mirror of
https://github.com/torvalds/linux.git
synced 2024-11-13 23:51:39 +00:00
1813dd6405
To separate the verifiers from iodone functions and associate read and write verifiers at the same time, introduce a buffer verifier operations structure to the xfs_buf. This avoids the need for assigning the write verifier, clearing the iodone function and re-running ioend processing in the read verifier, and gets rid of the nasty "b_pre_io" name for the write verifier function pointer. If we ever need to, it will also be easier to add further content specific callbacks to a buffer with an ops structure in place. We also avoid needing to export verifier functions, instead we can simply export the ops structures for those that are needed outside the function they are defined in. This patch also fixes a directory block readahead verifier issue it exposed. This patch also adds ops callbacks to the inode/alloc btree blocks initialised by growfs. These will need more work before they will work with CRCs. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Phil White <pwhite@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
1123 lines
28 KiB
C
1123 lines
28 KiB
C
/*
|
|
* Copyright (c) 2000-2003 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_rtalloc.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_itable.h"
|
|
#include "xfs_attr.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_trans_space.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_qm.h"
|
|
#include "xfs_trace.h"
|
|
|
|
/*
|
|
* Lock order:
|
|
*
|
|
* ip->i_lock
|
|
* qi->qi_tree_lock
|
|
* dquot->q_qlock (xfs_dqlock() and friends)
|
|
* dquot->q_flush (xfs_dqflock() and friends)
|
|
* qi->qi_lru_lock
|
|
*
|
|
* If two dquots need to be locked the order is user before group/project,
|
|
* otherwise by the lowest id first, see xfs_dqlock2.
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
xfs_buftarg_t *xfs_dqerror_target;
|
|
int xfs_do_dqerror;
|
|
int xfs_dqreq_num;
|
|
int xfs_dqerror_mod = 33;
|
|
#endif
|
|
|
|
struct kmem_zone *xfs_qm_dqtrxzone;
|
|
static struct kmem_zone *xfs_qm_dqzone;
|
|
|
|
static struct lock_class_key xfs_dquot_other_class;
|
|
|
|
/*
|
|
* This is called to free all the memory associated with a dquot
|
|
*/
|
|
void
|
|
xfs_qm_dqdestroy(
|
|
xfs_dquot_t *dqp)
|
|
{
|
|
ASSERT(list_empty(&dqp->q_lru));
|
|
|
|
mutex_destroy(&dqp->q_qlock);
|
|
kmem_zone_free(xfs_qm_dqzone, dqp);
|
|
|
|
XFS_STATS_DEC(xs_qm_dquot);
|
|
}
|
|
|
|
/*
|
|
* If default limits are in force, push them into the dquot now.
|
|
* We overwrite the dquot limits only if they are zero and this
|
|
* is not the root dquot.
|
|
*/
|
|
void
|
|
xfs_qm_adjust_dqlimits(
|
|
xfs_mount_t *mp,
|
|
xfs_disk_dquot_t *d)
|
|
{
|
|
xfs_quotainfo_t *q = mp->m_quotainfo;
|
|
|
|
ASSERT(d->d_id);
|
|
|
|
if (q->qi_bsoftlimit && !d->d_blk_softlimit)
|
|
d->d_blk_softlimit = cpu_to_be64(q->qi_bsoftlimit);
|
|
if (q->qi_bhardlimit && !d->d_blk_hardlimit)
|
|
d->d_blk_hardlimit = cpu_to_be64(q->qi_bhardlimit);
|
|
if (q->qi_isoftlimit && !d->d_ino_softlimit)
|
|
d->d_ino_softlimit = cpu_to_be64(q->qi_isoftlimit);
|
|
if (q->qi_ihardlimit && !d->d_ino_hardlimit)
|
|
d->d_ino_hardlimit = cpu_to_be64(q->qi_ihardlimit);
|
|
if (q->qi_rtbsoftlimit && !d->d_rtb_softlimit)
|
|
d->d_rtb_softlimit = cpu_to_be64(q->qi_rtbsoftlimit);
|
|
if (q->qi_rtbhardlimit && !d->d_rtb_hardlimit)
|
|
d->d_rtb_hardlimit = cpu_to_be64(q->qi_rtbhardlimit);
|
|
}
|
|
|
|
/*
|
|
* Check the limits and timers of a dquot and start or reset timers
|
|
* if necessary.
|
|
* This gets called even when quota enforcement is OFF, which makes our
|
|
* life a little less complicated. (We just don't reject any quota
|
|
* reservations in that case, when enforcement is off).
|
|
* We also return 0 as the values of the timers in Q_GETQUOTA calls, when
|
|
* enforcement's off.
|
|
* In contrast, warnings are a little different in that they don't
|
|
* 'automatically' get started when limits get exceeded. They do
|
|
* get reset to zero, however, when we find the count to be under
|
|
* the soft limit (they are only ever set non-zero via userspace).
