port_sts[port].eee;
|
|
|
|
p->eee_enabled = e->eee_enabled;
|
|
|
|
if (!p->eee_enabled) {
|
|
bcm_sf2_eee_enable_set(ds, port, false);
|
|
} else {
|
|
p->eee_enabled = bcm_sf2_eee_init(ds, port, phydev);
|
|
if (!p->eee_enabled)
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Fast-ageing of ARL entries for a given port, equivalent to an ARL
|
|
* flush for that port.
|
|
*/
|
|
static int bcm_sf2_sw_fast_age_port(struct dsa_switch *ds, int port)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
unsigned int timeout = 1000;
|
|
u32 reg;
|
|
|
|
core_writel(priv, port, CORE_FAST_AGE_PORT);
|
|
|
|
reg = core_readl(priv, CORE_FAST_AGE_CTRL);
|
|
reg |= EN_AGE_PORT | EN_AGE_DYNAMIC | FAST_AGE_STR_DONE;
|
|
core_writel(priv, reg, CORE_FAST_AGE_CTRL);
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_FAST_AGE_CTRL);
|
|
if (!(reg & FAST_AGE_STR_DONE))
|
|
break;
|
|
|
|
cpu_relax();
|
|
} while (timeout--);
|
|
|
|
if (!timeout)
|
|
return -ETIMEDOUT;
|
|
|
|
core_writel(priv, 0, CORE_FAST_AGE_CTRL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_br_join(struct dsa_switch *ds, int port,
|
|
u32 br_port_mask)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
unsigned int i;
|
|
u32 reg, p_ctl;
|
|
|
|
p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
|
|
|
|
for (i = 0; i < priv->hw_params.num_ports; i++) {
|
|
if (!((1 << i) & br_port_mask))
|
|
continue;
|
|
|
|
/* Add this local port to the remote port VLAN control
|
|
* membership and update the remote port bitmask
|
|
*/
|
|
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
|
|
reg |= 1 << port;
|
|
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
|
|
priv->port_sts[i].vlan_ctl_mask = reg;
|
|
|
|
p_ctl |= 1 << i;
|
|
}
|
|
|
|
/* Configure the local port VLAN control membership to include
|
|
* remote ports and update the local port bitmask
|
|
*/
|
|
core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
|
|
priv->port_sts[port].vlan_ctl_mask = p_ctl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_br_leave(struct dsa_switch *ds, int port,
|
|
u32 br_port_mask)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
unsigned int i;
|
|
u32 reg, p_ctl;
|
|
|
|
p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
|
|
|
|
for (i = 0; i < priv->hw_params.num_ports; i++) {
|
|
/* Don't touch the remaining ports */
|
|
if (!((1 << i) & br_port_mask))
|
|
continue;
|
|
|
|
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
|
|
reg &= ~(1 << port);
|
|
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
|
|
priv->port_sts[port].vlan_ctl_mask = reg;
|
|
|
|
/* Prevent self removal to preserve isolation */
|
|
if (port != i)
|
|
p_ctl &= ~(1 << i);
|
|
}
|
|
|
|
core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
|
|
priv->port_sts[port].vlan_ctl_mask = p_ctl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_br_set_stp_state(struct dsa_switch *ds, int port,
|
|
u8 state)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
u8 hw_state, cur_hw_state;
|
|
int ret = 0;
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_G_PCTL_PORT(port));
|
|
cur_hw_state = reg & (G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
|
|
|
|
switch (state) {
|
|
case BR_STATE_DISABLED:
|
|
hw_state = G_MISTP_DIS_STATE;
|
|
break;
|
|
case BR_STATE_LISTENING:
|
|
hw_state = G_MISTP_LISTEN_STATE;
|
|
break;
|
|
case BR_STATE_LEARNING:
|
|
hw_state = G_MISTP_LEARN_STATE;
|
|
break;
|
|
case BR_STATE_FORWARDING:
|
|
hw_state = G_MISTP_FWD_STATE;
|
|
break;
|
|
case BR_STATE_BLOCKING:
|
|
hw_state = G_MISTP_BLOCK_STATE;
|
|
break;
|
|
default:
|
|
pr_err("%s: invalid STP state: %d\n", __func__, state);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Fast-age ARL entries if we are moving a port from Learning or
|
|
* Forwarding (cur_hw_state) state to Disabled, Blocking or Listening
|
|
* state (hw_state)
|
|
*/
|
|
if (cur_hw_state != hw_state) {
|
|
if (cur_hw_state >= G_MISTP_LEARN_STATE &&
|
|
hw_state <= G_MISTP_LISTEN_STATE) {
|
|
ret = bcm_sf2_sw_fast_age_port(ds, port);
|
|
if (ret) {
|
|
pr_err("%s: fast-ageing failed\n", __func__);
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
reg = core_readl(priv, CORE_G_PCTL_PORT(port));
|
|
reg &= ~(G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
|
|
reg |= hw_state;
|
|
core_writel(priv, reg, CORE_G_PCTL_PORT(port));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Address Resolution Logic routines */
|
|
static int bcm_sf2_arl_op_wait(struct bcm_sf2_priv *priv)
|
|
{
|
|
unsigned int timeout = 10;
|
|
u32 reg;
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_ARLA_RWCTL);
|
|
if (!(reg & ARL_STRTDN))
|
|
return 0;
|
|
|
|
usleep_range(1000, 2000);
|
|
} while (timeout--);
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int bcm_sf2_arl_rw_op(struct bcm_sf2_priv *priv, unsigned int op)
|
|
{
|
|
u32 cmd;
|
|
|
|
if (op > ARL_RW)
|
|
return -EINVAL;
|
|
|
|
cmd = core_readl(priv, CORE_ARLA_RWCTL);
|
|
cmd &= ~IVL_SVL_SELECT;
|
|
cmd |= ARL_STRTDN;
|
|
if (op)
|
|
cmd |= ARL_RW;
|
|
else
|
|
cmd &= ~ARL_RW;
|
|
core_writel(priv, cmd, CORE_ARLA_RWCTL);
|
|
|
|
return bcm_sf2_arl_op_wait(priv);
|
|
}
|
|
|
|
static int bcm_sf2_arl_read(struct bcm_sf2_priv *priv, u64 mac,
|
|
u16 vid, struct bcm_sf2_arl_entry *ent, u8 *idx,
|
|
bool is_valid)
|
|
{
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
ret = bcm_sf2_arl_op_wait(priv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read the 4 bins */
|
|
for (i = 0; i < 4; i++) {
|
|
u64 mac_vid;
|
|
u32 fwd_entry;
|
|
|
|
mac_vid = core_readq(priv, CORE_ARLA_MACVID_ENTRY(i));
|
|
fwd_entry = core_readl(priv, CORE_ARLA_FWD_ENTRY(i));
|
|
bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);
|
|
|
|
if (ent->is_valid && is_valid) {
|
|
*idx = i;
|
|
return 0;
|
|
}
|
|
|
|
/* This is the MAC we just deleted */
|
|
if (!is_valid && (mac_vid & mac))
|
|
return 0;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int bcm_sf2_arl_op(struct bcm_sf2_priv *priv, int op, int port,
|
|
const unsigned char *addr, u16 vid, bool is_valid)
|
|
{
|
|
struct bcm_sf2_arl_entry ent;
|
|
u32 fwd_entry;
|
|
u64 mac, mac_vid = 0;
|
|
u8 idx = 0;
|
|
int ret;
|
|
|
|
/* Convert the array into a 64-bit MAC */
|
|
mac = bcm_sf2_mac_to_u64(addr);
|
|
|
|
/* Perform a read for the given MAC and VID */
|
|
core_writeq(priv, mac, CORE_ARLA_MAC);
|
|
core_writel(priv, vid, CORE_ARLA_VID);
|
|
|
|
/* Issue a read operation for this MAC */
|
|
ret = bcm_sf2_arl_rw_op(priv, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
|
|
/* If this is a read, just finish now */
|
|
if (op)
|
|
return ret;
|
|
|
|
/* We could not find a matching MAC, so reset to a new entry */
|
|
if (ret) {
|
|
fwd_entry = 0;
|
|
idx = 0;
|
|
}
|
|
|
|