|
|
*/
|
|
void
|
|
xfs_qm_adjust_dqtimers(
|
|
xfs_mount_t *mp,
|
|
xfs_disk_dquot_t *d)
|
|
{
|
|
ASSERT(d->d_id);
|
|
|
|
#ifdef DEBUG
|
|
if (d->d_blk_hardlimit)
|
|
ASSERT(be64_to_cpu(d->d_blk_softlimit) <=
|
|
be64_to_cpu(d->d_blk_hardlimit));
|
|
if (d->d_ino_hardlimit)
|
|
ASSERT(be64_to_cpu(d->d_ino_softlimit) <=
|
|
be64_to_cpu(d->d_ino_hardlimit));
|
|
if (d->d_rtb_hardlimit)
|
|
ASSERT(be64_to_cpu(d->d_rtb_softlimit) <=
|
|
be64_to_cpu(d->d_rtb_hardlimit));
|
|
#endif
|
|
|
|
if (!d->d_btimer) {
|
|
if ((d->d_blk_softlimit &&
|
|
(be64_to_cpu(d->d_bcount) >
|
|
be64_to_cpu(d->d_blk_softlimit))) ||
|
|
(d->d_blk_hardlimit &&
|
|
(be64_to_cpu(d->d_bcount) >
|
|
be64_to_cpu(d->d_blk_hardlimit)))) {
|
|
d->d_btimer = cpu_to_be32(get_seconds() +
|
|
mp->m_quotainfo->qi_btimelimit);
|
|
} else {
|
|
d->d_bwarns = 0;
|
|
}
|
|
} else {
|
|
if ((!d->d_blk_softlimit ||
|
|
(be64_to_cpu(d->d_bcount) <=
|
|
be64_to_cpu(d->d_blk_softlimit))) &&
|
|
(!d->d_blk_hardlimit ||
|
|
(be64_to_cpu(d->d_bcount) <=
|
|
be64_to_cpu(d->d_blk_hardlimit)))) {
|
|
d->d_btimer = 0;
|
|
}
|
|
}
|
|
|
|
if (!d->d_itimer) {
|
|
if ((d->d_ino_softlimit &&
|
|
(be64_to_cpu(d->d_icount) >
|
|
be64_to_cpu(d->d_ino_softlimit))) ||
|
|
(d->d_ino_hardlimit &&
|
|
(be64_to_cpu(d->d_icount) >
|
|
be64_to_cpu(d->d_ino_hardlimit)))) {
|
|
d->d_itimer = cpu_to_be32(get_seconds() +
|
|
mp->m_quotainfo->qi_itimelimit);
|
|
} else {
|
|
d->d_iwarns = 0;
|
|
}
|
|
} else {
|
|
if ((!d->d_ino_softlimit ||
|
|
(be64_to_cpu(d->d_icount) <=
|
|
be64_to_cpu(d->d_ino_softlimit))) &&
|
|
(!d->d_ino_hardlimit ||
|
|
(be64_to_cpu(d->d_icount) <=
|
|
be64_to_cpu(d->d_ino_hardlimit)))) {
|
|
d->d_itimer = 0;
|
|
}
|
|
}
|
|
|
|
if (!d->d_rtbtimer) {
|
|
if ((d->d_rtb_softlimit &&
|
|
(be64_to_cpu(d->d_rtbcount) >
|
|
be64_to_cpu(d->d_rtb_softlimit))) ||
|
|
(d->d_rtb_hardlimit &&
|
|
(be64_to_cpu(d->d_rtbcount) >
|
|
be64_to_cpu(d->d_rtb_hardlimit)))) {
|
|
d->d_rtbtimer = cpu_to_be32(get_seconds() +
|
|
mp->m_quotainfo->qi_rtbtimelimit);
|
|
} else {
|
|
d->d_rtbwarns = 0;
|
|
}
|
|
} else {
|
|
if ((!d->d_rtb_softlimit ||
|
|
(be64_to_cpu(d->d_rtbcount) <=
|
|
be64_to_cpu(d->d_rtb_softlimit))) &&
|
|
(!d->d_rtb_hardlimit ||
|
|
(be64_to_cpu(d->d_rtbcount) <=
|
|
be64_to_cpu(d->d_rtb_hardlimit)))) {
|
|
d->d_rtbtimer = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* initialize a buffer full of dquots and log the whole thing
|
|
*/
|
|
STATIC void
|
|
xfs_qm_init_dquot_blk(
|
|
xfs_trans_t *tp,
|
|
xfs_mount_t *mp,
|
|
xfs_dqid_t id,
|
|
uint type,
|
|
xfs_buf_t *bp)
|
|
{
|
|
struct xfs_quotainfo *q = mp->m_quotainfo;
|
|
xfs_dqblk_t *d;
|
|
int curid, i;
|
|
|
|
ASSERT(tp);
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
|
|
d = bp->b_addr;
|
|
|
|
/*
|
|
* ID of the first dquot in the block - id's are zero based.
|
|
*/
|
|
curid = id - (id % q->qi_dqperchunk);
|
|
ASSERT(curid >= 0);
|
|
memset(d, 0, BBTOB(q->qi_dqchunklen));
|
|
for (i = 0; i < q->qi_dqperchunk; i++, d++, curid++) {
|
|
d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
|
|
d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
|
|
d->dd_diskdq.d_id = cpu_to_be32(curid);
|
|
d->dd_diskdq.d_flags = type;
|
|
}
|
|
|
|
xfs_trans_dquot_buf(tp, bp,
|
|
(type & XFS_DQ_USER ? XFS_BLF_UDQUOT_BUF :
|
|
((type & XFS_DQ_PROJ) ? XFS_BLF_PDQUOT_BUF :
|
|
XFS_BLF_GDQUOT_BUF)));
|
|
xfs_trans_log_buf(tp, bp, 0, BBTOB(q->qi_dqchunklen) - 1);
|
|
}
|
|
|
|
static void
|
|
xfs_dquot_buf_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
struct xfs_dqblk *d = (struct xfs_dqblk *)bp->b_addr;
|
|
struct xfs_disk_dquot *ddq;
|
|
xfs_dqid_t id = 0;
|
|
int i;
|
|
|
|
/*
|
|
* On the first read of the buffer, verify that each dquot is valid.