memset(&ent, 0, sizeof(ent));
|
|
ent.port = port;
|
|
ent.is_valid = is_valid;
|
|
ent.vid = vid;
|
|
ent.is_static = true;
|
|
memcpy(ent.mac, addr, ETH_ALEN);
|
|
bcm_sf2_arl_from_entry(&mac_vid, &fwd_entry, &ent);
|
|
|
|
core_writeq(priv, mac_vid, CORE_ARLA_MACVID_ENTRY(idx));
|
|
core_writel(priv, fwd_entry, CORE_ARLA_FWD_ENTRY(idx));
|
|
|
|
ret = bcm_sf2_arl_rw_op(priv, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Re-read the entry to check */
|
|
return bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
|
|
}
|
|
|
|
static int bcm_sf2_sw_fdb_prepare(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
/* We do not need to do anything specific here yet */
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_fdb_add(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
|
|
return bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, true);
|
|
}
|
|
|
|
static int bcm_sf2_sw_fdb_del(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
|
|
return bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, false);
|
|
}
|
|
|
|
static int bcm_sf2_arl_search_wait(struct bcm_sf2_priv *priv)
|
|
{
|
|
unsigned timeout = 1000;
|
|
u32 reg;
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_ARLA_SRCH_CTL);
|
|
if (!(reg & ARLA_SRCH_STDN))
|
|
return 0;
|
|
|
|
if (reg & ARLA_SRCH_VLID)
|
|
return 0;
|
|
|
|
usleep_range(1000, 2000);
|
|
} while (timeout--);
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static void bcm_sf2_arl_search_rd(struct bcm_sf2_priv *priv, u8 idx,
|
|
struct bcm_sf2_arl_entry *ent)
|
|
{
|
|
u64 mac_vid;
|
|
u32 fwd_entry;
|
|
|
|
mac_vid = core_readq(priv, CORE_ARLA_SRCH_RSLT_MACVID(idx));
|
|
fwd_entry = core_readl(priv, CORE_ARLA_SRCH_RSLT(idx));
|
|
bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);
|
|
}
|
|
|
|
static int bcm_sf2_sw_fdb_copy(struct net_device *dev, int port,
|
|
const struct bcm_sf2_arl_entry *ent,
|
|
struct switchdev_obj_port_fdb *fdb,
|
|
int (*cb)(struct switchdev_obj *obj))
|
|
{
|
|
if (!ent->is_valid)
|
|
return 0;
|
|
|
|
if (port != ent->port)
|
|
return 0;
|
|
|
|
ether_addr_copy(fdb->addr, ent->mac);
|
|
fdb->vid = ent->vid;
|
|
fdb->ndm_state = ent->is_static ? NUD_NOARP : NUD_REACHABLE;
|
|
|
|
return cb(&fdb->obj);
|
|
}
|
|
|
|
static int bcm_sf2_sw_fdb_dump(struct dsa_switch *ds, int port,
|
|
struct switchdev_obj_port_fdb *fdb,
|
|
int (*cb)(struct switchdev_obj *obj))
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
struct net_device *dev = ds->ports[port];
|
|
struct bcm_sf2_arl_entry results[2];
|
|
unsigned int count = 0;
|
|
int ret;
|
|
|
|
/* Start search operation */
|
|
core_writel(priv, ARLA_SRCH_STDN, CORE_ARLA_SRCH_CTL);
|
|
|
|
do {
|
|
ret = bcm_sf2_arl_search_wait(priv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read both entries, then return their values back */
|
|
bcm_sf2_arl_search_rd(priv, 0, &results[0]);
|
|
ret = bcm_sf2_sw_fdb_copy(dev, port, &results[0], fdb, cb);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bcm_sf2_arl_search_rd(priv, 1, &results[1]);
|
|
ret = bcm_sf2_sw_fdb_copy(dev, port, &results[1], fdb, cb);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!results[0].is_valid && !results[1].is_valid)
|
|
break;
|
|
|
|
} while (count++ < CORE_ARLA_NUM_ENTRIES);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
|
|
{
|
|
struct bcm_sf2_priv *priv = dev_id;
|
|
|
|
priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
|
|
~priv->irq0_mask;
|
|
intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
|
|
{
|
|
struct bcm_sf2_priv *priv = dev_id;
|
|
|
|
priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
|
|
~priv->irq1_mask;
|
|
intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
|
|
|
|
if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF))
|
|
priv->port_sts[7].link = 1;
|
|
if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF))
|
|
priv->port_sts[7].link = 0;
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
|
|
{
|
|
unsigned int timeout = 1000;
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_WATCHDOG_CTRL);
|
|
reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
|
|
core_writel(priv, reg, CORE_WATCHDOG_CTRL);
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_WATCHDOG_CTRL);
|
|
if (!(reg & SOFTWARE_RESET))
|
|
break;
|
|
|
|
usleep_range(1000, 2000);
|
|
} while (timeout-- > 0);
|
|
|
|
if (timeout == 0)
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
|
|
{
|
|
intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
|
|
intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
|
|
intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
|
|
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
|
|
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
|
|
intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
|
|
}
|
|
|
|
static void bcm_sf2_identify_ports(struct bcm_sf2_priv *priv,
|
|
struct device_node *dn)
|
|
{
|
|
struct device_node *port;
|
|
const char *phy_mode_str;
|
|
int mode;
|
|
unsigned int port_num;
|
|
int ret;
|
|
|
|
priv->moca_port = -1;
|
|
|
|
for_each_available_child_of_node(dn, port) {
|
|
if (of_property_read_u32(port, "reg", &port_num))
|
|
continue;
|
|
|
|
/* Internal PHYs get assigned a specific 'phy-mode' property
|
|
* value: "internal" to help flag them before MDIO probing
|
|
* has completed, since they might be turned off at that
|
|
* time
|
|
*/
|
|
mode = of_get_phy_mode(port);
|
|
if (mode < 0) {
|
|
ret = of_property_read_string(port, "phy-mode",
|
|
&phy_mode_str);
|
|
if (ret < 0)
|
|
continue;
|
|
|
|
if (!strcasecmp(phy_mode_str, "internal"))
|
|
priv->int_phy_mask |= 1 << port_num;
|
|
}
|
|
|
|
if (mode == PHY_INTERFACE_MODE_MOCA)
|
|
priv->moca_port = port_num;
|
|
}
|
|
}
|
|
|
|
static int bcm_sf2_sw_setup(struct dsa_switch *ds)
|
|
{
|
|
const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
struct device_node *dn;
|
|
void __iomem **base;
|
|
unsigned int port;
|
|
unsigned int i;
|
|
u32 reg, rev;
|
|
int ret;
|
|
|
|
spin_lock_init(&priv->indir_lock);
|
|
mutex_init(&priv->stats_mutex);
|
|
|
|
/* All the interesting properties are at the parent device_node
|
|
* level
|
|
*/
|
|
dn = ds->pd->of_node->parent;
|
|
bcm_sf2_identify_ports(priv, ds->pd->of_node);
|
|
|
|
priv->irq0 = irq_of_parse_and_map(dn, 0);
|
|
priv->irq1 = irq_of_parse_and_map(dn, 1);
|
|
|
|
base = &priv->core;
|
|
for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
|
|
*base = of_iomap(dn, i);
|
|
if (*base == NULL) {
|
|
pr_err("unable to find register: %s\n", reg_names[i]);
|
|
ret = -ENOMEM;
|
|
goto out_unmap;
|
|
}
|
|
base++;
|
|
}
|
|
|
|
ret = bcm_sf2_sw_rst(priv);
|
|
if (ret) {
|
|
pr_err("unable to software reset switch: %d\n", ret);
|
|
goto out_unmap;
|
|
}
|
|
|
|