|
|
* We don't know what the id of the dquot is supposed to be, just that
|
|
* they should be increasing monotonically within the buffer. If the
|
|
* first id is corrupt, then it will fail on the second dquot in the
|
|
* buffer so corruptions could point to the wrong dquot in this case.
|
|
*/
|
|
for (i = 0; i < mp->m_quotainfo->qi_dqperchunk; i++) {
|
|
int error;
|
|
|
|
ddq = &d[i].dd_diskdq;
|
|
|
|
if (i == 0)
|
|
id = be32_to_cpu(ddq->d_id);
|
|
|
|
error = xfs_qm_dqcheck(mp, ddq, id + i, 0, XFS_QMOPT_DOWARN,
|
|
"xfs_dquot_read_verify");
|
|
if (error) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, d);
|
|
xfs_buf_ioerror(bp, EFSCORRUPTED);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
xfs_dquot_buf_read_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
xfs_dquot_buf_verify(bp);
|
|
}
|
|
|
|
void
|
|
xfs_dquot_buf_write_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
xfs_dquot_buf_verify(bp);
|
|
}
|
|
|
|
const struct xfs_buf_ops xfs_dquot_buf_ops = {
|
|
.verify_read = xfs_dquot_buf_read_verify,
|
|
.verify_write = xfs_dquot_buf_write_verify,
|
|
};
|
|
|
|
/*
|
|
* Allocate a block and fill it with dquots.
|
|
* This is called when the bmapi finds a hole.
|
|
*/
|
|
STATIC int
|
|
xfs_qm_dqalloc(
|
|
xfs_trans_t **tpp,
|
|
xfs_mount_t *mp,
|
|
xfs_dquot_t *dqp,
|
|
xfs_inode_t *quotip,
|
|
xfs_fileoff_t offset_fsb,
|
|
xfs_buf_t **O_bpp)
|
|
{
|
|
xfs_fsblock_t firstblock;
|
|
xfs_bmap_free_t flist;
|
|
xfs_bmbt_irec_t map;
|
|
int nmaps, error, committed;
|
|
xfs_buf_t *bp;
|
|
xfs_trans_t *tp = *tpp;
|
|
|
|
ASSERT(tp != NULL);
|
|
|
|
trace_xfs_dqalloc(dqp);
|
|
|
|
/*
|
|
* Initialize the bmap freelist prior to calling bmapi code.
|
|
*/
|
|
xfs_bmap_init(&flist, &firstblock);
|
|
xfs_ilock(quotip, XFS_ILOCK_EXCL);
|
|
/*
|
|
* Return if this type of quotas is turned off while we didn't
|
|
* have an inode lock
|
|
*/
|
|
if (!xfs_this_quota_on(dqp->q_mount, dqp->dq_flags)) {
|
|
xfs_iunlock(quotip, XFS_ILOCK_EXCL);
|
|
return (ESRCH);
|
|
}
|
|
|
|
xfs_trans_ijoin(tp, quotip, XFS_ILOCK_EXCL);
|
|
nmaps = 1;
|
|
error = xfs_bmapi_write(tp, quotip, offset_fsb,
|
|
XFS_DQUOT_CLUSTER_SIZE_FSB, XFS_BMAPI_METADATA,
|
|
&firstblock, XFS_QM_DQALLOC_SPACE_RES(mp),
|
|
&map, &nmaps, &flist);
|
|
if (error)
|
|
goto error0;
|
|
ASSERT(map.br_blockcount == XFS_DQUOT_CLUSTER_SIZE_FSB);
|
|
ASSERT(nmaps == 1);
|
|
ASSERT((map.br_startblock != DELAYSTARTBLOCK) &&
|
|
(map.br_startblock != HOLESTARTBLOCK));
|
|
|
|
/*
|
|
* Keep track of the blkno to save a lookup later
|
|
*/
|
|
dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock);
|
|
|
|
/* now we can just get the buffer (there's nothing to read yet) */
|
|
bp = xfs_trans_get_buf(tp, mp->m_ddev_targp,
|
|
dqp->q_blkno,
|
|
mp->m_quotainfo->qi_dqchunklen,
|
|
0);
|
|
|
|
error = xfs_buf_geterror(bp);
|
|
if (error)
|
|
goto error1;
|
|
bp->b_ops = &xfs_dquot_buf_ops;
|
|
|
|
/*
|
|
* Make a chunk of dquots out of this buffer and log
|
|
* the entire thing.
|
|
*/
|
|
xfs_qm_init_dquot_blk(tp, mp, be32_to_cpu(dqp->q_core.d_id),
|
|
dqp->dq_flags & XFS_DQ_ALLTYPES, bp);
|
|
|
|
/*
|
|
* xfs_bmap_finish() may commit the current transaction and
|
|
* start a second transaction if the freelist is not empty.
|
|
*
|
|
* Since we still want to modify this buffer, we need to
|
|
* ensure that the buffer is not released on commit of
|
|
* the first transaction and ensure the buffer is added to the
|
|
* second transaction.
|
|
*
|
|
* If there is only one transaction then don't stop the buffer
|
|
* from being released when it commits later on.
|
|
*/
|
|
|
|
xfs_trans_bhold(tp, bp);
|
|
|
|
if ((error = xfs_bmap_finish(tpp, &flist, &committed))) {
|
|
goto error1;
|
|
}
|
|
|
|
if (committed) {
|
|
tp = *tpp;
|
|
xfs_trans_bjoin(tp, bp);
|
|
} else {
|
|
xfs_trans_bhold_release(tp, bp);
|
|
}
|
|
|
|
*O_bpp = bp;
|
|
return 0;
|
|
|
|
error1:
|
|
xfs_bmap_cancel(&flist);
|
|
error0:
|
|
xfs_iunlock(quotip, XFS_ILOCK_EXCL);
|
|
|
|
return (error);
|
|
}
|
|
STATIC int
|
|
xfs_qm_dqrepair(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
struct xfs_dquot *dqp,
|
|
xfs_dqid_t firstid,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
int error;
|
|
struct xfs_disk_dquot *ddq;
|
|
struct xfs_dqblk *d;
|
|
int i;
|
|
|
|
/*
|
|
* Read the buffer without verification so we get the corrupted
|
|
* buffer returned to us. make sure we verify it on write, though.