/* Disable all interrupts and request them */
|
|
bcm_sf2_intr_disable(priv);
|
|
|
|
ret = request_irq(priv->irq0, bcm_sf2_switch_0_isr, 0,
|
|
"switch_0", priv);
|
|
if (ret < 0) {
|
|
pr_err("failed to request switch_0 IRQ\n");
|
|
goto out_unmap;
|
|
}
|
|
|
|
ret = request_irq(priv->irq1, bcm_sf2_switch_1_isr, 0,
|
|
"switch_1", priv);
|
|
if (ret < 0) {
|
|
pr_err("failed to request switch_1 IRQ\n");
|
|
goto out_free_irq0;
|
|
}
|
|
|
|
/* Reset the MIB counters */
|
|
reg = core_readl(priv, CORE_GMNCFGCFG);
|
|
reg |= RST_MIB_CNT;
|
|
core_writel(priv, reg, CORE_GMNCFGCFG);
|
|
reg &= ~RST_MIB_CNT;
|
|
core_writel(priv, reg, CORE_GMNCFGCFG);
|
|
|
|
/* Get the maximum number of ports for this switch */
|
|
priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
|
|
if (priv->hw_params.num_ports > DSA_MAX_PORTS)
|
|
priv->hw_params.num_ports = DSA_MAX_PORTS;
|
|
|
|
/* Assume a single GPHY setup if we can't read that property */
|
|
if (of_property_read_u32(dn, "brcm,num-gphy",
|
|
&priv->hw_params.num_gphy))
|
|
priv->hw_params.num_gphy = 1;
|
|
|
|
/* Enable all valid ports and disable those unused */
|
|
for (port = 0; port < priv->hw_params.num_ports; port++) {
|
|
/* IMP port receives special treatment */
|
|
if ((1 << port) & ds->phys_port_mask)
|
|
bcm_sf2_port_setup(ds, port, NULL);
|
|
else if (dsa_is_cpu_port(ds, port))
|
|
bcm_sf2_imp_setup(ds, port);
|
|
else
|
|
bcm_sf2_port_disable(ds, port, NULL);
|
|
}
|
|
|
|
/* Include the pseudo-PHY address and the broadcast PHY address to
|
|
* divert reads towards our workaround. This is only required for
|
|
* 7445D0, since 7445E0 disconnects the internal switch pseudo-PHY such
|
|
* that we can use the regular SWITCH_MDIO master controller instead.
|
|
*
|
|
* By default, DSA initializes ds->phys_mii_mask to ds->phys_port_mask
|
|
* to have a 1:1 mapping between Port address and PHY address in order
|
|
* to utilize the slave_mii_bus instance to read from Port PHYs. This is
|
|
* not what we want here, so we initialize phys_mii_mask 0 to always
|
|
* utilize the "master" MDIO bus backed by the "mdio-unimac" driver.
|
|
*/
|
|
if (of_machine_is_compatible("brcm,bcm7445d0"))
|
|
ds->phys_mii_mask |= ((1 << BRCM_PSEUDO_PHY_ADDR) | (1 << 0));
|
|
else
|
|
ds->phys_mii_mask = 0;
|
|
|
|
rev = reg_readl(priv, REG_SWITCH_REVISION);
|
|
priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
|
|
SWITCH_TOP_REV_MASK;
|
|
priv->hw_params.core_rev = (rev & SF2_REV_MASK);
|
|
|
|
rev = reg_readl(priv, REG_PHY_REVISION);
|
|
priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;
|
|
|
|
pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n",
|
|
priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
|
|
priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
|
|
priv->core, priv->irq0, priv->irq1);
|
|
|
|
return 0;
|
|
|
|
out_free_irq0:
|
|
free_irq(priv->irq0, priv);
|
|
out_unmap:
|
|
base = &priv->core;
|
|
for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
|
|
if (*base)
|
|
iounmap(*base);
|
|
base++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int bcm_sf2_sw_set_addr(struct dsa_switch *ds, u8 *addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
|
|
/* The BCM7xxx PHY driver expects to find the integrated PHY revision
|
|
* in bits 15:8 and the patch level in bits 7:0 which is exactly what
|
|
* the REG_PHY_REVISION register layout is.
|
|
*/
|
|
|
|
return priv->hw_params.gphy_rev;
|
|
}
|
|
|
|
static int bcm_sf2_sw_indir_rw(struct dsa_switch *ds, int op, int addr,
|
|
int regnum, u16 val)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
int ret = 0;
|
|
u32 reg;
|
|
|
|
reg = reg_readl(priv, REG_SWITCH_CNTRL);
|
|
reg |= MDIO_MASTER_SEL;
|
|
reg_writel(priv, reg, REG_SWITCH_CNTRL);
|
|
|
|
/* Page << 8 | offset */
|
|
reg = 0x70;
|
|
reg <<= 2;
|
|
core_writel(priv, addr, reg);
|
|
|
|
/* Page << 8 | offset */
|
|
reg = 0x80 << 8 | regnum << 1;
|
|
reg <<= 2;
|
|
|
|
if (op)
|
|
ret = core_readl(priv, reg);
|
|
else
|
|
core_writel(priv, val, reg);
|
|
|
|
reg = reg_readl(priv, REG_SWITCH_CNTRL);
|
|
reg &= ~MDIO_MASTER_SEL;
|
|
reg_writel(priv, reg, REG_SWITCH_CNTRL);
|
|
|
|
return ret & 0xffff;
|
|
}
|
|
|
|
static int bcm_sf2_sw_phy_read(struct dsa_switch *ds, int addr, int regnum)
|
|
{
|
|
/* Intercept reads from the MDIO broadcast address or Broadcom
|
|
* pseudo-PHY address
|
|
*/
|
|
switch (addr) {
|
|
case 0:
|
|
case BRCM_PSEUDO_PHY_ADDR:
|
|
return bcm_sf2_sw_indir_rw(ds, 1, addr, regnum, 0);
|
|
default:
|
|
return 0xffff;
|
|
}
|
|
}
|
|
|
|
static int bcm_sf2_sw_phy_write(struct dsa_switch *ds, int addr, int regnum,
|
|
u16 val)
|
|
{
|
|
/* Intercept writes to the MDIO broadcast address or Broadcom
|
|
* pseudo-PHY address
|
|
*/
|
|
switch (addr) {
|
|
case 0:
|
|
case BRCM_PSEUDO_PHY_ADDR:
|
|
bcm_sf2_sw_indir_rw(ds, 0, addr, regnum, val);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_sw_adjust_link(struct dsa_switch *ds, int port,
|
|
struct phy_device *phydev)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
u32 id_mode_dis = 0, port_mode;
|
|
const char *str = NULL;
|
|
u32 reg;
|
|
|
|
switch (phydev->interface) {
|
|
case PHY_INTERFACE_MODE_RGMII:
|
|
str = "RGMII (no delay)";
|
|
id_mode_dis = 1;
|
|
case PHY_INTERFACE_MODE_RGMII_TXID:
|
|
if (!str)
|
|
str = "RGMII (TX delay)";
|
|
port_mode = EXT_GPHY;
|
|
break;
|
|
case PHY_INTERFACE_MODE_MII:
|
|
str = "MII";
|
|
port_mode = EXT_EPHY;
|
|
break;
|
|
case PHY_INTERFACE_MODE_REVMII:
|
|
str = "Reverse MII";
|
|
port_mode = EXT_REVMII;
|
|
break;
|
|
default:
|
|
/* All other PHYs: internal and MoCA */
|
|
goto force_link;
|
|
}
|
|
|
|
/* If the link is down, just disable the interface to conserve power */
|
|
if (!phydev->link) {
|
|
reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
|
|
reg &= ~RGMII_MODE_EN;
|
|
reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
|
|
goto force_link;
|
|
}
|
|
|
|
/* Clear id_mode_dis bit, and the existing port mode, but
|
|
* make sure we enable the RGMII block for data to pass
|
|
*/
|
|
reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
|
|
reg &= ~ID_MODE_DIS;
|
|
reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
|
|
reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);
|
|
|
|
reg |= port_mode | RGMII_MODE_EN;
|
|
if (id_mode_dis)
|
|
reg |= ID_MODE_DIS;
|
|
|
|
if (phydev->pause) {
|
|
if (phydev->asym_pause)
|
|
reg |= TX_PAUSE_EN;
|
|
reg |= RX_PAUSE_EN;
|
|
}
|
|
|
|
reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
|
|
|
|
pr_info("Port %d configured for %s\n", port, str);
|
|
|
|
force_link:
|
|
/* Force link settings detected from the PHY */
|
|
reg = SW_OVERRIDE;
|
|
switch (phydev->speed) {
|
|
case SPEED_1000:
|
|
reg |= SPDSTS_1000 << SPEED_SHIFT;
|
|
break;
|
|
case SPEED_100:
|
|
reg |= SPDSTS_100 << SPEED_SHIFT;
|
|
break;
|
|
}
|
|
|
|
if (phydev->link)
|
|
reg |= LINK_STS;
|
|
if (phydev->duplex == DUPLEX_FULL)
|
|
reg |= DUPLX_MODE;
|
|
|
|
core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
|
|
}
|
|
|
|
static void bcm_sf2_sw_fixed_link_update(struct dsa_switch *ds, int port,
|
|
struct fixed_phy_status *status)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
u32 duplex, pause;
|
|
u32 reg;
|
|
|
|
duplex = core_readl(priv, CORE_DUPSTS);
|
|
pause = core_readl(priv, CORE_PAUSESTS);
|
|
|
|
status->link = 0;
|
|
|
|
/* MoCA port is special as we do not get link status from CORE_LNKSTS,
|
|
* which means that we need to force the link at the port override
|
|
* level to get the data to flow. We do use what the interrupt handler
|
|
* did determine before.