|
|
*/
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, dqp->q_blkno,
|
|
mp->m_quotainfo->qi_dqchunklen,
|
|
0, bpp, NULL);
|
|
|
|
if (error) {
|
|
ASSERT(*bpp == NULL);
|
|
return XFS_ERROR(error);
|
|
}
|
|
(*bpp)->b_ops = &xfs_dquot_buf_ops;
|
|
|
|
ASSERT(xfs_buf_islocked(*bpp));
|
|
d = (struct xfs_dqblk *)(*bpp)->b_addr;
|
|
|
|
/* Do the actual repair of dquots in this buffer */
|
|
for (i = 0; i < mp->m_quotainfo->qi_dqperchunk; i++) {
|
|
ddq = &d[i].dd_diskdq;
|
|
error = xfs_qm_dqcheck(mp, ddq, firstid + i,
|
|
dqp->dq_flags & XFS_DQ_ALLTYPES,
|
|
XFS_QMOPT_DQREPAIR, "xfs_qm_dqrepair");
|
|
if (error) {
|
|
/* repair failed, we're screwed */
|
|
xfs_trans_brelse(tp, *bpp);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Maps a dquot to the buffer containing its on-disk version.
|
|
* This returns a ptr to the buffer containing the on-disk dquot
|
|
* in the bpp param, and a ptr to the on-disk dquot within that buffer
|
|
*/
|
|
STATIC int
|
|
xfs_qm_dqtobp(
|
|
xfs_trans_t **tpp,
|
|
xfs_dquot_t *dqp,
|
|
xfs_disk_dquot_t **O_ddpp,
|
|
xfs_buf_t **O_bpp,
|
|
uint flags)
|
|
{
|
|
xfs_bmbt_irec_t map;
|
|
int nmaps = 1, error;
|
|
xfs_buf_t *bp;
|
|
xfs_inode_t *quotip = XFS_DQ_TO_QIP(dqp);
|
|
xfs_mount_t *mp = dqp->q_mount;
|
|
xfs_dqid_t id = be32_to_cpu(dqp->q_core.d_id);
|
|
xfs_trans_t *tp = (tpp ? *tpp : NULL);
|
|
|
|
dqp->q_fileoffset = (xfs_fileoff_t)id / mp->m_quotainfo->qi_dqperchunk;
|
|
|
|
xfs_ilock(quotip, XFS_ILOCK_SHARED);
|
|
if (!xfs_this_quota_on(dqp->q_mount, dqp->dq_flags)) {
|
|
/*
|
|
* Return if this type of quotas is turned off while we
|
|
* didn't have the quota inode lock.
|
|
*/
|
|
xfs_iunlock(quotip, XFS_ILOCK_SHARED);
|
|
return ESRCH;
|
|
}
|
|
|
|
/*
|
|
* Find the block map; no allocations yet
|
|
*/
|
|
error = xfs_bmapi_read(quotip, dqp->q_fileoffset,
|
|
XFS_DQUOT_CLUSTER_SIZE_FSB, &map, &nmaps, 0);
|
|
|
|
xfs_iunlock(quotip, XFS_ILOCK_SHARED);
|
|
if (error)
|
|
return error;
|
|
|
|
ASSERT(nmaps == 1);
|
|
ASSERT(map.br_blockcount == 1);
|
|
|
|
/*
|
|
* Offset of dquot in the (fixed sized) dquot chunk.
|
|
*/
|
|
dqp->q_bufoffset = (id % mp->m_quotainfo->qi_dqperchunk) *
|
|
sizeof(xfs_dqblk_t);
|
|
|
|
ASSERT(map.br_startblock != DELAYSTARTBLOCK);
|
|
if (map.br_startblock == HOLESTARTBLOCK) {
|
|
/*
|
|
* We don't allocate unless we're asked to
|
|
*/
|
|
if (!(flags & XFS_QMOPT_DQALLOC))
|
|
return ENOENT;
|
|
|
|
ASSERT(tp);
|
|
error = xfs_qm_dqalloc(tpp, mp, dqp, quotip,
|
|
dqp->q_fileoffset, &bp);
|
|
if (error)
|
|
return error;
|
|
tp = *tpp;
|
|
} else {
|
|
trace_xfs_dqtobp_read(dqp);
|
|
|
|
/*
|
|
* store the blkno etc so that we don't have to do the
|
|
* mapping all the time
|
|
*/
|
|
dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock);
|
|
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
|
|
dqp->q_blkno,
|
|
mp->m_quotainfo->qi_dqchunklen,
|
|
0, &bp, &xfs_dquot_buf_ops);
|
|
|
|
if (error == EFSCORRUPTED && (flags & XFS_QMOPT_DQREPAIR)) {
|
|
xfs_dqid_t firstid = (xfs_dqid_t)map.br_startoff *
|
|
mp->m_quotainfo->qi_dqperchunk;
|
|
ASSERT(bp == NULL);
|
|
error = xfs_qm_dqrepair(mp, tp, dqp, firstid, &bp);
|
|
}
|
|
|
|
if (error) {
|
|
ASSERT(bp == NULL);
|
|
return XFS_ERROR(error);
|
|
}
|
|
}
|
|
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
*O_bpp = bp;
|
|
*O_ddpp = bp->b_addr + dqp->q_bufoffset;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Read in the ondisk dquot using dqtobp() then copy it to an incore version,
|
|
* and release the buffer immediately.
|
|
*
|
|
* If XFS_QMOPT_DQALLOC is set, allocate a dquot on disk if it needed.
|
|
*/
|
|
int
|
|
xfs_qm_dqread(
|
|
struct xfs_mount *mp,
|
|
xfs_dqid_t id,
|
|
uint type,
|
|
uint flags,
|
|
struct xfs_dquot **O_dqpp)
|
|
{
|
|
struct xfs_dquot *dqp;
|
|
struct xfs_disk_dquot *ddqp;
|
|
struct xfs_buf *bp;
|
|
struct xfs_trans *tp = NULL;
|
|
int error;
|
|
int cancelflags = 0;
|
|
|
|
|
|
dqp = kmem_zone_zalloc(xfs_qm_dqzone, KM_SLEEP);
|
|
|
|
dqp->dq_flags = type;
|
|
dqp->q_core.d_id = cpu_to_be32(id);
|
|
dqp->q_mount = mp;
|
|
INIT_LIST_HEAD(&dqp->q_lru);
|
|
mutex_init(&dqp->q_qlock);
|
|
init_waitqueue_head(&dqp->q_pinwait);
|
|
|
|
/*
|
|
* Because we want to use a counting completion, complete
|
|
* the flush completion once to allow a single access to
|
|
* the flush completion without blocking.
|
|
*/
|
|
init_completion(&dqp->q_flush);
|
|
complete(&dqp->q_flush);
|
|
|
|
/*
|
|
* Make sure group quotas have a different lock class than user
|
|
* quotas.
|
|
*/
|
|
if (!(type & XFS_DQ_USER))
|
|
lockdep_set_class(&dqp->q_qlock, &xfs_dquot_other_class);
|
|
|
|
XFS_STATS_INC(xs_qm_dquot);
|
|
|
|
trace_xfs_dqread(dqp);
|
|
|
|
if (flags & XFS_QMOPT_DQALLOC) {
|
|
tp = xfs_trans_alloc(mp, XFS_TRANS_QM_DQALLOC);
|
|
error = xfs_trans_reserve(tp, XFS_QM_DQALLOC_SPACE_RES(mp),
|
|
XFS_WRITE_LOG_RES(mp) +
|
|
/*
|
|
* Round the chunklen up to the next multiple
|
|
* of 128 (buf log item chunk size)).
|
|
*/
|
|
BBTOB(mp->m_quotainfo->qi_dqchunklen) - 1 + 128,
|
|
0,
|
|
XFS_TRANS_PERM_LOG_RES,
|
|
XFS_WRITE_LOG_COUNT);
|
|
if (error)
|
|
goto error1;
|
|
cancelflags = XFS_TRANS_RELEASE_LOG_RES;
|
|
}
|
|
|
|
/*
|
|
* get a pointer to the on-disk dquot and the buffer containing it
|
|
* dqp already knows its own type (GROUP/USER).
|
|
*/
|
|
error = xfs_qm_dqtobp(&tp, dqp, &ddqp, &bp, flags);
|
|
if (error) {
|
|
/*
|
|
* This can happen if quotas got turned off (ESRCH),
|
|
* or if the dquot didn't exist on disk and we ask to
|
|
* allocate (ENOENT).
|
|
*/
|
|
trace_xfs_dqread_fail(dqp);
|
|
cancelflags |= XFS_TRANS_ABORT;
|
|
goto error1;
|
|
}
|
|
|
|
/* copy everything from disk dquot to the incore dquot */
|
|
memcpy(&dqp->q_core, ddqp, sizeof(xfs_disk_dquot_t));
|
|
xfs_qm_dquot_logitem_init(dqp);
|
|
|
|
/*
|
|
* Reservation counters are defined as reservation plus current usage
|
|
* to avoid having to add every time.
|
|
*/
|
|
dqp->q_res_bcount = be64_to_cpu(ddqp->d_bcount);
|
|
dqp->q_res_icount = be64_to_cpu(ddqp->d_icount);
|
|
dqp->q_res_rtbcount = be64_to_cpu(ddqp->d_rtbcount);
|
|
|
|
/* Mark the buf so that this will stay incore a little longer */
|
|
xfs_buf_set_ref(bp, XFS_DQUOT_REF);
|
|
|
|
/*
|
|
* We got the buffer with a xfs_trans_read_buf() (in dqtobp())
|
|
* So we need to release with xfs_trans_brelse().
|
|
* The strategy here is identical to that of inodes; we lock
|
|
* the dquot in xfs_qm_dqget() before making it accessible to
|
|
* others. This is because dquots, like inodes, need a good level of
|
|
* concurrency, and we don't want to take locks on the entire buffers
|
|
* for dquot accesses.
|
|
* Note also that the dquot buffer may even be dirty at this point, if
|
|
* this particular dquot was repaired. We still aren't afraid to
|
|
* brelse it because we have the changes incore.
|
|
*/
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
xfs_trans_brelse(tp, bp);
|
|
|
|
if (tp) {
|
|
error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
|
|
*O_dqpp = dqp;
|
|
return error;
|
|
|
|
error1:
|
|
if (tp)
|
|
xfs_trans_cancel(tp, cancelflags);
|
|
error0:
|
|
xfs_qm_dqdestroy(dqp);
|
|
*O_dqpp = NULL;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Given the file system, inode OR id, and type (UDQUOT/GDQUOT), return a
|
|
* a locked dquot, doing an allocation (if requested) as needed.