|
|
*
|
|
* For the other ports, we just force the link status, since this is
|
|
* a fixed PHY device.
|
|
*/
|
|
if (port == priv->moca_port) {
|
|
status->link = priv->port_sts[port].link;
|
|
/* For MoCA interfaces, also force a link down notification
|
|
* since some version of the user-space daemon (mocad) use
|
|
* cmd->autoneg to force the link, which messes up the PHY
|
|
* state machine and make it go in PHY_FORCING state instead.
|
|
*/
|
|
if (!status->link)
|
|
netif_carrier_off(ds->ports[port]);
|
|
status->duplex = 1;
|
|
} else {
|
|
status->link = 1;
|
|
status->duplex = !!(duplex & (1 << port));
|
|
}
|
|
|
|
reg = core_readl(priv, CORE_STS_OVERRIDE_GMIIP_PORT(port));
|
|
reg |= SW_OVERRIDE;
|
|
if (status->link)
|
|
reg |= LINK_STS;
|
|
else
|
|
reg &= ~LINK_STS;
|
|
core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
|
|
|
|
if ((pause & (1 << port)) &&
|
|
(pause & (1 << (port + PAUSESTS_TX_PAUSE_SHIFT)))) {
|
|
status->asym_pause = 1;
|
|
status->pause = 1;
|
|
}
|
|
|
|
if (pause & (1 << port))
|
|
status->pause = 1;
|
|
}
|
|
|
|
static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
unsigned int port;
|
|
|
|
bcm_sf2_intr_disable(priv);
|
|
|
|
/* Disable all ports physically present including the IMP
|
|
* port, the other ones have already been disabled during
|
|
* bcm_sf2_sw_setup
|
|
*/
|
|
for (port = 0; port < DSA_MAX_PORTS; port++) {
|
|
if ((1 << port) & ds->phys_port_mask ||
|
|
dsa_is_cpu_port(ds, port))
|
|
bcm_sf2_port_disable(ds, port, NULL);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_resume(struct dsa_switch *ds)
|
|
{
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
unsigned int port;
|
|
int ret;
|
|
|
|
ret = bcm_sf2_sw_rst(priv);
|
|
if (ret) {
|
|
pr_err("%s: failed to software reset switch\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
if (priv->hw_params.num_gphy == 1)
|
|
bcm_sf2_gphy_enable_set(ds, true);
|
|
|
|
for (port = 0; port < DSA_MAX_PORTS; port++) {
|
|
if ((1 << port) & ds->phys_port_mask)
|
|
bcm_sf2_port_setup(ds, port, NULL);
|
|
else if (dsa_is_cpu_port(ds, port))
|
|
bcm_sf2_imp_setup(ds, port);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
|
|
struct ethtool_wolinfo *wol)
|
|
{
|
|
struct net_device *p = ds->dst[ds->index].master_netdev;
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
struct ethtool_wolinfo pwol;
|
|
|
|
/* Get the parent device WoL settings */
|
|
p->ethtool_ops->get_wol(p, &pwol);
|
|
|
|
/* Advertise the parent device supported settings */
|
|
wol->supported = pwol.supported;
|
|
memset(&wol->sopass, 0, sizeof(wol->sopass));
|
|
|
|
if (pwol.wolopts & WAKE_MAGICSECURE)
|
|
memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));
|
|
|
|
if (priv->wol_ports_mask & (1 << port))
|
|
wol->wolopts = pwol.wolopts;
|
|
else
|
|
wol->wolopts = 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
|
|
struct ethtool_wolinfo *wol)
|
|
{
|
|
struct net_device *p = ds->dst[ds->index].master_netdev;
|
|
struct bcm_sf2_priv *priv = ds_to_priv(ds);
|
|
s8 cpu_port = ds->dst[ds->index].cpu_port;
|
|
struct ethtool_wolinfo pwol;
|
|
|
|
p->ethtool_ops->get_wol(p, &pwol);
|
|
if (wol->wolopts & ~pwol.supported)
|
|
return -EINVAL;
|
|
|
|
if (wol->wolopts)
|
|
priv->wol_ports_mask |= (1 << port);
|
|
else
|
|
priv->wol_ports_mask &= ~(1 << port);
|
|
|
|
/* If we have at least one port enabled, make sure the CPU port
|
|
* is also enabled. If the CPU port is the last one enabled, we disable
|
|
* it since this configuration does not make sense.