|
|
* When both an inode and an id are given, the inode's id takes precedence.
|
|
* That is, if the id changes while we don't hold the ilock inside this
|
|
* function, the new dquot is returned, not necessarily the one requested
|
|
* in the id argument.
|
|
*/
|
|
int
|
|
xfs_qm_dqget(
|
|
xfs_mount_t *mp,
|
|
xfs_inode_t *ip, /* locked inode (optional) */
|
|
xfs_dqid_t id, /* uid/projid/gid depending on type */
|
|
uint type, /* XFS_DQ_USER/XFS_DQ_PROJ/XFS_DQ_GROUP */
|
|
uint flags, /* DQALLOC, DQSUSER, DQREPAIR, DOWARN */
|
|
xfs_dquot_t **O_dqpp) /* OUT : locked incore dquot */
|
|
{
|
|
struct xfs_quotainfo *qi = mp->m_quotainfo;
|
|
struct radix_tree_root *tree = XFS_DQUOT_TREE(qi, type);
|
|
struct xfs_dquot *dqp;
|
|
int error;
|
|
|
|
ASSERT(XFS_IS_QUOTA_RUNNING(mp));
|
|
if ((! XFS_IS_UQUOTA_ON(mp) && type == XFS_DQ_USER) ||
|
|
(! XFS_IS_PQUOTA_ON(mp) && type == XFS_DQ_PROJ) ||
|
|
(! XFS_IS_GQUOTA_ON(mp) && type == XFS_DQ_GROUP)) {
|
|
return (ESRCH);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (xfs_do_dqerror) {
|
|
if ((xfs_dqerror_target == mp->m_ddev_targp) &&
|
|
(xfs_dqreq_num++ % xfs_dqerror_mod) == 0) {
|
|
xfs_debug(mp, "Returning error in dqget");
|
|
return (EIO);
|
|
}
|
|
}
|
|
|
|
ASSERT(type == XFS_DQ_USER ||
|
|
type == XFS_DQ_PROJ ||
|
|
type == XFS_DQ_GROUP);
|
|
if (ip) {
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
|
ASSERT(xfs_inode_dquot(ip, type) == NULL);
|
|
}
|
|
#endif
|
|
|
|
restart:
|
|
mutex_lock(&qi->qi_tree_lock);
|
|
dqp = radix_tree_lookup(tree, id);
|
|
if (dqp) {
|
|
xfs_dqlock(dqp);
|
|
if (dqp->dq_flags & XFS_DQ_FREEING) {
|
|
xfs_dqunlock(dqp);
|
|
mutex_unlock(&qi->qi_tree_lock);
|
|
trace_xfs_dqget_freeing(dqp);
|
|
delay(1);
|
|
goto restart;
|
|
}
|
|
|
|
dqp->q_nrefs++;
|
|
mutex_unlock(&qi->qi_tree_lock);
|
|
|
|
trace_xfs_dqget_hit(dqp);
|
|
XFS_STATS_INC(xs_qm_dqcachehits);
|
|
*O_dqpp = dqp;
|
|
return 0;
|
|
}
|
|
mutex_unlock(&qi->qi_tree_lock);
|
|
XFS_STATS_INC(xs_qm_dqcachemisses);
|
|
|
|
/*
|
|
* Dquot cache miss. We don't want to keep the inode lock across
|
|
* a (potential) disk read. Also we don't want to deal with the lock
|
|
* ordering between quotainode and this inode. OTOH, dropping the inode
|
|
* lock here means dealing with a chown that can happen before
|
|
* we re-acquire the lock.
|
|
*/
|
|
if (ip)
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
|
|
error = xfs_qm_dqread(mp, id, type, flags, &dqp);
|
|
|
|
if (ip)
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
|
|
if (error)
|
|
return error;
|
|
|
|
if (ip) {
|
|
/*
|
|
* A dquot could be attached to this inode by now, since
|
|
* we had dropped the ilock.
|
|
*/
|
|
if (xfs_this_quota_on(mp, type)) {
|
|
struct xfs_dquot *dqp1;
|
|
|
|
dqp1 = xfs_inode_dquot(ip, type);
|
|
if (dqp1) {
|
|
xfs_qm_dqdestroy(dqp);
|
|
dqp = dqp1;
|
|
xfs_dqlock(dqp);
|
|
goto dqret;
|
|
}
|
|
} else {
|
|
/* inode stays locked on return */
|
|
xfs_qm_dqdestroy(dqp);
|
|
return XFS_ERROR(ESRCH);
|
|
}
|
|
}
|
|
|
|
mutex_lock(&qi->qi_tree_lock);
|
|
error = -radix_tree_insert(tree, id, dqp);
|
|
if (unlikely(error)) {
|
|
WARN_ON(error != EEXIST);
|
|
|
|
/*
|
|
* Duplicate found. Just throw away the new dquot and start
|
|
* over.
|
|
*/
|
|
mutex_unlock(&qi->qi_tree_lock);
|
|
trace_xfs_dqget_dup(dqp);
|
|
xfs_qm_dqdestroy(dqp);
|
|
XFS_STATS_INC(xs_qm_dquot_dups);
|
|
goto restart;
|
|
}
|
|
|
|
/*
|
|
* We return a locked dquot to the caller, with a reference taken
|
|
*/
|
|
xfs_dqlock(dqp);
|
|
dqp->q_nrefs = 1;
|
|
|
|
qi->qi_dquots++;
|
|
mutex_unlock(&qi->qi_tree_lock);
|
|
|
|
dqret:
|
|
ASSERT((ip == NULL) || xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
|
trace_xfs_dqget_miss(dqp);
|
|
*O_dqpp = dqp;
|
|
return (0);
|
|
}
|
|
|
|
|
|
STATIC void
|
|
xfs_qm_dqput_final(
|
|
struct xfs_dquot *dqp)
|
|
{
|
|
struct xfs_quotainfo *qi = dqp->q_mount->m_quotainfo;
|
|
struct xfs_dquot *gdqp;
|
|
|
|
trace_xfs_dqput_free(dqp);
|
|
|
|
mutex_lock(&qi->qi_lru_lock);
|
|
if (list_empty(&dqp->q_lru)) {
|
|
list_add_tail(&dqp->q_lru, &qi->qi_lru_list);
|
|
qi->qi_lru_count++;
|
|
XFS_STATS_INC(xs_qm_dquot_unused);
|
|
}
|
|
mutex_unlock(&qi->qi_lru_lock);
|
|
|
|
/*
|
|
* If we just added a udquot to the freelist, then we want to release
|
|
* the gdquot reference that it (probably) has. Otherwise it'll keep
|
|
* the gdquot from getting reclaimed.
|
|
*/
|
|
gdqp = dqp->q_gdquot;
|
|
if (gdqp) {
|
|
xfs_dqlock(gdqp);
|
|
dqp->q_gdquot = NULL;
|
|
}
|
|
xfs_dqunlock(dqp);
|
|
|
|
/*
|
|
* If we had a group quota hint, release it now.
|
|
*/
|
|
if (gdqp)
|
|
xfs_qm_dqput(gdqp);
|
|
}
|
|
|
|
/*
|
|
* Release a reference to the dquot (decrement ref-count) and unlock it.
|
|
*
|
|
* If there is a group quota attached to this dquot, carefully release that
|
|
* too without tripping over deadlocks'n'stuff.
|
|
*/
|
|
void
|
|
xfs_qm_dqput(
|
|
struct xfs_dquot *dqp)
|
|
{
|
|
ASSERT(dqp->q_nrefs > 0);
|
|
ASSERT(XFS_DQ_IS_LOCKED(dqp));
|
|
|
|
trace_xfs_dqput(dqp);
|
|
|
|
if (--dqp->q_nrefs > 0)
|
|
xfs_dqunlock(dqp);
|
|
else
|
|
xfs_qm_dqput_final(dqp);
|
|
}
|
|
|
|
/*
|
|
* Release a dquot. Flush it if dirty, then dqput() it.
|
|
* dquot must not be locked.
|
|
*/
|
|
void
|
|
xfs_qm_dqrele(
|
|
xfs_dquot_t *dqp)
|
|
{
|
|
if (!dqp)
|
|
return;
|
|
|
|
trace_xfs_dqrele(dqp);
|
|
|
|
xfs_dqlock(dqp);
|
|
/*
|
|
* We don't care to flush it if the dquot is dirty here.
|
|
* That will create stutters that we want to avoid.
|
|
* Instead we do a delayed write when we try to reclaim
|
|
* a dirty dquot. Also xfs_sync will take part of the burden...
|
|
*/
|
|
xfs_qm_dqput(dqp);
|
|
}
|
|
|
|
/*
|
|
* This is the dquot flushing I/O completion routine. It is called
|
|
* from interrupt level when the buffer containing the dquot is
|
|
* flushed to disk. It is responsible for removing the dquot logitem
|
|
* from the AIL if it has not been re-logged, and unlocking the dquot's
|
|
* flush lock. This behavior is very similar to that of inodes..
|
|
*/
|
|
STATIC void
|
|
xfs_qm_dqflush_done(
|
|
struct xfs_buf *bp,
|
|
struct xfs_log_item *lip)
|
|
{
|
|
xfs_dq_logitem_t *qip = (struct xfs_dq_logitem *)lip;
|
|
xfs_dquot_t *dqp = qip->qli_dquot;
|
|
struct xfs_ail *ailp = lip->li_ailp;
|
|
|
|
/*
|
|
* We only want to pull the item from the AIL if its
|
|
* location in the log has not changed since we started the flush.
|
|
* Thus, we only bother if the dquot's lsn has
|
|
* not changed. First we check the lsn outside the lock
|
|
* since it's cheaper, and then we recheck while
|
|
* holding the lock before removing the dquot from the AIL.
|
|
*/
|
|
if ((lip->li_flags & XFS_LI_IN_AIL) &&
|
|
lip->li_lsn == qip->qli_flush_lsn) {
|
|
|
|
/* xfs_trans_ail_delete() drops the AIL lock. */
|
|
spin_lock(&ailp->xa_lock);
|
|
if (lip->li_lsn == qip->qli_flush_lsn)
|
|
xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
|
|
else
|
|
spin_unlock(&ailp->xa_lock);
|
|
}
|
|
|
|
/*
|
|
* Release the dq's flush lock since we're done with it.
|
|
*/
|
|
xfs_dqfunlock(dqp);
|
|
}
|
|
|
|
/*
|
|
* Write a modified dquot to disk.
|
|
* The dquot must be locked and the flush lock too taken by caller.
|
|
* The flush lock will not be unlocked until the dquot reaches the disk,
|
|
* but the dquot is free to be unlocked and modified by the caller
|
|
* in the interim. Dquot is still locked on return. This behavior is
|
|
* identical to that of inodes.