|
|
*/
|
|
if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
|
|
priv->wol_ports_mask |= (1 << cpu_port);
|
|
else
|
|
priv->wol_ports_mask &= ~(1 << cpu_port);
|
|
|
|
return p->ethtool_ops->set_wol(p, wol);
|
|
}
|
|
|
|
static struct dsa_switch_driver bcm_sf2_switch_driver = {
|
|
.tag_protocol = DSA_TAG_PROTO_BRCM,
|
|
.priv_size = sizeof(struct bcm_sf2_priv),
|
|
.probe = bcm_sf2_sw_probe,
|
|
.setup = bcm_sf2_sw_setup,
|
|
.set_addr = bcm_sf2_sw_set_addr,
|
|
.get_phy_flags = bcm_sf2_sw_get_phy_flags,
|
|
.phy_read = bcm_sf2_sw_phy_read,
|
|
.phy_write = bcm_sf2_sw_phy_write,
|
|
.get_strings = bcm_sf2_sw_get_strings,
|
|
.get_ethtool_stats = bcm_sf2_sw_get_ethtool_stats,
|
|
.get_sset_count = bcm_sf2_sw_get_sset_count,
|
|
.adjust_link = bcm_sf2_sw_adjust_link,
|
|
.fixed_link_update = bcm_sf2_sw_fixed_link_update,
|
|
.suspend = bcm_sf2_sw_suspend,
|
|
.resume = bcm_sf2_sw_resume,
|
|
.get_wol = bcm_sf2_sw_get_wol,
|
|
.set_wol = bcm_sf2_sw_set_wol,
|
|
.port_enable = bcm_sf2_port_setup,
|
|
.port_disable = bcm_sf2_port_disable,
|
|
.get_eee = bcm_sf2_sw_get_eee,
|
|
.set_eee = bcm_sf2_sw_set_eee,
|
|
.port_join_bridge = bcm_sf2_sw_br_join,
|
|
.port_leave_bridge = bcm_sf2_sw_br_leave,
|
|
.port_stp_update = bcm_sf2_sw_br_set_stp_state,
|
|
.port_fdb_prepare = bcm_sf2_sw_fdb_prepare,
|
|
.port_fdb_add = bcm_sf2_sw_fdb_add,
|
|
.port_fdb_del = bcm_sf2_sw_fdb_del,
|
|
.port_fdb_dump = bcm_sf2_sw_fdb_dump,
|
|
};
|
|
|
|
static int __init bcm_sf2_init(void)
|
|
{
|
|
register_switch_driver(&bcm_sf2_switch_driver);
|
|
|
|
return 0;
|
|
}
|
|
module_init(bcm_sf2_init);
|
|
|
|
static void __exit bcm_sf2_exit(void)
|
|
{
|
|
unregister_switch_driver(&bcm_sf2_switch_driver);
|
|
}
|
|
module_exit(bcm_sf2_exit);
|
|
|
|
MODULE_AUTHOR("Broadcom Corporation");
|
|
MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:brcm-sf2");
|