|
|
*/
|
|
int
|
|
xfs_qm_dqflush(
|
|
struct xfs_dquot *dqp,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
struct xfs_mount *mp = dqp->q_mount;
|
|
struct xfs_buf *bp;
|
|
struct xfs_disk_dquot *ddqp;
|
|
int error;
|
|
|
|
ASSERT(XFS_DQ_IS_LOCKED(dqp));
|
|
ASSERT(!completion_done(&dqp->q_flush));
|
|
|
|
trace_xfs_dqflush(dqp);
|
|
|
|
*bpp = NULL;
|
|
|
|
xfs_qm_dqunpin_wait(dqp);
|
|
|
|
/*
|
|
* This may have been unpinned because the filesystem is shutting
|
|
* down forcibly. If that's the case we must not write this dquot
|
|
* to disk, because the log record didn't make it to disk.
|
|
*
|
|
* We also have to remove the log item from the AIL in this case,
|
|
* as we wait for an emptry AIL as part of the unmount process.
|
|
*/
|
|
if (XFS_FORCED_SHUTDOWN(mp)) {
|
|
struct xfs_log_item *lip = &dqp->q_logitem.qli_item;
|
|
dqp->dq_flags &= ~XFS_DQ_DIRTY;
|
|
|
|
spin_lock(&mp->m_ail->xa_lock);
|
|
if (lip->li_flags & XFS_LI_IN_AIL)
|
|
xfs_trans_ail_delete(mp->m_ail, lip,
|
|
SHUTDOWN_CORRUPT_INCORE);
|
|
else
|
|
spin_unlock(&mp->m_ail->xa_lock);
|
|
error = XFS_ERROR(EIO);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Get the buffer containing the on-disk dquot
|
|
*/
|
|
error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno,
|
|
mp->m_quotainfo->qi_dqchunklen, 0, &bp, NULL);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Calculate the location of the dquot inside the buffer.
|
|
*/
|
|
ddqp = bp->b_addr + dqp->q_bufoffset;
|
|
|
|
/*
|
|
* A simple sanity check in case we got a corrupted dquot..
|
|
*/
|
|
error = xfs_qm_dqcheck(mp, &dqp->q_core, be32_to_cpu(ddqp->d_id), 0,
|
|
XFS_QMOPT_DOWARN, "dqflush (incore copy)");
|
|
if (error) {
|
|
xfs_buf_relse(bp);
|
|
xfs_dqfunlock(dqp);
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
/* This is the only portion of data that needs to persist */
|
|
memcpy(ddqp, &dqp->q_core, sizeof(xfs_disk_dquot_t));
|
|
|
|
/*
|
|
* Clear the dirty field and remember the flush lsn for later use.
|
|
*/
|
|
dqp->dq_flags &= ~XFS_DQ_DIRTY;
|
|
|
|
xfs_trans_ail_copy_lsn(mp->m_ail, &dqp->q_logitem.qli_flush_lsn,
|
|
&dqp->q_logitem.qli_item.li_lsn);
|
|
|
|
/*
|
|
* Attach an iodone routine so that we can remove this dquot from the
|
|
* AIL and release the flush lock once the dquot is synced to disk.
|
|
*/
|
|
xfs_buf_attach_iodone(bp, xfs_qm_dqflush_done,
|
|
&dqp->q_logitem.qli_item);
|
|
|
|
/*
|
|
* If the buffer is pinned then push on the log so we won't
|
|
* get stuck waiting in the write for too long.
|
|
*/
|
|
if (xfs_buf_ispinned(bp)) {
|
|
trace_xfs_dqflush_force(dqp);
|
|
xfs_log_force(mp, 0);
|
|
}
|
|
|
|
trace_xfs_dqflush_done(dqp);
|
|
*bpp = bp;
|
|
return 0;
|
|
|
|
out_unlock:
|
|
xfs_dqfunlock(dqp);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
/*
|
|
* Lock two xfs_dquot structures.
|
|
*
|
|
* To avoid deadlocks we always lock the quota structure with
|
|
* the lowerd id first.
|
|
*/
|
|
void
|
|
xfs_dqlock2(
|
|
xfs_dquot_t *d1,
|
|
xfs_dquot_t *d2)
|
|
{
|
|
if (d1 && d2) {
|
|
ASSERT(d1 != d2);
|
|
if (be32_to_cpu(d1->q_core.d_id) >
|
|
be32_to_cpu(d2->q_core.d_id)) {
|
|
mutex_lock(&d2->q_qlock);
|
|
mutex_lock_nested(&d1->q_qlock, XFS_QLOCK_NESTED);
|
|
} else {
|
|
mutex_lock(&d1->q_qlock);
|
|
mutex_lock_nested(&d2->q_qlock, XFS_QLOCK_NESTED);
|
|
}
|
|
} else if (d1) {
|
|
mutex_lock(&d1->q_qlock);
|
|
} else if (d2) {
|
|
mutex_lock(&d2->q_qlock);
|
|
}
|
|
}
|
|
|
|
int __init
|
|
xfs_qm_init(void)
|
|
{
|
|
xfs_qm_dqzone =
|
|
kmem_zone_init(sizeof(struct xfs_dquot), "xfs_dquot");
|
|
if (!xfs_qm_dqzone)
|
|
goto out;
|
|
|
|
xfs_qm_dqtrxzone =
|
|
kmem_zone_init(sizeof(struct xfs_dquot_acct), "xfs_dqtrx");
|
|
if (!xfs_qm_dqtrxzone)
|
|
goto out_free_dqzone;
|
|
|
|
return 0;
|
|
|
|
out_free_dqzone:
|
|
kmem_zone_destroy(xfs_qm_dqzone);
|
|
out:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void
|
|
xfs_qm_exit(void)
|
|
{
|
|
kmem_zone_destroy(xfs_qm_dqtrxzone);
|
|
kmem_zone_destroy(xfs_qm_dqzone);
|
|
}
|